Academic literature on the topic 'Perhydroindole'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Perhydroindole.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Perhydroindole"

1

Cao, Bo, Yin Wei, and Min Shi. "Palladium-catalyzed intramolecular transfer hydrogenation & cycloaddition of p-quinamine-tethered alkylidenecyclopropanes to synthesize perhydroindole scaffolds." Chemical Communications 54, no. 100 (2018): 14085–88. http://dx.doi.org/10.1039/c8cc09041f.

Full text
Abstract:
A facile Pd-catalyzed intramolecular transfer hydrogenation and cycloaddition of p-quinamine-tethered alkylidenecyclopropanes has been developed, giving rigid tricyclic perhydroindole skeletons in moderate to good yields.
APA, Harvard, Vancouver, ISO, and other styles
2

Padwa, Albert, and Alex G. Waterson. "Synthesis of the perhydroindole nucleus by a Pummerer/Mannich induced cyclization cascade." Tetrahedron Letters 39, no. 47 (1998): 8585–88. http://dx.doi.org/10.1016/s0040-4039(98)01964-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liégault, Benoît, Xiaoping Tang, Christian Bruneau, and Jean-Luc Renaud. "Synthesis of New Perhydroindole Derivatives and Their Evaluation in Ruthenium-Catalyzed Hydrogen Transfer Reduction." European Journal of Organic Chemistry 2008, no. 5 (2008): 934–40. http://dx.doi.org/10.1002/ejoc.200700476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

PADWA, A., and A. G. WATERSON. "ChemInform Abstract: Synthesis of the Perhydroindole Nucleus by a Pummerer/Mannich Induced Cyclization Cascade." ChemInform 30, no. 7 (2010): no. http://dx.doi.org/10.1002/chin.199907167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Portevin, Bernard, Alain Benoist, Georges Rémond, et al. "New Prolyl Endopeptidase Inhibitors: In Vitroandin VivoActivities of Azabicyclo[2.2.2]octane, Azabicyclo[2.2.1]heptane, and Perhydroindole Derivatives." Journal of Medicinal Chemistry 39, no. 12 (1996): 2379–91. http://dx.doi.org/10.1021/jm950858c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bojarska, Joanna, Waldemar Maniukiewicz, Lesław Sieroń, Piotr Kopczacki, Krzysztof Walczyński, and Milan Remko. "Perindoprilat monohydrate." Acta Crystallographica Section C Crystal Structure Communications 68, no. 11 (2012): o443—o446. http://dx.doi.org/10.1107/s0108270112041583.

Full text
Abstract:
The title compound [systematic name: (1S)-2-((S)-{1-[(2S,3aS,7aS)-2-carboxyoctahydro-1H-indol-1-yl]-1-oxopropan-2-yl}azaniumyl)pentanoate monohydrate], C17H28N2O5·H2O, (I)·H2O, the active metabolite of the antihypertensive and cardiovascular drug perindopril, was obtained during polymorphism screening of perindoprilat. It crystallizes in the chiral orthorhombic space groupP212121, the same as the previously reported ethanol disolvate [Pascard, Guilhem, Vincent, Remond, Portevin & Laubie (1991).J. Med. Chem.34, 663–669] and dimethyl sulfoxide hemisolvate [Bojarska, Maniukiewicz, Sieroń, Fruziński, Kopczacki, Walczyński & Remko (2012).Acta Cryst.C68, o341–o343]. The asymmetric unit of (I)·H2O contains one independent perindoprilat zwitterion and one water molecule. These interactviastrong hydrogen bonds to give a cyclicR22(7) synthon, which provides a rigid molecular conformation. The geometric parameters of all three forms are similar. The conformations of the perhydroindole group are almost identical, but then-alkyl chain has conformational freedom. A three-dimensional hydrogen-bonding network of O—H...O and N—H...O interactions is observed in the crystal structure of (I)·H2O, similar to the other two solvates, but because of the presence of different solvents the three crystal structures have diverse packing motifs. All three solvatomorphs are additionally stabilized by nonclassical weak C—H...O contacts.
APA, Harvard, Vancouver, ISO, and other styles
7

