Journal articles on the topic 'Mullins-Sekerka'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Mullins-Sekerka.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Rigos, A. A., and J. M. Deutch. "Concentration effects on the Mullins–Sekerka instability." Journal of Chemical Physics 86, no. 12 (June 15, 1987): 7119–25. http://dx.doi.org/10.1063/1.452361.
Full textFehribach, Joseph D. "Mullins–Sekerka stability analysis for melting-freezing waves in helium." European Journal of Applied Mathematics 5, no. 1 (March 1994): 21–37. http://dx.doi.org/10.1017/s0956792500001273.
Full textAntonopoulou, Dimitra, Ĺubomír Baňas, Robert Nürnberg, and Andreas Prohl. "Numerical approximation of the stochastic Cahn–Hilliard equation near the sharp interface limit." Numerische Mathematik 147, no. 3 (February 17, 2021): 505–51. http://dx.doi.org/10.1007/s00211-021-01179-7.
Full textChung, C. A., W. Z. Chien, and Y. H. Hsieh. "Morphological Instabilities in Time Periodic Crystallization." Journal of Mechanics 23, no. 4 (December 2007): 295–302. http://dx.doi.org/10.1017/s1727719100001349.
Full textMa, Feiyao, and Lihe Wang. "Schauder type estimates of linearized Mullins-Sekerka problem." Communications on Pure & Applied Analysis 11, no. 3 (2012): 1037–50. http://dx.doi.org/10.3934/cpaa.2012.11.1037.
Full textNovick-Cohen, A. "A Stefan/Mullins-Sekerka Type Problem with Memory." Journal of Integral Equations and Applications 9, no. 2 (June 1997): 113–41. http://dx.doi.org/10.1216/jiea/1181076000.
Full textDai, Shibin, Barbara Niethammer, and Robert L. Pego. "Crossover in coarsening rates for the monopole approximation of the Mullins–Sekerka model with kinetic drag." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 140, no. 3 (May 21, 2010): 553–71. http://dx.doi.org/10.1017/s030821050900033x.
Full textEscher, Joachim, and Gieri Simonett. "A Center Manifold Analysis for the Mullins–Sekerka Model." Journal of Differential Equations 143, no. 2 (March 1998): 267–92. http://dx.doi.org/10.1006/jdeq.1997.3373.
Full textRöger, Matthias. "Existence of Weak Solutions for the Mullins--Sekerka Flow." SIAM Journal on Mathematical Analysis 37, no. 1 (January 2005): 291–301. http://dx.doi.org/10.1137/s0036141004439647.
Full textSu, J. "Axisymmetric three-dimensional finger solutions in Mullins-Sekerka equation." IMA Journal of Applied Mathematics 69, no. 4 (August 1, 2004): 421–35. http://dx.doi.org/10.1093/imamat/69.4.421.
Full textChugreeva, Olga, Felix Otto, and Maria Westdickenberg. "Relaxation to a planar interface in the Mullins–Sekerka problem." Interfaces and Free Boundaries 21, no. 1 (May 9, 2019): 21–40. http://dx.doi.org/10.4171/ifb/415.
Full textKarali, Georgia D., and Panayotis G. Kevrekidis. "Bubble interactions for the Mullins–Sekerka problem: Some case examples." Mathematics and Computers in Simulation 80, no. 4 (December 2009): 707–20. http://dx.doi.org/10.1016/j.matcom.2009.08.023.
Full textZhang, Lei, and Suresh V. Garimella. "A modified Mullins–Sekerka stability analysis including surface energy effects." Journal of Applied Physics 74, no. 4 (August 15, 1993): 2494–500. http://dx.doi.org/10.1063/1.354688.
Full textMilic, Natasa. "On the Mullins-Sekerka model for phase transitions in mixtures." Quarterly of Applied Mathematics 49, no. 3 (January 1, 1991): 437–45. http://dx.doi.org/10.1090/qam/1121676.
Full textMisbah, C. "The Mullins-Sekerka instability in directional solidification of quasi-azeotropes." Journal de Physique 47, no. 6 (1986): 1077–90. http://dx.doi.org/10.1051/jphys:019860047060107700.
Full textZhu, Jingyi, Xinfu Chen, and Thomas Y. Hou. "An Efficient Boundary Integral Method for the Mullins–Sekerka Problem." Journal of Computational Physics 127, no. 2 (September 1996): 246–67. http://dx.doi.org/10.1006/jcph.1996.0173.
Full textCaroli, B., C. Caroli, and B. Roulet. "The Mullins-Sekerka instability in directional solidification of thin samples." Journal of Crystal Growth 76, no. 1 (July 1986): 31–49. http://dx.doi.org/10.1016/0022-0248(86)90006-0.
Full textAlikakos, Nicholas D., Peter W. Bates, Xinfu Chen, and Giorgio Fusco. "Mullins-Sekerka motion of small droplets on a fixed boundary." Journal of Geometric Analysis 10, no. 4 (December 2000): 575–96. http://dx.doi.org/10.1007/bf02921987.
