To see the other types of publications on this topic, follow the link: Mucopolysaccharidosis Gene therapy.

Journal articles on the topic 'Mucopolysaccharidosis Gene therapy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Mucopolysaccharidosis Gene therapy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ponder, Katherine P., and Mark E. Haskins. "Gene therapy for mucopolysaccharidosis." Expert Opinion on Biological Therapy 7, no. 9 (August 29, 2007): 1333–45. http://dx.doi.org/10.1517/14712598.7.9.1333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wood, Heather. "Gene therapy for mucopolysaccharidosis shows promise." Nature Reviews Neurology 13, no. 9 (July 28, 2017): 513. http://dx.doi.org/10.1038/nrneurol.2017.110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sands, Mark S., John H. Wolfe, Edward H. Birkenmeier, Jane E. Barker, Carole Vogler, William S. Sly, Torayuki Okuyama, Brian Freeman, Andrew Nicholes, and Nicholas Muzyczka. "Gene therapy for murine mucopolysaccharidosis type VII." Neuromuscular Disorders 7, no. 5 (July 1997): 352–60. http://dx.doi.org/10.1016/s0960-8966(97)00061-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kubaski, Francyne, Fabiano de Oliveira Poswar, Kristiane Michelin-Tirelli, Ursula da Silveira Matte, Dafne D. Horovitz, Anneliese Lopes Barth, Guilherme Baldo, Filippo Vairo, and Roberto Giugliani. "Mucopolysaccharidosis Type I." Diagnostics 10, no. 3 (March 16, 2020): 161. http://dx.doi.org/10.3390/diagnostics10030161.

Full text
Abstract:
Mucopolysaccharidosis type I (MPS I) is caused by the deficiency of α-l-iduronidase, leading to the storage of dermatan and heparan sulfate. There is a broad phenotypical spectrum with the presence or absence of neurological impairment. The classical form is known as Hurler syndrome, the intermediate form as Hurler–Scheie, and the most attenuated form is known as Scheie syndrome. Phenotype seems to be largely influenced by genotype. Patients usually develop several somatic symptoms such as abdominal hernias, extensive dermal melanocytosis, thoracolumbar kyphosis odontoid dysplasia, arthropathy
APA, Harvard, Vancouver, ISO, and other styles
5

Lah, Benjamin, Tadej Jalšovec, Ana Drole Torkar, Jana Kodrič, Saba Battelino, Mojca Žerjav Tanšek, Tadej Battelino, and Urh Grošelj. "GENE THERAPY IN MUCOPOLYSACCHARIDOSIS TYPE IIIA: CASE REPORTS." Slovenska pediatrija, revija pediatrov Slovenije in specialistov šolske ter visokošolske medicine Slovenije 29, no. 2 (2022): 66–71. http://dx.doi.org/10.38031/slovpediatr-2022-2-02en.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hemsley, Kim, and Adeline Lau. "Intracerebral gene therapy for mucopolysaccharidosis type IIIB syndrome." Lancet Neurology 16, no. 9 (September 2017): 681–82. http://dx.doi.org/10.1016/s1474-4422(17)30200-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vasilev, Filipp, Aitalina Sukhomyasova, and Takanobu Otomo. "Mucopolysaccharidosis-Plus Syndrome." International Journal of Molecular Sciences 21, no. 2 (January 9, 2020): 421. http://dx.doi.org/10.3390/ijms21020421.

Full text
Abstract:
Previously, we reported a novel disease of impaired glycosaminoglycans (GAGs) metabolism without deficiency of known lysosomal enzymes—mucopolysaccharidosis-plus syndrome (MPSPS). MPSPS, whose pathophysiology is not elucidated, is an autosomal recessive multisystem disorder caused by a specific mutation p.R498W in the VPS33A gene. VPS33A functions in endocytic and autophagic pathways, but p.R498W mutation did not affect both of these pathways in the patient’s skin fibroblast. Nineteen patients with MPSPS have been identified: seventeen patients were found among the Yakut population (Russia) an
APA, Harvard, Vancouver, ISO, and other styles
8

Bosch, Fatima. "Gene therapies: Towards a gene therapy for neurological and somatic mucopolysaccharidosis." New Biotechnology 33 (July 2016): S8. http://dx.doi.org/10.1016/j.nbt.2016.06.753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Piechnik, Matthew, Paige C. Amendum, Kazuki Sawamoto, Molly Stapleton, Shaukat Khan, Nidhi Fnu, Victor Álvarez, et al. "Sex Difference Leads to Differential Gene Expression Patterns and Therapeutic Efficacy in Mucopolysaccharidosis IVA Murine Model Receiving AAV8 Gene Therapy." International Journal of Molecular Sciences 23, no. 20 (October 21, 2022): 12693. http://dx.doi.org/10.3390/ijms232012693.

Full text
Abstract:
Adeno-associated virus (AAV) vector-based therapies can effectively correct some disease pathology in murine models with mucopolysaccharidoses. However, immunogenicity can limit therapeutic effect as immune responses target capsid proteins, transduced cells, and gene therapy products, ultimately resulting in loss of enzyme activity. Inherent differences in male versus female immune response can significantly impact AAV gene transfer. We aim to investigate sex differences in the immune response to AAV gene therapies in mice with mucopolysaccharidosis IVA (MPS IVA). MPS IVA mice, treated with di
APA, Harvard, Vancouver, ISO, and other styles
10

Zapolnik, Paweł, and Antoni Pyrkosz. "Nanoemulsions as Gene Delivery in Mucopolysaccharidosis Type I—A Mini-Review." International Journal of Molecular Sciences 23, no. 9 (April 26, 2022): 4785. http://dx.doi.org/10.3390/ijms23094785.

Full text
Abstract:
Mucopolysaccharidosis type I (MPS I) is a rare monogenic disease in which glycosaminoglycans’ abnormal metabolism leads to the storage of heparan sulfate and dermatan sulfate in various tissues. It causes its damage and impairment. Patients with the severe form of MPS I usually do not live up to the age of ten. Currently, the therapy is based on multidisciplinary care and enzyme replacement therapy or hematopoietic stem cell transplantation. Applying gene therapy might benefit the MPS I patients because it overcomes the typical limitations of standard treatments. Nanoparticles, including nanoe
APA, Harvard, Vancouver, ISO, and other styles
11

Zapolnik, Paweł, and Antoni Pyrkosz. "Nanoemulsions as Gene Delivery in Mucopolysaccharidosis Type I—A Mini-Review." International Journal of Molecular Sciences 23, no. 9 (April 26, 2022): 4785. http://dx.doi.org/10.3390/ijms23094785.

Full text
Abstract:
Mucopolysaccharidosis type I (MPS I) is a rare monogenic disease in which glycosaminoglycans’ abnormal metabolism leads to the storage of heparan sulfate and dermatan sulfate in various tissues. It causes its damage and impairment. Patients with the severe form of MPS I usually do not live up to the age of ten. Currently, the therapy is based on multidisciplinary care and enzyme replacement therapy or hematopoietic stem cell transplantation. Applying gene therapy might benefit the MPS I patients because it overcomes the typical limitations of standard treatments. Nanoparticles, including nanoe
APA, Harvard, Vancouver, ISO, and other styles
12

Hurt, Sarah, Steven Q. Le, Samir Mendonca, Patricia Dickson, and David T. Curiel. "An adenoviral mediated gene therapy for mucopolysaccharidosis type I." Molecular Genetics and Metabolism 135, no. 2 (February 2022): S60. http://dx.doi.org/10.1016/j.ymgme.2021.11.148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ponder, K. P., J. R. Melniczek, L. Xu, M. A. Weil, T. M. O'Malley, P. A. O'Donnell, V. W. Knox, et al. "Therapeutic neonatal hepatic gene therapy in mucopolysaccharidosis VII dogs." Proceedings of the National Academy of Sciences 99, no. 20 (September 13, 2002): 13102–7. http://dx.doi.org/10.1073/pnas.192353499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Vera, Luisa Natalia Pimentel, and Guilherme Baldo. "The potential of gene therapy for mucopolysaccharidosis type I." Expert Opinion on Orphan Drugs 8, no. 1 (January 2, 2020): 33–41. http://dx.doi.org/10.1080/21678707.2020.1715208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bidone, Juliana, Roselena Silvestri Schuh, Mirian Farinon, Édina Poletto, Gabriela Pasqualim, Patrícia Gnieslaw de Oliveira, Michelle Fraga, et al. "Intra-articular nonviral gene therapy in mucopolysaccharidosis I mice." International Journal of Pharmaceutics 548, no. 1 (September 2018): 151–58. http://dx.doi.org/10.1016/j.ijpharm.2018.06.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

McIntyre, Chantelle, Ainslie Lauren Derrick Roberts, Enzo Ranieri, Peter Roy Clements, Sharon Byers, and Donald S. Anson. "Lentiviral-mediated gene therapy for murine mucopolysaccharidosis type IIIA." Molecular Genetics and Metabolism 93, no. 4 (April 2008): 411–18. http://dx.doi.org/10.1016/j.ymgme.2007.11.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Zapolnik, Paweł, and Antoni Pyrkosz. "Gene Therapy for Mucopolysaccharidosis Type II—A Review of the Current Possibilities." International Journal of Molecular Sciences 22, no. 11 (May 23, 2021): 5490. http://dx.doi.org/10.3390/ijms22115490.

Full text
Abstract:
Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder based on a mutation in the IDS gene that encodes iduronate 2-sulphatase. As a result, there is an accumulation of glycosaminoglycans—heparan sulphate and dermatan sulphate—in almost all body tissues, which leads to their dysfunction. Currently, the primary treatment is enzyme replacement therapy, which improves the course of the disease by reducing somatic symptoms, including hepatomegaly and splenomegaly. The enzyme, however, does not cross the blood–brain barrier, and no improvement in the function of the central nervous
APA, Harvard, Vancouver, ISO, and other styles
18

Laufer, Ralph, Philippe Drevot, Michaël Hocquemiller, Bérangère Deleglise, Marie Deneux, Karen Pignet-Aiach, and Xavier Frapaise. "AAVance gene therapy study in children with mucopolysaccharidosis type IIIA." Molecular Genetics and Metabolism 135, no. 2 (February 2022): S71—S72. http://dx.doi.org/10.1016/j.ymgme.2021.11.181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Sleeper, M. M., B. Fornasari, N. M. Ellinwood, M. A. Weil, J. Melniczek, T. M. O’Malley, C. D. Sammarco, L. Xu, K. P. Ponder, and M. E. Haskins. "Gene Therapy Ameliorates Cardiovascular Disease in Dogs With Mucopolysaccharidosis VII." Circulation 110, no. 7 (August 17, 2004): 815–20. http://dx.doi.org/10.1161/01.cir.0000138747.82487.4b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Gurda, Brittney, Peter Bell, Yanqing Zhu, Ping Wang, Patty O'Donnell, Julio Sanmiguel, Luk Vandenberghe, Mark Haskins, and James Wilson. "Liver-Directed Gene Therapy for Mucopolysaccharidosis Type I (MPS I)." Molecular Genetics and Metabolism 105, no. 2 (February 2012): S32. http://dx.doi.org/10.1016/j.ymgme.2011.11.067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Gorbunova, V. N., and N. V. Buchinskaya. "Lysosomal storage diseases. Mucopolysaccharidosis type III, sanfilippo syndrome." Pediatrician (St. Petersburg) 12, no. 4 (December 13, 2021): 69–81. http://dx.doi.org/10.17816/ped12469-81.

Full text
Abstract:
The review describes the clinical, biochemical and molecular genetic characteristics of autosomal recessive mucopolysaccharidosis type III, or Sanfilippo syndrome. This is a genetically heterogeneous group of rare, but similar in nature, diseases caused by a deficiency of one of the four lysosomal enzymes involved in the degradation of heparan sulfate. All types of mucopolysaccharidosis III are characterized by severe degeneration of the central nervous system in combination with mild somatic manifestations, which is explained by the accumulation of high concentrations of heparan sulfate in th
APA, Harvard, Vancouver, ISO, and other styles
22

Gieselmann, Volkmar, Ulrich Matzner, Diana Klein, Jan Eric Mansson, Rudi D'Hooge, Peter D. DeDeyn, Renate Lüllmann Rauch, Dieter Hartmann, and Klaus Harzer. "Gene therapy: prospects for glycolipid storage diseases." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 358, no. 1433 (May 29, 2003): 921–25. http://dx.doi.org/10.1098/rstb.2003.1277.

Full text
Abstract:
Lysosomal storage diseases comprise a group of about 40 disorders, which in most cases are due to the deficiency of a lysosomal enzyme. Since lysosomal enzymes are involved in the degradation of various compounds, the diseases can be further subdivided according to which pathway is affected. Thus, enzyme deficiencies in the degradation pathway of glycosaminoglycans cause mucopolysaccharidosis, and deficiencies affecting glycopeptides cause glycoproteinosis. In glycolipid storage diseases enzymes are deficient that are involved in the degradation of sphingolipids. Mouse models are available for
APA, Harvard, Vancouver, ISO, and other styles
23

Kubaski, Francyne, Filippo Vairo, Guilherme Baldo, Fabiano de Oliveira Poswar, Amauri Dalla Corte, and Roberto Giugliani. "Therapeutic Options for Mucopolysaccharidosis II (Hunter Disease)." Current Pharmaceutical Design 26, no. 40 (November 27, 2020): 5100–5109. http://dx.doi.org/10.2174/1381612826666200724161504.

Full text
Abstract:
Background: Mucopolysaccharidosis type II (Hunter syndrome, or MPS II) is an X-linked lysosomal disorder caused by the deficiency of iduronate-2-sulfatase, which leads to the accumulation of glycosaminoglycans (GAGs) in a variety of tissues, resulting in a multisystemic disease that can also impair the central nervous system (CNS). Objective: This review focuses on providing the latest information and expert opinion about the therapies available and under development for MPS II. Methods: We have comprehensively revised the latest studies about hematopoietic stem cell transplantation (HSCT), en
APA, Harvard, Vancouver, ISO, and other styles
24

Di Natale, Paola, Carmela Di Domenico, Guglielmo R. D. Villani, Angelo Lombardo, Antonia Follenzi, and Luigi Naldini. "In vitro gene therapy of mucopolysaccharidosis type I by lentiviral vectors." European Journal of Biochemistry 269, no. 11 (May 26, 2002): 2764–71. http://dx.doi.org/10.1046/j.1432-1033.2002.02951.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Haurigot, Virginia, Sara Marcó, Albert Ribera, Miguel Garcia, Albert Ruzo, Pilar Villacampa, Eduard Ayuso, et al. "Whole body correction of mucopolysaccharidosis IIIA by intracerebrospinal fluid gene therapy." Journal of Clinical Investigation 123, no. 8 (July 1, 2013): 3254–71. http://dx.doi.org/10.1172/jci66778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Alméciga-Diaz, Carlos J., and Luis A. Barrera. "Design and applications of gene therapy vectors for mucopolysaccharidosis in Colombia." Gene Therapy 27, no. 1-2 (July 2, 2019): 104–7. http://dx.doi.org/10.1038/s41434-019-0086-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Chen, Yonghong, Shujuan Zheng, Luis Tecedor, and Beverly L. Davidson. "Overcoming Limitations Inherent in Sulfamidase to Improve Mucopolysaccharidosis IIIA Gene Therapy." Molecular Therapy 26, no. 4 (April 2018): 1118–26. http://dx.doi.org/10.1016/j.ymthe.2018.01.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ponder, Katherine P., Thomas M. O'Malley, Ping Wang, Patricia A. O'Donnell, Anne M. Traas, Van W. Knox, Gustavo A. Aguirre, et al. "Neonatal Gene Therapy With a Gamma Retroviral Vector in Mucopolysaccharidosis VI Cats." Molecular Therapy 20, no. 5 (May 2012): 898–907. http://dx.doi.org/10.1038/mt.2012.9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Hinderer, C., P. Bell, B. L. Gurda, Q. Wang, J. P. Louboutin, Y. Zhu, J. Bagel, et al. "Liver-directed gene therapy corrects cardiovascular lesions in feline mucopolysaccharidosis type I." Proceedings of the National Academy of Sciences 111, no. 41 (September 29, 2014): 14894–99. http://dx.doi.org/10.1073/pnas.1413645111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ou, Li, Michael J. Przybilla, Brenda L. Koniar, and Chester B. Whitley. "Elements of lentiviral vector design toward gene therapy for treating mucopolysaccharidosis I." Molecular Genetics and Metabolism Reports 8 (September 2016): 87–93. http://dx.doi.org/10.1016/j.ymgmr.2015.11.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Mikhaylova, S. V., A. N. Slateckay, E. A. Pristanskova, K. I. Kirgizov, O. V. Mendelevich, M. V. Zazhivikhina, V. P. Voroncova, et al. "Mucopolysaccharidosis I type: new management." Pediatric Hematology/Oncology and Immunopathology 17, no. 4 (January 13, 2019): 35–42. http://dx.doi.org/10.24287/1726-1708-2018-17-4-35-42.

Full text
Abstract:
Mucopolysaccharidosis I-Hurler (MPS I-H) is the most severe form of a metabolic genetic disease caused by mutations of IDUA gene encoding the lysosomal α-L-iduronidase enzyme. MPS I-H is a rare, life-threatening disease, evolving in multisystem morbidity including progressive neurological disease, upper airway obstruction, skeletal deformity and cardiomyopathy. Allogeneic hematopoietic stem cell transplantation (HSCT) is currently the gold standard for the treatment of MPS I-H in patients diagnosed and treated before 2–2.5 years of age, having a high rate of success. Enzyme replacement therapy
APA, Harvard, Vancouver, ISO, and other styles
32

Burlutskaya, A. V., N. V. Savel′eva, and G. V. Naumenko. "Mucopolysaccharidosis type IVA in children: Clinical cases." Kuban Scientific Medical Bulletin 29, no. 1 (January 25, 2022): 119–31. http://dx.doi.org/10.25207/1608-6228-2022-29-1-119-131.

Full text
Abstract:
Background. Mucopolysaccharidosis type IVA (Morquio syndrome) is a rare genetic lysosomal storage disease. Due to rarity, the syndrome is typically diagnosed at a later stage of gross affections of musculoskeletal and central nervous systems, leading to disability and a markedly reduced quality of life. A replacement therapy is nowadays available with recombinant human N-acetylgalactosamine-6-sulfatase (elosulfase alfa) enzyme.Clinical cases description. Two siblings, 10-yo male and 8-yo female, were admitted with complaints of growth retardation, deformity of the spine, thorax and joints, imp
APA, Harvard, Vancouver, ISO, and other styles
33

Gentner, Bernhard, Maria Ester Bernardo, Francesca Tucci, Francesca Fumagalli, Silvia Pontesilli, Paolo Silvani, Erika Zonari, et al. "Ex vivo hematopoietic stem cell gene therapy for mucopolysaccharidosis type I (Hurler syndrome)." Molecular Genetics and Metabolism 132, no. 2 (February 2021): S42—S43. http://dx.doi.org/10.1016/j.ymgme.2020.12.087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Braun, Stephen E., Dao Pan, Elena L. Aronovich, Jon J. Jonsson, R. Scott McIvor, and Chester B. Whitley. "Preclinical Studies of Lymphocyte Gene Therapy for Mild Hunter Syndrome (Mucopolysaccharidosis Type II)." Human Gene Therapy 7, no. 3 (February 10, 1996): 283–90. http://dx.doi.org/10.1089/hum.1996.7.3-283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Domenico, Carmela Di, Guglielmo R. D. Villani, Daniele Di Napoli, Enrico Gonzalez Y. Reyero, Angelo Lombardo, Luigi Naldini, and Paola Di Natale. "Gene Therapy for a Mucopolysaccharidosis Type I Murine Model with Lentiviral-IDUA Vector." Human Gene Therapy 16, no. 1 (January 2005): 81–90. http://dx.doi.org/10.1089/hum.2005.16.81.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hinderer, Christian, Peter Bell, Brittney L. Gurda, Qiang Wang, Jean-Pierre Louboutin, Yanqing Zhu, Jessica Bagel, et al. "Intrathecal Gene Therapy Corrects CNS Pathology in a Feline Model of Mucopolysaccharidosis I." Molecular Therapy 22, no. 12 (December 2014): 2018–27. http://dx.doi.org/10.1038/mt.2014.135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Bigger, Brian, Stuart Ellison, Daniel Fil, Claire O'leary, John McDermott, N. Senthivel, Alexander Langford-Smith, et al. "Neurological correction of mucopolysaccharidosis type IIIB mice by haematopoietic stem cell gene therapy." Molecular Genetics and Metabolism 120, no. 1-2 (January 2017): S28. http://dx.doi.org/10.1016/j.ymgme.2016.11.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Scott McIvor, R., Karen Kozarsky, Kanut Laoharawee, Kelly M. Podetz-Pedersen, Kelley Kitto, Maureen Riedl, Chester B. Whitley, et al. "Relative effectiveness of different routes of AAV administration for gene therapy of mucopolysaccharidosis." Molecular Genetics and Metabolism 120, no. 1-2 (January 2017): S93. http://dx.doi.org/10.1016/j.ymgme.2016.11.230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kan, Shih-hsin, Haoyue Zhang, Jodi D. Smith, Elizabeth M. Snella, Aminian Afshin, Jackie K. Jens, Bethann Valentine та ін. "Intra-articular AAV9 α-iduronidase gene therapy in mucopolysaccharidosis type I canine model". Molecular Genetics and Metabolism 129, № 2 (лютий 2020): S82—S83. http://dx.doi.org/10.1016/j.ymgme.2019.11.202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ellison, Stuart M., Rebecca Holley, Daniel Fil, John Mc Dermott, Nisha Senthivel, Alex Langford-Smith, Fiona Wilkinson, et al. "364. Neurological Correction of Mucopolysaccharidosis IIIB Mice by Haematopoietic Stem Cell Gene Therapy." Molecular Therapy 24 (May 2016): S146. http://dx.doi.org/10.1016/s1525-0016(16)33173-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Smith, Lachlan J., John T. Martin, Patricia O'Donnell, Ping Wang, Dawn M. Elliott, Mark E. Haskins, and Katherine P. Ponder. "Effect of neonatal gene therapy on lumbar spine disease in mucopolysaccharidosis VII dogs." Molecular Genetics and Metabolism 107, no. 1-2 (September 2012): 145–52. http://dx.doi.org/10.1016/j.ymgme.2012.03.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kamata, Yuko, Torayuki Okuyama, Motomichi Kosuga, Aya O'hira, Arihiko Kanaji, Kyoko Sasaki, Masao Yamada, and Noriyuki Azuma. "Adenovirus-Mediated Gene Therapy for Corneal Clouding in Mice with Mucopolysaccharidosis Type VII." Molecular Therapy 4, no. 4 (October 2001): 307–12. http://dx.doi.org/10.1006/mthe.2001.0461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Levina, Julia G., Nato D. Vashakmadze, Leyla S. Namazova-Baranova, Elena A. Vishneva, Natalia V. Zhurkova, Kamilla E. Efendieva, Anna A. Alekseeva, and Vera G. Kalugina. "Allergic Reactions at Enzyme Replacement Therapy in Children with Mucopolysaccharidosis Type II." Current Pediatrics 20, no. 6s (December 17, 2021): 624–29. http://dx.doi.org/10.15690/vsp.v20i6s.2372.

Full text
Abstract:
Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is rare hereditary disease caused by changes in the IDS gene and associated deficiency of lysosomal enzyme iduronate-2-sulfatase (I2S). The main treatment scheme for children with MPS II is enzyme replacement therapy (ERT) with recombinant human I2S. The major issue of ERT is development of allergic (sometimes up to severe anaphylaxis) reactions to recombinant enzymes. The article covers features of infusion-related reactions to ERT, it describes pathogenesis, diagnostic criteria management algorithm of anaphylaxis. Whereas, there is the
APA, Harvard, Vancouver, ISO, and other styles
44

Di NATALE, Paola, Carmela Di DOMENICO, Nadia GARGIULO, Sigismondo CASTALDO, Enrico GONZALEZ Y. REYERO, Pratibha MITHBAOKAR, Mario De FELICE, Antonia FOLLENZI, Luigi NALDINI, and Guglielmo R. D. VILLANI. "Treatment of the mouse model of mucopolysaccharidosis type IIIB with lentiviral-NAGLU vector." Biochemical Journal 388, no. 2 (May 24, 2005): 639–46. http://dx.doi.org/10.1042/bj20041702.

Full text
Abstract:
The Sanfilippo syndrome type B (mucopolysaccharidosis IIIB) is an autosomal recessive disorder due to mutations in the gene encoding NAGLU (α-N-acetylglucosaminidase), one of the enzymes required for the degradation of the GAG (glycosaminoglycan) heparan sulphate. No therapy exists for affected patients. We have shown previously the efficacy of lentiviral-NAGLU-mediated gene transfer in correcting in vitro the defect on fibroblasts of patients. In the present study, we tested the therapy in vivo on a knockout mouse model using intravenous injections. Mice (8–10 weeks old) were injected with on
APA, Harvard, Vancouver, ISO, and other styles
45

Gorbunova, Victoria N. "Congenital metabolic diseases. Lysosomal storage diseases." Pediatrician (St. Petersburg) 12, no. 2 (August 11, 2021): 73–83. http://dx.doi.org/10.17816/ped12273-83.

Full text
Abstract:
The classification and epidemiology of hereditary metabolic disorders are presented. That is a large group consisting from more them 800 monogenic diseases, each of which caused by inherited deficiency of certain metabolic fate. Many of these disorders are extremely rare, but their total incidence in the population is close to 1:10005000. Lysosomal storage diseases (LSD) resulting from inherited deficiency in lysosomal functions occupy a special place among hereditary metabolic disorders. The defects of catabolism cause the accumulation of undigested or partially digested macromolecules in lys
APA, Harvard, Vancouver, ISO, and other styles
46

Ohashi, Toya, Takashi Yokoo, Sayoko Iizuka, Hiroshi Kobayashi, William S. Sly, and Yoshikatsu Eto. "Reduction of lysosomal storage in murine mucopolysaccharidosis type VII by transplantation of normal and genetically modified macrophages." Blood 95, no. 11 (June 1, 2000): 3631–33. http://dx.doi.org/10.1182/blood.v95.11.3631.

Full text
Abstract:
Abstract This study examined the ability of macrophages to serve as target cells of gene therapy for mucopolysaccharidosis (MPS) type VII using a murine model. Bone marrow cells were harvested from syngeneic normal mice and differentiated to macrophages. These cells were given to nonmyeloablated MPS VII mice. After transplantation, donor cells populated the liver and spleen. The pathologic improvement at day 38 after transplantation was significant and glycosaminoglycan storage was reduced. To develop gene therapy using this system, a retroviral vector expressing human β-glucuronidase (HBG) wa
APA, Harvard, Vancouver, ISO, and other styles
47

Ohashi, Toya, Takashi Yokoo, Sayoko Iizuka, Hiroshi Kobayashi, William S. Sly, and Yoshikatsu Eto. "Reduction of lysosomal storage in murine mucopolysaccharidosis type VII by transplantation of normal and genetically modified macrophages." Blood 95, no. 11 (June 1, 2000): 3631–33. http://dx.doi.org/10.1182/blood.v95.11.3631.011k13_3631_3633.

Full text
Abstract:
This study examined the ability of macrophages to serve as target cells of gene therapy for mucopolysaccharidosis (MPS) type VII using a murine model. Bone marrow cells were harvested from syngeneic normal mice and differentiated to macrophages. These cells were given to nonmyeloablated MPS VII mice. After transplantation, donor cells populated the liver and spleen. The pathologic improvement at day 38 after transplantation was significant and glycosaminoglycan storage was reduced. To develop gene therapy using this system, a retroviral vector expressing human β-glucuronidase (HBG) was used to
APA, Harvard, Vancouver, ISO, and other styles
48

Provoost, Lena, Carlo Siracusa, Darko Stefanovski, Yan Che, Mingyao Li, and Margret Casal. "Cognitive Abilities of Dogs with Mucopolysaccharidosis I: Learning and Memory." Animals 10, no. 3 (February 28, 2020): 397. http://dx.doi.org/10.3390/ani10030397.

Full text
Abstract:
Mucopolysaccharidosis I (MPS I) results from a deficiency of a lysosomal enzyme, alpha-L-iduronidase (IDUA). IDUA deficiency leads to glycosaminoglycan (GAG) accumulation resulting in cellular degeneration and multi-organ dysfunction. The primary aims of this pilot study were to determine the feasibility of cognitive testing MPS I affected dogs and to determine their non-social cognitive abilities with and without gene therapy. Fourteen dogs were tested: 5 MPS I untreated, 5 MPS I treated, and 4 clinically normal. The treated group received intrathecal gene therapy as neonates to replace the I
APA, Harvard, Vancouver, ISO, and other styles
49

Patel, Kruti, Laura Smith, Jacinthe Gingras, Alec Tzianabos, Lindsay Schulman, Victor Zhivich, Monicah Kivaa, et al. "HMI-203: Investigational gene therapy for mucopolysaccharidosis type II (MPS II), or Hunter syndrome." Molecular Genetics and Metabolism 132, no. 2 (February 2021): S82. http://dx.doi.org/10.1016/j.ymgme.2020.12.195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Tomanin, R., A. Friso, S. Alba, E. Piller Puicher, C. Mennuni, N. La Monica, G. Hortelano, F. Zacchello, and M. Scarpa. "Non-viral transfer approaches for the gene therapy of mucopolysaccharidosis type II (Hunter syndrome)." Acta Paediatrica 91 (January 2, 2007): 100–104. http://dx.doi.org/10.1111/j.1651-2227.2002.tb03119.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!