To see the other types of publications on this topic, follow the link: N-type silicon.

Journal articles on the topic 'N-type silicon'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'N-type silicon.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Guyader, F., J. K. Jung, M. Guendouz, M. Sarret, and P. Joubert. "n-Type Polydrystalline Silicon for Luminescent Porous Silicon Films." Solid State Phenomena 51-52 (May 1996): 211–16. http://dx.doi.org/10.4028/www.scientific.net/ssp.51-52.211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hovorka, Miloš, Filip Mika, Petr Mikulík, and Lud\\v{e}k Frank. "Profiling N-Type Dopants in Silicon." MATERIALS TRANSACTIONS 51, no. 2 (2010): 237–42. http://dx.doi.org/10.2320/matertrans.mc200910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kang, Ying, and Jacob Jorné. "Photoelectrochemical dissolution of N-type silicon." Electrochimica Acta 43, no. 16-17 (1998): 2389–98. http://dx.doi.org/10.1016/s0013-4686(97)10150-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Repo, Päivikki, Jan Benick, Ville Vähänissi, et al. "N-type Black Silicon Solar Cells." Energy Procedia 38 (2013): 866–71. http://dx.doi.org/10.1016/j.egypro.2013.07.358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

da Silva, Wilson J., Ivo A. Hümmelgen, and Regina M. Q. Mello. "Sulfonated polyaniline/n-type silicon junctions." Journal of Materials Science: Materials in Electronics 20, no. 2 (2008): 123–26. http://dx.doi.org/10.1007/s10854-008-9645-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Park, Sangwook, Eunchel Cho, Dengyuan Song, Gavin Conibeer, and Martin A. Green. "n-Type silicon quantum dots and p-type crystalline silicon heteroface solar cells." Solar Energy Materials and Solar Cells 93, no. 6-7 (2009): 684–90. http://dx.doi.org/10.1016/j.solmat.2008.09.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ohmukai, Masato. "Structure of Porous Silicon Formed on n-Type Silicon Wafer." World Journal of Engineering and Technology 13, no. 02 (2025): 291–98. https://doi.org/10.4236/wjet.2025.132018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

El Amrani, A., R. Si-Kaddour, M. Maoudj, and C. Nasraoui. "SiN/SiO2 passivation stack of n-type silicon surface." Materials Science-Poland 37, no. 3 (2019): 482–87. http://dx.doi.org/10.2478/msp-2019-0065.

Full text
Abstract:
AbstractThe SiN/SiO2 stack is widely used to passivate the surface of n-type monocrystalline silicon solar cells. In this work, we have undertaken a study to compare the stack layer obtained with SiO2 grown by both rapid thermal and chemical ways to passivate n-type monocrystalline silicon surface. By varying the plateau time and the plateau temperature of the rapid thermal oxidation, we determined the parameters to grow 10 nm thick oxide. Two-step nitric acid oxidation was used to grow 2 nm thick silicon oxide. Silicon nitride films with three refractive indices were used to produce the SiN/S
APA, Harvard, Vancouver, ISO, and other styles
9

HÄCKEL, S., J. DONEIT, A. PINKOWSKI, and W. J. LORENZ. "DIODE CHARACTERISTICS OF YBa2Cu3O7/n- TYPE SILICON CONTACTS." Modern Physics Letters B 02, no. 11n12 (1988): 1303–8. http://dx.doi.org/10.1142/s0217984988001284.

Full text
Abstract:
The temperature dependences of diode characteristics were measured on high-T c -superconducting YBa 2 Cu 3 O 7 (polycrystalline)/n-type silicon (monocrystalline) contacts using a common two-pole-technique at low frequencies. The non-superconducting p-type semiconductor YBa 2 Cu 3 O 6.5 (polycrystalline) served as a reference substance. The temperature coefficients of the diffusion voltage, the diffusion current and the saturation current were found to be finite at T>T c , but almost zero at T≤T c . At T=78 K , the diffusion voltage of the diode YBa 2 Cu 3 O 7/n-type silicon was about 200 mV
APA, Harvard, Vancouver, ISO, and other styles
10