Barton, Derek H. R., Jean Guilhem, Yolande Hervé, Pierre Potier, and Josiane Thierry. "Synthesis of 2S, 3aS, 7aS- and of 2S, 3aR, 7aR-Perhydroindole-2-carboxylic acid derivatives from L-aspartic acid." Tetrahedron Letters 28, no. 13 (1987): 1413–16. http://dx.doi.org/10.1016/s0040-4039(00)95940-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Portevin, Bernard, Michel Lonchampt, Emmanuel Canet, and Guillaume De Nanteuil. "Dual Inhibition of Human Leukocyte Elastase and Lipid Peroxidation: In Vitroandin VivoActivities of Azabicyclo[2.2.2]octane and Perhydroindole Derivatives." Journal of Medicinal Chemistry 40, no. 12 (1997): 1906–18. http://dx.doi.org/10.1021/jm960772z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

PORTEVIN, B., A. BENOIST, G. REMOND, et al. "ChemInform Abstract: New Prolyl Endopeptidase Inhibitors: in vitro and in vivo Activities of Azabicyclo(2.2.2)octane, Azabicyclo(2.2.1)heptane, and Perhydroindole Derivatives." ChemInform 27, no. 38 (2010): no. http://dx.doi.org/10.1002/chin.199638206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lan, Ping, Martin G. Banwell, and Anthony C. Willis. "Total Synthesis of (±)-Crinane from 6,6-Dibromobicyclo[3.1.0]hexane Using a 5-exo-trig Radical Cyclization Reaction to Assemble the C3a-Arylated Perhydroindole Substructure." Journal of Organic Chemistry 83, no. 15 (2018): 8493–98. http://dx.doi.org/10.1021/acs.joc.8b01088.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Perhydroindole"

1

Mazurais, Marie. "Nitrènes et amination de liaisons C(sp³)-H : applications en synthèse et développement de nouvelles conditions oxydantes." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112257/document.

Full text
Abstract:
Les transferts de nitrène représentent un outil synthétique très intéressant pour former simplement une liaison C-N à partir d’une liaison C-H. Notre laboratoire a développé des précurseurs de nitrène chiraux : les sulfonimidamides. Leur utilisation a abouti, en présence de catalyseurs de rhodium, à des réactions d’amination C-H hautement diastéréosélectives. Ce projet de thèse s’inscrit dans la continuité de ces travaux. Dans un premier temps, la synthèse totale de la Dibromophakellstatine a été envisagée, impliquant comme étape clé, une étape d’amination C-H en position pseudo benzylique. Le projet n’ayant pas abouti, une séquence réactionnelle de quelques étapes a été développée à partir de l’amination C-H d’éthers d’énols et de benzocyclobutènes. Ainsi, plusieurs motifs perhydroindoles ont pu être préparés avec de bons rendements et d’excellentes diastéréosélectivités dans la plupart des cas. Dans le cadre d’une chimie plus éco-compatible, il a ensuite été envisagé de limiter l’introduction d’iode hypervalent dans les conditions de l’amination C-H. Pour cela, une première approche a consisté à utiliser les haloamines comme précurseurs de nitrène, cependant sans résultat satisfaisant. Une autre alternative a été d’introduire un oxydant, respectueux de l’environnement, permettant la réoxydation de l’iodobenzène formé en cours de réaction en une espèce de nouveau réactive (I(III)). De même, ces derniers résultats plutôt décevants ne permettent pas de s’affranchir de l’introduction de dérivé iodé en quantité stoechiométrique<br>Catalytic nitrene transfers are useful tools in organic synthesis for the efficient conversion of a C-H bond into a C-N bond. In this context, our group has recently reported the use of sulfonimidamides as efficient chiral nitrene precursors in the rhodium-catalyzed stereoselective C-H amination of hydrocarbons. These PhD studies follow on from this work; it aims, on one hand, at applying the catalytic C-H amination in total synthesis, and, on the other hand, at searching for more sustainable reactions conditions. The first part of the manuscript reports our initial investigations devoted to the synthesis of Dibromophakellstatine. The strategy was based on a key step of C-H amination of a pseudo benzylic position but did not prove successful. A second application deals with the synthesis of polycyclic nitrogen compounds that relies on the catalytic C-H amination of enol ethers and benzocyclobutenes. A 3- to 4-step scheme, thus, allows the efficient access to perhydroindole scaffolds that are isolated in good yields and excellent diastereoselectivity. The second part deals with the search for sustainable reaction conditions that will avoid the use of stoichiometric amounts of hypervalent iodine reagents. These are indeed responsible for the production of excess iodobenzene. A first approach involves the use of haloamines as nitrene precursors but it did not lead to satisfying results. Attention has thus been paid to the use of benign oxidants allowing the in situ generation of an iodine(III) species from PhI. An extensive screening of reagents and reaction parameters has led to uncover a first significant result in the case of indan that, however, does not prove reproducible
APA, Harvard, Vancouver, ISO, and other styles
2