Full textLOUIS, E., O. PLA, L. M. SANDER, and F. GUINEA. "VARIATIONS ON THE THEME OF DIFFUSION-LIMITED GROWTH." Modern Physics Letters B 08, no. 28 (December 10, 1994): 1739–58. http://dx.doi.org/10.1142/s0217984994001667.
Full textNIETHAMMER, B., and J. J. L. VELÁZQUEZ. "HOMOGENIZATION IN COARSENING SYSTEMS II: STOCHASTIC CASE." Mathematical Models and Methods in Applied Sciences 14, no. 09 (September 2004): 1401–24. http://dx.doi.org/10.1142/s0218202504003660.
Full textYi, Fahuai, Youshan Tao, and Zuhan Liu. "Quasi-stationary Stefan problem as limit case of Mullins-Sekerka problem." Science in China Series A: Mathematics 40, no. 2 (February 1997): 151–62. http://dx.doi.org/10.1007/bf02874434.
Full textTokuda, Yuichiro, Jun Kojima, Kazukuni Hara, Hidekazu Tsuchida, and Shoichi Onda. "4H-SiC Bulk Growth Using High-Temperature Gas Source Method." Materials Science Forum 778-780 (February 2014): 51–54. http://dx.doi.org/10.4028/www.scientific.net/msf.778-780.51.
Full textNIETHAMMER, B., and J. J. L. VELÁZQUEZ. "HOMOGENIZATION IN COARSENING SYSTEMS I: DETERMINISTIC CASE." Mathematical Models and Methods in Applied Sciences 14, no. 08 (August 2004): 1211–33. http://dx.doi.org/10.1142/s021820250400360x.
Full textMANZI, GUIDO, and ROSSANA MARRA. "A KINETIC MODEL OF INTERFACE MOTION." International Journal of Modern Physics B 18, no. 04n05 (February 20, 2004): 715–24. http://dx.doi.org/10.1142/s0217979204024331.
Full textGarroni, Adriana, and Barbara Niethammer. "Correctors and error estimates in the homogenization of a Mullins–Sekerka problem." Annales de l'Institut Henri Poincare (C) Non Linear Analysis 19, no. 4 (2002): 371–93. http://dx.doi.org/10.1016/s0294-1449(01)00085-3.
Full textXinfu, Chen, Hong Jiaxin, and Yi Fahuai. "Existance uniqueness and regularity of classical solutions of the mullins—sekerka problem." Communications in Partial Differential Equations 21, no. 11-12 (January 1996): 1705–27. http://dx.doi.org/10.1080/03605309608821243.
Full textLaxmanan, V. "Analysis of stability of a planar solid-liquid interface in a dilute binary alloy." Journal of Materials Research 5, no. 1 (January 1990): 223–28. http://dx.doi.org/10.1557/jmr.1990.0223.
Full textAcerbi, E., N. Fusco, V. Julin, and M. Morini. "Nonlinear stability results for the modified Mullins–Sekerka and the surface diffusion flow." Journal of Differential Geometry 113, no. 1 (September 2019): 1–53. http://dx.doi.org/10.4310/jdg/1567216953.
Full textGLASNER, KARL. "Rapid growth and critical behaviour in phase field models of solidification." European Journal of Applied Mathematics 12, no. 1 (February 2001): 39–56. http://dx.doi.org/10.1017/s0956792501004351.
Full textMerchant, G. J., and S. H. Davis. "Kinetic Effects in Directional Solidification." Applied Mechanics Reviews 43, no. 5S (May 1, 1990): S76—S78. http://dx.doi.org/10.1115/1.3120855.
Full textESCHER, Joachim, and Yasumasa NISHIURA. "Smooth unique solutions for a modified Mullins-Sekerka model arising in diblock copolymer melts." Hokkaido Mathematical Journal 31, no. 1 (February 2002): 137–49. http://dx.doi.org/10.14492/hokmj/1350911774.
Full textStoth, Barbara E. E. "Convergence of the Cahn–Hilliard Equation to the Mullins–Sekerka Problem in Spherical Symmetry." Journal of Differential Equations 125, no. 1 (February 1996): 154–83. http://dx.doi.org/10.1006/jdeq.1996.0028.
Full textCarlen, E. A., M. C. Carvalho, and E. Orlandi. "Approximate Solutions of the Cahn-Hilliard Equation via Corrections to the Mullins-Sekerka Motion." Archive for Rational Mechanics and Analysis 178, no. 1 (April 21, 2005): 1–55. http://dx.doi.org/10.1007/s00205-005-0366-5.
Full textCarlen, E. A., M. C. Carvalho, and E. Orlandi. "Approximate Solutions of the Cahn-Hilliard Equation via Corrections to the Mullins-Sekerka Motion." Archive for Rational Mechanics and Analysis 180, no. 3 (April 5, 2006): 511. http://dx.doi.org/10.1007/s00205-006-0433-6.
