To see the other types of publications on this topic, follow the link: Paradoxo de simpson.

Journal articles on the topic 'Paradoxo de simpson'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Paradoxo de simpson.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Scarsini, Marco, and Fabio Spizzichino. "Simpson-type paradoxes, dependence, and ageing." Journal of Applied Probability 36, no. 01 (1999): 119–31. http://dx.doi.org/10.1017/s0021900200016892.

Full text
Abstract:
We will state a general version of Simpson's paradox, which corresponds to the loss of some dependence properties under marginalization. We will then provide conditions under which the paradox is avoided. Finally we will relate these Simpson-type paradoxes to some well-known paradoxes concerning the loss of ageing properties when the level of information changes.
APA, Harvard, Vancouver, ISO, and other styles
2

Scarsini, Marco, and Fabio Spizzichino. "Simpson-type paradoxes, dependence, and ageing." Journal of Applied Probability 36, no. 1 (1999): 119–31. http://dx.doi.org/10.1239/jap/1032374234.

Full text
Abstract:
We will state a general version of Simpson's paradox, which corresponds to the loss of some dependence properties under marginalization. We will then provide conditions under which the paradox is avoided. Finally we will relate these Simpson-type paradoxes to some well-known paradoxes concerning the loss of ageing properties when the level of information changes.
APA, Harvard, Vancouver, ISO, and other styles
3

Ruttenberg-Rozen, Robyn. "A Wonder-Full Task Leads to a Wonder-Full Intervention." Mathematics Teacher: Learning and Teaching PK-12 113, no. 6 (2020): 474–79. http://dx.doi.org/10.5951/mtlt.2018.0026.

Full text
Abstract:
Mathematical paradoxes often produce awe and wonder in the mathematics classroom. In this classroom episode, I share a paradoxical task, based on Simpson's Paradox, and its power as an intervention for a child diagnosed with ADHD. The Paradox leveraged his strengths to help him build understandings in proportional reasoning.
APA, Harvard, Vancouver, ISO, and other styles
4

Malinas, Gary. "Simpson’s Paradox." Monist 84, no. 2 (2001): 265–83. http://dx.doi.org/10.5840/monist200184217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Topeli, Arzu, Franco Laghi, Banu Cakir, and Martin J. Tobin. "Simpson’s Paradox." Critical Care Medicine 33, no. 7 (2005): 1674. http://dx.doi.org/10.1097/01.ccm.0000170185.05101.be.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kunisaki, Ken. "Simpson’s Paradox." Critical Care Medicine 33, no. 7 (2005): 1673–74. http://dx.doi.org/10.1097/01.ccm.0000170197.42215.f6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alin, Aylin. "Simpson's paradox." Wiley Interdisciplinary Reviews: Computational Statistics 2, no. 2 (2010): 247–50. http://dx.doi.org/10.1002/wics.72.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Newson, Graham. "Simpson's Paradox Revisited." Mathematical Gazette 75, no. 473 (1991): 290. http://dx.doi.org/10.2307/3619486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dardanoni, Valentino, Salvatore Modica, and Aline Pennisi. "The Simpson paradox of school grading in Italy." Research in Economics 63, no. 2 (2009): 91–94. http://dx.doi.org/10.1016/j.rie.2009.04.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Knapp, Thomas R. "Instances of Simpson's Paradox." College Mathematics Journal 16, no. 3 (1985): 209. http://dx.doi.org/10.2307/2686573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Pearl, Judea. "Comment: Understanding Simpson’s Paradox." American Statistician 68, no. 1 (2014): 8–13. http://dx.doi.org/10.1080/00031305.2014.876829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Knapp, Thomas R. "Instances of Simpson's Paradox." College Mathematics Journal 16, no. 3 (1985): 209–11. http://dx.doi.org/10.1080/07468342.1985.11972882.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Julious, S. A., and M. A. Mullee. "Confounding and Simpson's paradox." BMJ 309, no. 6967 (1994): 1480–81. http://dx.doi.org/10.1136/bmj.309.6967.1480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Charig, C. R. "Confounding and Simpson's paradox." BMJ 310, no. 6975 (1995): 329. http://dx.doi.org/10.1136/bmj.310.6975.329b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Beardon, A. F. "102.54 Unravelling Simpson's paradox." Mathematical Gazette 102, no. 555 (2018): 534–35. http://dx.doi.org/10.1017/mag.2018.135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hernán, Miguel A., David Clayton, and Niels Keiding. "The Simpson's paradox unraveled." International Journal of Epidemiology 40, no. 3 (2011): 780–85. http://dx.doi.org/10.1093/ije/dyr041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kock, Ned. "How Likely is Simpson's Paradox in Path Models?" International Journal of e-Collaboration 11, no. 1 (2015): 1–7. http://dx.doi.org/10.4018/ijec.2015010101.

Full text
Abstract:
Simpson's paradox is a phenomenon arising from multivariate statistical analyses that often leads to paradoxical conclusions in the field of e-collaboration as well as many other fields where multivariate methods are employed. This work derives a general inequality for the occurrence of Simpson's paradox in path models with or without latent variables. The inequality is then used to estimate the probability that Simpson's paradox would occur at random in path models with two predictors and one criterion variable. This probability is found to be approximately 12.8 percent, slightly higher than 1 occurrence per 8 path models. This estimate suggests that Simpson's paradox is likely to occur in empirical studies, in the field of e-collaboration and other fields, frequently enough to be a source of concern.
APA, Harvard, Vancouver, ISO, and other styles
18

Stasiak, Christopher. "The Symphonies of Malcolm Arnold: Eclecticism and the Symphonic Conception." Tempo, no. 161-162 (September 1987): 85–90. http://dx.doi.org/10.1017/s0040298200023378.

Full text
Abstract:
Paradoxes Abound in Arnold's music, and while in most instances they need not be understood in order to appreciate the music (for it is, as Hugo Cole has suggested, ‘so clear, so self-sufficient, so much to be enjoyed for its own sake’), in terms of the Symphony the idea deserves further consideration. The basic paradox is this: that the composer's particularily prolific form of eclecticism is at odds with the conceptual and technical demands of symphonic form. In his well-considered definition of the Symphony, Robert Simpson states that it is a ‘profoundly inclusive’ form, one in which all the diverse elements of music are brought together to make an organic and dynamic whole. It is active in all possible ways; ‘no evasions are tolerable in the attempt to achieve the highest state or organization of which music is capable’. Eclecticism, then, would appear first to present problems of technical integration, and second to give an overly diffuse aural result.
APA, Harvard, Vancouver, ISO, and other styles
19

Wang, Zhiqi, and Ronald Rousseau. "COVID-19, the Yule-Simpson paradox and research evaluation." Scientometrics 126, no. 4 (2021): 3501–11. http://dx.doi.org/10.1007/s11192-020-03830-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Samuels, Myra L. "Simpson's Paradox and Related Phenomena." Journal of the American Statistical Association 88, no. 421 (1993): 81. http://dx.doi.org/10.2307/2290700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Wu, Tung-Ying. "Mereological Dominance and Simpson’s Paradox." Philosophia 48, no. 1 (2019): 391–404. http://dx.doi.org/10.1007/s11406-019-00084-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kocik, Jerzy. "Proof without Words: Simpson's Paradox." Mathematics Magazine 74, no. 5 (2001): 399. http://dx.doi.org/10.2307/2691038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Fitelson, Branden. "CONFIRMATION, CAUSATION, AND SIMPSON'S PARADOX." Episteme 14, no. 3 (2017): 297–309. http://dx.doi.org/10.1017/epi.2017.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hanley, James A., and Gilles Thériault. "Simpson’s Paradox in Meta-Analysis." Epidemiology 11, no. 5 (2000): 613. http://dx.doi.org/10.1097/00001648-200009000-00022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Reintjes, Ralf, and Annette de Boer. "Simpson’s Paradox in Meta-Analysis." Epidemiology 11, no. 5 (2000): 613. http://dx.doi.org/10.1097/00001648-200009000-00023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

DI SERIO, CLELIA, YOSEF RINOTT, and MARCO SCARSINI. "Simpson's Paradox in Survival Models." Scandinavian Journal of Statistics 36, no. 3 (2009): 463–80. http://dx.doi.org/10.1111/j.1467-9469.2008.00637.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hadjicostas, Petros. "Copositive matrices and Simpson's paradox." Linear Algebra and its Applications 264 (October 1997): 475–88. http://dx.doi.org/10.1016/s0024-3795(96)00536-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Otte, Richard. "Probabilistic Causality and Simpson's Paradox." Philosophy of Science 52, no. 1 (1985): 110–25. http://dx.doi.org/10.1086/289225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Pavlides, Marios G., and Michael D. Perlman. "How Likely Is Simpson’s Paradox?" American Statistician 63, no. 3 (2009): 226–33. http://dx.doi.org/10.1198/tast.2009.09007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

ZAMAN, Asad, and Taseer SALAHUDDİN. "Causality, Confounding, and Simpson’s Paradox." International Econometric Review 12, no. 1 (2020): 50–74. http://dx.doi.org/10.33818/ier.687042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Xiao, Yongshun. "A REVISIT TO SIMPSON’S PARADOX." Far East Journal of Mathematical Education 18, no. 3 (2018): 113–20. http://dx.doi.org/10.17654/me018030113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ameringer, Suzanne, Ronald C. Serlin, and Sandra Ward. "Simpson's Paradox and Experimental Research." Nursing Research 58, no. 2 (2009): 123–27. http://dx.doi.org/10.1097/nnr.0b013e318199b517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

McLean, Thomas R. "A Question of Simpson's Paradox." Journal of the American College of Surgeons 227, no. 6 (2018): 628. http://dx.doi.org/10.1016/j.jamcollsurg.2018.09.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Samuels, Myra L. "Simpson's Paradox and Related Phenomena." Journal of the American Statistical Association 88, no. 421 (1993): 81–88. http://dx.doi.org/10.1080/01621459.1993.10594297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Bandyoapdhyay, Prasanta S., Davin Nelson, Mark Greenwood, Gordon Brittan, and Jesse Berwald. "The logic of Simpson’s paradox." Synthese 181, no. 2 (2010): 185–208. http://dx.doi.org/10.1007/s11229-010-9797-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Franco Martínez, J. Agustín. "Efectos de la Paradoja de Simpson en la adopción de buenas prácticas agrarias." Barataria. Revista Castellano-Manchega de Ciencias Sociales, no. 26 (November 19, 2019): 225–41. http://dx.doi.org/10.20932/barataria.v0i26.413.

Full text
Abstract:
Este trabajo analiza los problemas de medición relativos al perfil sociológico de los agricultores según su conducta agroambiental, en particular respecto a la adopción de Buenas Prácticas Agrarias (BPA) atendiendo a si existe o no correlación entre tal decisión agroecológica y los factores endógenos de la adopción, prestando especial atención a uno de los fenómenos estadísticos más problemáticos y desapercibidos en la agregación de variables, la paradoja de Simpson, enmascarada bajo una supuesta conducta Homer Simpson o ‘poco inteligente’, ecológicamente hablando. Para ello se utiliza una muestra de agricultores en cuyas fincas adoptan principalmente buenas prácticas de conservación del suelo. Los resultados muestran la interpretación errónea de los resultados de correlación en la adopción de buenas prácticas si no se tienen en cuenta debidamente las implicaciones de tal paradoja.
APA, Harvard, Vancouver, ISO, and other styles
37

Paris, Matteo G. A. "Two quantum Simpson’s paradoxes." Journal of Physics A: Mathematical and Theoretical 45, no. 13 (2012): 132001. http://dx.doi.org/10.1088/1751-8113/45/13/132001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Percus, Ora E., and Jerome K. Percus. "How to Win Without Overtly Cheating: The Inverse Simpson Paradox." Mathematical Intelligencer 32, no. 4 (2010): 49–52. http://dx.doi.org/10.1007/s00283-010-9174-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Walton, Paul H., and Daniel J. Walton. "Simpson’s Paradox in the interpretation of “leaky pipeline” data." International Journal for Transformative Research 3, no. 2 (2016): 1–7. http://dx.doi.org/10.1515/ijtr-2016-0013.

Full text
Abstract:
Abstract The traditional ‘leaky pipeline’ plots are widely used to inform gender equality policy and practice. Herein, we demonstrate how a statistical phenomenon known as Simpson’s paradox can obscure trends in gender ‘leaky pipeline’ plots. Our approach has been to use Excel spreadsheets to generate hypothetical ‘leaky pipeline’ plots of gender inequality within an organisation. The principal factors, which make up these hypothetical plots, can be input into the model so that a range of potential situations can be modelled. How the individual principal factors are then reflected in ‘leaky pipeline’ plots is shown. We find that the effect of Simpson’s paradox on leaky pipeline plots can be simply and clearly illustrated with the use of hypothetical modelling and our study augments the findings in other statistical reports of Simpson’s paradox in clinical trial data and in gender inequality data. The findings in this paper, however, are presented in a way, which makes the paradox accessible to a wide range of people.
APA, Harvard, Vancouver, ISO, and other styles
40

Tan, A. "A Geometric Interpretation of Simpson's Paradox." College Mathematics Journal 17, no. 4 (1986): 340. http://dx.doi.org/10.2307/2686285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Dawes, Robyn M. "Thagard's Principle 7 and Simpson's paradox." Behavioral and Brain Sciences 12, no. 3 (1989): 472–73. http://dx.doi.org/10.1017/s0140525x00057101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Selvitella, Alessandro. "The Simpson’s paradox in quantum mechanics." Journal of Mathematical Physics 58, no. 3 (2017): 032101. http://dx.doi.org/10.1063/1.4977784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Gou, Jiangtao, and Fengqing (Zoe) Zhang. "Experience Simpson's Paradox in the Classroom." American Statistician 71, no. 1 (2017): 61–66. http://dx.doi.org/10.1080/00031305.2016.1200485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Tan, A. "A Geometric Interpretation of Simpson's Paradox." College Mathematics Journal 17, no. 4 (1986): 340–41. http://dx.doi.org/10.1080/07468342.1986.11972977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Eells, Ellery. "Cartwright and Otte on Simpson's Paradox." Philosophy of Science 54, no. 2 (1987): 233–43. http://dx.doi.org/10.1086/289372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Aitkin, Murray. "Simpson's paradox and the Bayes factor." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 60, no. 1 (1998): 269–70. http://dx.doi.org/10.1111/1467-9868.00124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

MEHREZ, ABRAHAM, J. RANDALL BROWN, and MOUTAZ KHOUJA. "Aggregate efficiency measures and Simpson's Paradox." Contemporary Accounting Research 9, no. 1 (1992): 329–42. http://dx.doi.org/10.1111/j.1911-3846.1992.tb00884.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Rinott, Yosef, and Michael Tam. "Monotone Regrouping, Regression, and Simpson's Paradox." American Statistician 57, no. 2 (2003): 139–41. http://dx.doi.org/10.1198/0003130031397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ma, Y. Zee. "Simpson’s Paradox in Natural Resource Evaluation." Mathematical Geosciences 41, no. 2 (2008): 193–213. http://dx.doi.org/10.1007/s11004-008-9187-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Mittal, Yashaswini. "Homogeneity of Subpopulations and Simpson's Paradox." Journal of the American Statistical Association 86, no. 413 (1991): 167–72. http://dx.doi.org/10.1080/01621459.1991.10475016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!