Chambournier, Gilles. "Part I : Free radical cyclizations for carbocycle synthesis ;bPart II : diastereoselective synthesis of an enantiopure perhydroindole /." The Ohio State University, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487951214941124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hervé, Yolande. "Synthèses d'acides aminés optiquement purs par décarboxylation radicalaire." Paris 11, 1986. http://www.theses.fr/1986PA112328.

Full text
Abstract:
Au cours de ces trois années, nous avons synthétisé des acides aminés, naturels ou non, optiquement purs. La réaction de décarboxylation radicalaire, des O-esters d’acide N-hydroxypyridine thione-2, élaborée par l’équipe du Professeur BARTON a été appliquée avec succès aux acides aminés. Après avoir mis au point, la synthèse de ces esters, pour les acides aminés, nous avons montré que les principales fonctions des chaînes latérales ne nécessitaient pas de protection, lors de la décarboxylation en présence de tertiobutylthiol. La décarboxylation, dans différentes conditions, des fonctions carbolyxiques β et γ des acides aspartique et glutamique, nous a permis de synthétiser sous forme optiquement pure : - de nouveaux acides aminés insaturés, des diacides α-aminés biologiquement importants, - la L-vinylglycine, - la L-sélénométhionine, la L-Se-benzylsélénocysteine, et la L-sélénocystine, - l’acide perhydroindole carboxylique-2, dérivé de la proline qui intervient dans la synthèse d’un puissant inhibiteur de l’A. C. E<br>During the three years of this work, a number of naturally and non-naturally occurring amino-acids have been synthesized. The radical decarboxylation of O-esters of N-hydroxypyridine-2-thione, developed by the Barton group, has been successfully applied to amino-acids. Once the amino-acid esters were synthesized, it was shown that the main side-chain functional groups do not need to be protected when decarboxylation is performed with tertiarybutylthiol. Under differing conditions, decarboxylation of the β­and γ-carboxyl functions of aspartic and glutamic acids, selectively protected at the α-carboxyl function, has allowed the syntheses, in optically pure form, of: - new, unsaturated amino-acids; - L and D-α-aminoadipic, L-α-aminopimelic, and L-α-amino-δ,ε-dehydropimelic acids; - L-vinylglycine; - L-selenomethionine, L-Se-benzyl-selenocysteine, and L-selenocystine; - perhydroindole-2-carboxylic acid, a praline derivative which is an intermediate in the synthesis of a powerful A. C. E. Inhibitor
APA, Harvard, Vancouver, ISO, and other styles
4

Yang, Dexi. "Studies Toward Syntheses of Chaparrinone and Polyandrane." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1218634343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

An-Wei, Hong, and 洪安威. "Syntheses of Perhydroindoles: Application toward Total Syntheses of Montanine-Type Amaryllidaceae Alkaloids." Thesis, 1999. http://ndltd.ncl.edu.tw/handle/91377571634909411627.