KUROKAWA, Akinari, Tetsuo SAKKA, and Yukio H. OGATA. "Maskless Copper Patterning on n-Type Silicon." Journal of The Surface Finishing Society of Japan 56, no. 5 (2005): 281–85. http://dx.doi.org/10.4139/sfj.56.281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Scott, B. L., Ke Wang, and G. Pickrell. "Fabrication of n-Type Silicon Optical Fibers." IEEE Photonics Technology Letters 21, no. 24 (2009): 1798–800. http://dx.doi.org/10.1109/lpt.2009.2033388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Abun Amanu, Abebaw. "Electronic Electrical Conductivity in N-type Silicon." American Journal of Physics and Applications 4, no. 1 (2016): 5. http://dx.doi.org/10.11648/j.ajpa.20160401.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kwark, Y. H., and R. M. Swanson. "N-type SIPOS and poly-silicon emitters." Solid-State Electronics 30, no. 11 (1987): 1121–25. http://dx.doi.org/10.1016/0038-1101(87)90076-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Awadelkarim, O. O. "Divacancies production in irradiated n-type silicon." Physica B+C 150, no. 3 (1988): 312–18. http://dx.doi.org/10.1016/0378-4363(88)90069-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Derbouz, A., A. Slaoui, E. Jolivet, F. de Moro, and C. Belouet. "N-type silicon RST ribbon solar cells." Solar Energy Materials and Solar Cells 107 (December 2012): 212–18. http://dx.doi.org/10.1016/j.solmat.2012.06.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Itoh, Masashi, Naoki Yamamoto, Kuniko Takemoto, and Osamu Nittono. "Cathodoluminescence Imaging of n-Type Porous Silicon." Japanese Journal of Applied Physics 35, Part 1, No. 8 (1996): 4182–86. http://dx.doi.org/10.1143/jjap.35.4182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Humlíček, J., and K. Vojtěchovský. "Infrared optical constants of n-type silicon." Czechoslovak Journal of Physics 38, no. 9 (1988): 1033–49. http://dx.doi.org/10.1007/bf01597897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Tena-Zaera, R., S. Bastide, and C. Lévy-Clément. "Photoelectrochemical texturization of n-type multicrystalline silicon." physica status solidi (a) 204, no. 5 (2007): 1260–65. http://dx.doi.org/10.1002/pssa.200674304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Cojocaru, Ala, Jürgen Carstensen, Emmanuel K. Ossei-Wusu, Malte Leisner, Oliver Riemenschneider, and Helmut Föll. "Fast macropore growth in n-type silicon." physica status solidi (c) 6, no. 7 (2009): 1571–74. http://dx.doi.org/10.1002/pssc.200881031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Futagi, Toshiro, Takahiro Matsumoto, Masakazu Katsuno, Yasumitsu Ohta, Hidenori Mimura, and Koich Kitamura. "Visible Electroluminescence from P-Type Crystalline Silicon/Porous Silicon/N-Type Microcrystalline Silicon Carbon PN Junction Diodes." Japanese Journal of Applied Physics 31, Part 2, No. 5B (1992): L616—L618. http://dx.doi.org/10.1143/jjap.31.l616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ikedo, Akihito, Takahiro Kawashima, Takeshi Kawano, and Makoto Ishida. "Vertically aligned silicon microwire arrays of various lengths by repeated selective vapor-liquid-solid growth of n-type silicon/n-type silicon." Applied Physics Letters 95, no. 3 (2009): 033502. http://dx.doi.org/10.1063/1.3178556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Omar, Khalid, and Khaldun A. Salman. "Effects of Electrochemical Etching Time on the Performance of Porous Silicon Solar Cells on Crystalline n-Type (100) and (111)." Journal of Nano Research 46 (March 2017): 45–56. http://dx.doi.org/10.4028/www.scientific.net/jnanor.46.45.

Full text
Abstract:
Electrochemical etching was carried out to produce porous silicon based on crystalline silicon n-type (100) and (111) wafers. Etching times of 10, 20, and 30 min were applied. Porous silicon layer was used as anti-reflection coating on crystalline silicon solar cells. The optimal etching time is 20 min for preparing porous silicon layers based on crystalline silicon n-type (100) and (111) wafers. Nanopores with high porosity were produced on the porous silicon layer based on crystalline silicon n-type (100) and (111) wafers with average diameters of 5.7 and 5.8 nm, respectively. Average crysta
APA, Harvard, Vancouver, ISO, and other styles
23

Wang, Guo Zheng, Xiao Na Li, Feng Yuan Yu, et al. "Formation of High Aspect Ratio Macropore Array on N-Type Silicon." Applied Mechanics and Materials 397-400 (September 2013): 47–51. http://dx.doi.org/10.4028/www.scientific.net/amm.397-400.47.

Full text
Abstract:
The fabrication of high aspect ratio macropore silicon arrays (MSA) on n-type silicon under optimum photo-electrochemical (PEC) etching (anodization) conditions was demonstrated. The depth of the MSA can reach 350 μm with an aspect ratio of more than 100. With the presence of AOS (a type of anionic surfactant) in the electrolyte, the pore walls solution is slowest, and is more suitable for the preparation of high aspect ratio n-type MSA. The etching voltage is critical for the formation of high aspect ratio MSA on n-type silicon. The relative spectral response curve was measured for silicon ph
APA, Harvard, Vancouver, ISO, and other styles
24

Behzad, Kasra, Wan Mahmood Mat Yunus, Afarin Bahrami, Alireza Kharazmi, and Nayereh Soltani. "Synthesis and characterization of silicon nanorod on n-type porous silicon." Applied Optics 55, no. 9 (2016): 2143. http://dx.doi.org/10.1364/ao.55.002143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Toyama, Toshihiko, Tetsuya Suzuki, Akiyoshi Ogane, Jun Ota, and Hiroaki Okamoto. "Electroreflectance study of silicon nanocrystals fabricated from n-type silicon substrate." Journal of Materials Science: Materials in Electronics 18, S1 (2007): 443–46. http://dx.doi.org/10.1007/s10854-007-9252-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Mohajerzadeh, S., and C. R. Selvakumar. "A novel n+-polysilicon on n-silicon iso-type diode." Canadian Journal of Physics 74, S1 (1996): 186–88. http://dx.doi.org/10.1139/p96-856.

Full text
Abstract:
We report the results of fabricating n+-n iso-type diodes using in-situ phosphorus–doped polysilicon films on n-type 1 Ω cm <100> Si substrates. The electrical characteristics of this structure give evidence of the presence of an energy barrier at the film–substrate interface reminiscent of Schottky-barrier diodes. The current–voltage characteristics show exponential behavior over three decades of current. An ideality factor of 1.2 is extracted from the experimental results. An energy barrier height of about 0.2 eV is obtained from the current–temperature analysis.
APA, Harvard, Vancouver, ISO, and other styles
27

Hussein, Mohammed Jabbar, Haider Y. Hamood, Haider Mohammed Shanshool, A. S. Hasaani, and M. J. Jawad. "Open photo-acoustic cell configuration for measuring the thermal diffusivity of n-type silicon and silver/n-type silicon." Journal of Materials Science: Materials in Electronics 28, no. 6 (2016): 4925–30. http://dx.doi.org/10.1007/s10854-016-6141-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Dhar, Sukanta, Sourav Mandal, Gourab Das, et al. "Silicon heterojunction solar cells with novel fluorinated n-type nanocrystalline silicon oxide emitters on p-type crystalline silicon." Japanese Journal of Applied Physics 54, no. 8S1 (2015): 08KD03. http://dx.doi.org/10.7567/jjap.54.08kd03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bonavolontà, Carmela, Antonio Vettoliere, Marianna Pannico, et al. "Investigation of Graphene Single Layer on P-Type and N-Type Silicon Heterojunction Photodetectors." Sensors 24, no. 18 (2024): 6068. http://dx.doi.org/10.3390/s24186068.

Full text
Abstract:
Photodetectors are of great interest in several technological applications thanks to their capability to convert an optical signal into an electrical one through light–matter interactions. In particular, broadband photodetectors based on graphene/silicon heterojunctions could be useful in multiple applications due to their compelling performances. Here, we present a 2D photodiode heterojunction based on a graphene single layer deposited on p-type and n-type Silicon substrates. We report on the electro-optical properties of the device that have been measured in dark and light conditions in a sp
APA, Harvard, Vancouver, ISO, and other styles
30

ur Rehman, Atteq, and Soo Hong Lee. "Advancements in n-Type Base Crystalline Silicon Solar Cells and Their Emergence in the Photovoltaic Industry." Scientific World Journal 2013 (2013): 1–13. http://dx.doi.org/10.1155/2013/470347.

Full text
Abstract:
The p-type crystalline silicon wafers have occupied most of the solar cell market today. However, modules made with n-type crystalline silicon wafers are actually the most efficient modules up to date. This is because the material properties offered by n-type crystalline silicon substrates are suitable for higher efficiencies. Properties such as the absence of boron-oxygen related defects and a greater tolerance to key metal impurities by n-type crystalline silicon substrates are major factors that underline the efficiency of n-type crystalline silicon wafer modules. The bi-facial design of n-
APA, Harvard, Vancouver, ISO, and other styles
31

Wei, Wensheng, Tianmin Wang, and W. Z. Shen. "Tunnelling in heterojunction of n-type hydrogenated nanocrystalline silicon film with p+-type crystal silicon." Semiconductor Science and Technology 21, no. 4 (2006): 532–39. http://dx.doi.org/10.1088/0268-1242/21/4/020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Cotter, J. E., J. H. Guo, P. J. Cousins, M. D. Abbott, F. W. Chen, and K. C. Fisher. "P-Type Versus n-Type Silicon Wafers: Prospects for High-Efficiency Commercial Silicon Solar Cells." IEEE Transactions on Electron Devices 53, no. 8 (2006): 1893–901. http://dx.doi.org/10.1109/ted.2006.878026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bigozha, O. D., A. Zh Seitmuratov, L. U. Taimuratova, B. K. Kazbekova, and Z. K. Aimaganbetova. "Longitudinal magnetoresistance of uniaxially deformed n-type silicon." Bulletin of the Karaganda University. "Physics" Series 106, no. 2 (2022): 111–16. http://dx.doi.org/10.31489/2022ph1/111-116.

Full text
Abstract:
The study of Galvano-magnetic effects (as well as tensoeffects) in silicon under extreme conditions allows not only to identify the mechanisms of these effects but also to identify the possibility of creating gaussmeters, infrared detectors, sensitive strain gauges, amplifiers and generators of a wide frequency range. The reliability of the mechanism of negative magnetoresistance was verified using uniaxial elastic deformation of the studied crystals. Uniaxial deformation excludes interline transitions of electrons, as a result of which negative magnetoresistance disappears with an increase in
APA, Harvard, Vancouver, ISO, and other styles
34

Bigozha, O. D., A. Zh Seitmuratov, L. U. Taimuratova, B. K. Kazbekova, and Z. K. Aimaganbetova. "Longitudinal magnetoresistance of uniaxially deformed n-type silicon." Bulletin of the Karaganda University "Physics Series" 106, no. 2 (2022): 111–16. http://dx.doi.org/10.31489/2022ph2/111-116.

Full text
Abstract:
The study of Galvano-magnetic effects (as well as tensoeffects) in silicon under extreme conditions allows not only to identify the mechanisms of these effects but also to identify the possibility of creating gaussmeters, infrared detectors, sensitive strain gauges, amplifiers and generators of a wide frequency range. The reliability of the mechanism of negative magnetoresistance was verified using uniaxial elastic deformation of the studied crystals. Uniaxial deformation excludes interline transitions of electrons, as a result of which negative magnetoresistance disappears with an increase in
APA, Harvard, Vancouver, ISO, and other styles
35

Gislason, H. P., S. Kristjánsson, and Einar Ö. Sveinbjörnsson. "Lithium-Gold-Related Photoluminescence in n-Type Silicon." Materials Science Forum 196-201 (November 1995): 695–700. http://dx.doi.org/10.4028/www.scientific.net/msf.196-201.695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Gebru, Mulugeta Habte. "Thermoelectric Coefficients Of Heavily Doped N-Type Silicon." 4, no. 4 (December 14, 2021): 189–96. http://dx.doi.org/10.26565/2312-4334-2021-4-25.

Full text
Abstract:
In this study the thermoelectric effect is investigated in terms of thermoelectric power, Figure of merit(ZT), and power factor. The calculations were carried out based on Boltzmann transport equation by taking ionized impurity scattering as a dominant mechanism for heavily doped n-type silicon at 300K with charge concentration varies from 2×1018 /cm3 – 20×1020 /cm3. It is known that doping of materials can induce Fermi level shifts and doping can also induce changes of the transport mechanisms. The result of this study shows doping also induces changes in thermoelectric power, Figure of merit
APA, Harvard, Vancouver, ISO, and other styles
37

Fortas, G., S. Sam, Z. Fekih, and N. Gabouze. "Electrodeposition of CoNiFe Alloys on n-Type Silicon." Materials Science Forum 609 (January 2009): 207–12. http://dx.doi.org/10.4028/www.scientific.net/msf.609.207.

Full text
Abstract:
Co, CoNi and CoFeNi layers were formed on n-type silicon by electrodeposition method from sulfate solutions. The obtained films were characterized by Cyclic Voltammetry (CV), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometry (EDS). The results show that the morphology and the stoechiometry of CoNi and CoNiFe deposits depend on several parameters (bath composition, applied potential…). The addition of sodium acetate as complexion agent in the bath leads to the formation of highly compacted and smooth films with a good adherence to the substrate.
APA, Harvard, Vancouver, ISO, and other styles
38

Tao, Meng, Shruddha Agarwal, Darshak Udeshi, Nasir Basit, Eduardo Maldonado, and Wiley P. Kirk. "Low Schottky barriers on n-type silicon (001)." Applied Physics Letters 83, no. 13 (2003): 2593–95. http://dx.doi.org/10.1063/1.1613357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Yu, H. A., Y. Kaneko, S. Yoshimura, and S. Otani. "Photovoltaic cell of carbonaceous film/n‐type silicon." Applied Physics Letters 68, no. 4 (1996): 547–49. http://dx.doi.org/10.1063/1.116395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Istratov, A. A., H. Hieslmair, C. Flink, T. Heiser, and E. R. Weber. "Interstitial copper-related center in n-type silicon." Applied Physics Letters 71, no. 16 (1997): 2349–51. http://dx.doi.org/10.1063/1.120026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Takemoto, Kuniko, Yoshio Nakamura, and Osamu Nittono. "Microstructure and Crystallinity of N-Type Porous Silicon." Japanese Journal of Applied Physics 33, Part 1, No. 12A (1994): 6432–36. http://dx.doi.org/10.1143/jjap.33.6432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Zhang, X. G. "Mechanism of Pore Formation on n‐Type Silicon." Journal of The Electrochemical Society 138, no. 12 (1991): 3750–56. http://dx.doi.org/10.1149/1.2085494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Castaldini, Antonio, Daniela Cavalcoli, and Anna Cavallini. "Investigation on Electrical Contacts on N-Type Silicon." Solid State Phenomena 19-20 (January 1991): 529–34. http://dx.doi.org/10.4028/www.scientific.net/ssp.19-20.529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Shishkin, Y., W. J. Choyke, and R. P. Devaty. "Photoelectrochemical etching of n-type 4H silicon carbide." Journal of Applied Physics 96, no. 4 (2004): 2311–22. http://dx.doi.org/10.1063/1.1768612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Montero, I. "Low temperature nonilluminated anodization of n-type silicon." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 8, no. 3 (1990): 544. http://dx.doi.org/10.1116/1.585017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Cojocaru, Ala, Jürgen Carstensen, and Helmut Föll. "Growth Modes of Macropores in n-Type Silicon." ECS Transactions 16, no. 3 (2019): 157–72. http://dx.doi.org/10.1149/1.2982552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Simoen, E., R. Loo, P. Roussel, et al. "Defect analysis of n-type silicon strained layers." Materials Science in Semiconductor Processing 4, no. 1-3 (2001): 225–27. http://dx.doi.org/10.1016/s1369-8001(00)00144-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Gaughan, K., S. Nitta, J. M. Viner, J. Hautala, and P. C. Taylor. "n‐type doping of amorphous silicon using tertiarybutylphosphine." Applied Physics Letters 57, no. 20 (1990): 2121–23. http://dx.doi.org/10.1063/1.103917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Mouffak, Z., H. Aourag, J. D. Moreno, and J. M. Martinez-Duart. "Quantum size effect from n-type porous silicon." Microelectronic Engineering 43-44 (August 1998): 655–59. http://dx.doi.org/10.1016/s0167-9317(98)00240-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Forster, Maxime, Bastien Dehestru, Antoine Thomas, et al. "Compensation engineering for uniform n-type silicon ingots." Solar Energy Materials and Solar Cells 111 (April 2013): 146–52. http://dx.doi.org/10.1016/j.solmat.2013.01.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!