Full textEscher, J., and U. F. Mayer. "Loss of convexity for a modified Mullins–Sekerka model arising in diblock copolymer melts." Archiv der Mathematik 77, no. 5 (November 2001): 434–48. http://dx.doi.org/10.1007/pl00000515.
Full textCristini, Vittorio, and John Lowengrub. "Three-dimensional crystal growth—II: nonlinear simulation and control of the Mullins–Sekerka instability." Journal of Crystal Growth 266, no. 4 (June 2004): 552–67. http://dx.doi.org/10.1016/j.jcrysgro.2004.02.115.
Full textLi, Shuwang, John S. Lowengrub, Perry H. Leo, and Vittorio Cristini. "Nonlinear stability analysis of self-similar crystal growth: control of the Mullins–Sekerka instability." Journal of Crystal Growth 277, no. 1-4 (April 2005): 578–92. http://dx.doi.org/10.1016/j.jcrysgro.2004.12.042.
Full textSoner, H. Mete. "Convergence of the phase-field equations to the mullins-sekerka problem with kinetic undercooling." Archive for Rational Mechanics and Analysis 131, no. 2 (1995): 139–97. http://dx.doi.org/10.1007/bf00386194.
Full textSZABÓ, G., A. SZOLNOKI, T. ANTAL, and I. BORSOS. "INTERFACE INSTABILITY IN DRIVEN LATTICE GASES." Fractals 01, no. 04 (December 1993): 954–58. http://dx.doi.org/10.1142/s0218348x93001015.
Full textMAYER, UWE F. "A numerical scheme for moving boundary problems that are gradient flows for the area functional." European Journal of Applied Mathematics 11, no. 1 (February 2000): 61–80. http://dx.doi.org/10.1017/s0956792599003812.
Full textBronsard, Lia, Harald Garcke, and Barbara Stoth. "A multi-phase Mullins–Sekerka system: matched asymptotic expansions and an implicit time discretisation for the geometric evolution problem." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 128, no. 3 (1998): 481–506. http://dx.doi.org/10.1017/s0308210500021612.
Full textStyle, Robert W., and M. Grae Worster. "Linear stability of a solid–vapour interface." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, no. 2116 (December 3, 2009): 1005–25. http://dx.doi.org/10.1098/rspa.2009.0496.
Full textLe, Nam Q. "On the Convergence of the Ohta–Kawasaki Equation to Motion by Nonlocal Mullins–Sekerka Law." SIAM Journal on Mathematical Analysis 42, no. 4 (January 2010): 1602–38. http://dx.doi.org/10.1137/090768643.
Full textIgnés-Mullol, Jordi, and Patrick Oswald. "Growth and melting of the nematic phase: Sample thickness dependence of the Mullins-Sekerka instability." Physical Review E 61, no. 4 (April 1, 2000): 3969–76. http://dx.doi.org/10.1103/physreve.61.3969.
Full textDai, Shibin, and Keith Promislow. "Geometric evolution of bilayers under the functionalized Cahn–Hilliard equation." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469, no. 2153 (May 8, 2013): 20120505. http://dx.doi.org/10.1098/rspa.2012.0505.
Full textAbels, Helmut, and Mathias Wilke. "Well-posedness and qualitative behaviour of solutions for a two-phase Navier–Stokes-Mullins–Sekerka system." Interfaces and Free Boundaries 15, no. 1 (2013): 39–75. http://dx.doi.org/10.4171/ifb/294.
Full textAlikakos, Nicholas D., Giorgio Fusco, and Georgia Karali. "Ostwald ripening in two dimensions—the rigorous derivation of the equations from the Mullins–Sekerka dynamics." Journal of Differential Equations 205, no. 1 (October 2004): 1–49. http://dx.doi.org/10.1016/j.jde.2004.05.008.
Full textJi, Shou Xun, Yun Wang, Douglas Watson, and Zhong Yun Fan. "Microstructural Characteristics of Diecast AlMgSiMn Alloy." Materials Science Forum 783-786 (May 2014): 234–39. http://dx.doi.org/10.4028/www.scientific.net/msf.783-786.234.
Full textQian, Ma. "Creation of semisolid slurries containing fine and spherical particles by grain refinement based on the Mullins–Sekerka stability criterion." Acta Materialia 54, no. 8 (May 2006): 2241–52. http://dx.doi.org/10.1016/j.actamat.2006.01.022.
Full textBarrett, John W., Harald Garcke, and Robert Nürnberg. "On stable parametric finite element methods for the Stefan problem and the Mullins–Sekerka problem with applications to dendritic growth." Journal of Computational Physics 229, no. 18 (September 2010): 6270–99. http://dx.doi.org/10.1016/j.jcp.2010.04.039.
Full text