Full text
Abstract:
博士<br>國立清華大學<br>化學系<br>87<br>The thesis consists of two chapters. The first chapter describes a detailed synthetic study of perhydroindole. We have identified 2-cyclohexen-1-one 43 as starting material, which underwent sequential Johnson iodination, Luche reduction, Mitsunobu reaction and anionic cyclization to give perhydroindole 58 in 52% overall yield. Thus we have developed an efficient methodology for the synthesis perhydroindole 58. The perhydroindole 58, which is otherwise difficult to prepare, can serve as an important intermediate for the total syntheses of (-)-brunsvigine (3) and (-)-pancracine (73) of montanine-type alkaloids. The second chapter deals with a new approach toward the syntheses of montanine-type alkaloids. In this approach, the key starting material perhydroindole 58 was synthesized as disclosed in the previous chapter. Compound 58 was then reduced with NaBH4 in the presence of CeCl3˙7H2O, followed by esterification to form allylic pivalate 151. Regioselective alkylation of allylic pivalate 151 gave an inseparable mixture of 149 and 150 in 1:1 ratio. Cleavage of sulfonamide in 149 and 150 with sodium naphthalenide followed by conventional Pictet-Spengler cyclization afforded the 5,11-methanomorphanthridine 161. The molecule 161 obtained by our methodology is identical to that previously reported by Overman and Shim. Thus we have completed the formal synthesis of (+)-pancracine (73). These results stimulated us to synthesize optically active (-)-brunsvigine (3). For this purpose, we have selected optically pure enone 162 as starting material which was prepared from commercially available D-(-)-quinic acid in four chemical operations. The transformation of enone 162 to enantiomerically pure perhydroindole 164 was carried out according to the synthetic sequence discribed in the previous chapter. Treatment of compound 164 with NaBH4 in the presence of CeCl3˙7H2O, followed by subsequent esterification with pivaloyl chloride in pyridine, furnished the allylic pivalate 180. The structure of compound 180, containing the correct stereogenic centers required for (-)-brunsvigine (3), was confirmed by X-ray analysis. Regioseletive alkylation of allylic pivalate 180 with 3,4-(methylenedioxy)phenylmagnesium bromide in the presence of 10% CuI obtained the main product 166 in 76% yield. Treatment of 166 with sodium naphthalenide in 1,2-dimethoxyethane gave the secondary amine 185. Compound 185 was cyclized with Eschenmoser''s salt to afford 5,11-methanomorphanthridine 186 in 62% yield. Finally, deprotection of acetonide 186 with HCl in THF and methanol finished the synthesis of (-)-brunsvigine (3). The total synthesis of (-)-brunsvigine (3) has been achieved in ten chemical operations in 12% overall yield from optically pure enone 162. In order to synthesize (-)-pancracine (73), the key compound 166 was hydrolyzed with HCl to give diol 191. Regioselective monobenzylation of diol 191 with benzaldehyde dimethyl acetal in the presence of catalyst CSA, followed by reduction with DIBALH provided the monobenzyl ether 192 in 95% yield. Inversion of configuration at the carbon atom attached hydroxy moiety of 192 was achieved by the treatment of trifluoromethanesulfonic anhydride and pyridine in CH2Cl2 to give the unstable triflate 193. Reaction of 193 with cesium acetate and 18-crown-6 in toluene produced acetate 188. Further efforts have to be made to utilize the compound 188 for the total synthesis of (-)-pancracine (73).
APA, Harvard, Vancouver, ISO, and other styles
6

Jiang, Meng-Jie, and 江孟潔. "1.FeCl3-Promoted Intramolecular Cyclization Reactions:Syntheses of Perhydroindoles and Bicyclo[2.2.2]oct-2-enes 2.Gold(I)-Catalyzed Cycloisomerization Reactions of 3-(3-Phenylpropargylamino)cyclohex-2-en-1-ones : Synthesis of Dihydroquinolinones." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/uct89b.

Full text
Abstract:
碩士<br>國立臺灣師範大學<br>化學系<br>101<br>There are three parts in this study. The first work is the simple and efficient FeCl3-promoted cyclization/chlorination of trans 4-(3-arylpropargyl tosyl-amino)cyclohex-2-en-1-ols. The reaction proceeded at room temperature in air to afford multi-hydroindoles. Second part of this thesis describes the synthesis of bicyclo[2.2.2]oct-2-ene from 4-(3-arylpropargyl)cyclohex-2-en-1- ols using FeCl3. In this reaction, FeCl3 reacts as both Lewis acid and the chloride source for the cyclization/chlorination. Finally, a method to construct the dihydroquinolinone skeleton from 3-(3-phenylpropargylamino)cyclohex- 2-en-1-ones by a Au(I)-catalyzed 6-endo-dig cycloisomerization was developed.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography