Academic literature on the topic 'Plankton image classification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plankton image classification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Plankton image classification"
Tang, Xiaoou, Feng Lin, Scott Samson, and Andrew Remsen. "Binary Plankton Image Classification." IEEE Journal of Oceanic Engineering 31, no. 3 (2006): 728–35. http://dx.doi.org/10.1109/joe.2004.836995.
Full textBarazanchi, Hussein Al, Abhishek Verma, and Shawn X. Wang. "Intelligent plankton image classification with deep learning." International Journal of Computational Vision and Robotics 8, no. 6 (2018): 561. http://dx.doi.org/10.1504/ijcvr.2018.095584.
Full textWang, Shawn X., Abhishek Verma, and Hussein Al Barazanchi. "Intelligent plankton image classification with deep learning." International Journal of Computational Vision and Robotics 8, no. 6 (2018): 561. http://dx.doi.org/10.1504/ijcvr.2018.10016426.
Full textGonzález, Pablo, Eva Álvarez, Jorge Díez, Ángel López-Urrutia, and Juan José del Coz. "Validation methods for plankton image classification systems." Limnology and Oceanography: Methods 15, no. 3 (2016): 221–37. http://dx.doi.org/10.1002/lom3.10151.
Full textEllen, Jeffrey S., Casey A. Graff, and Mark D. Ohman. "Improving plankton image classification using context metadata." Limnology and Oceanography: Methods 17, no. 8 (2019): 439–61. http://dx.doi.org/10.1002/lom3.10324.
Full textCheng, Xuemin, Yong Ren, Kaichang Cheng, Jie Cao, and Qun Hao. "Method for Training Convolutional Neural Networks for In Situ Plankton Image Recognition and Classification Based on the Mechanisms of the Human Eye." Sensors 20, no. 9 (2020): 2592. http://dx.doi.org/10.3390/s20092592.
Full textZhao, Feng, Feng Lin, and Hock Soon Seah. "Binary SIPPER plankton image classification using random subspace." Neurocomputing 73, no. 10-12 (2010): 1853–60. http://dx.doi.org/10.1016/j.neucom.2009.12.033.
Full textFaillettaz, Robin, Marc Picheral, Jessica Y. Luo, Cédric Guigand, Robert K. Cowen, and Jean-Olivier Irisson. "Imperfect automatic image classification successfully describes plankton distribution patterns." Methods in Oceanography 15-16 (April 2016): 60–77. http://dx.doi.org/10.1016/j.mio.2016.04.003.
Full textLi, Xiu, Rujiao Long, Jiangpeng Yan, Kun Jin, and Jihae Lee. "TANet: A Tiny Plankton Classification Network for Mobile Devices." Mobile Information Systems 2019 (April 3, 2019): 1–8. http://dx.doi.org/10.1155/2019/6536925.
Full textSchröder, Simon-Martin, Rainer Kiko, and Reinhard Koch. "MorphoCluster: Efficient Annotation of Plankton Images by Clustering." Sensors 20, no. 11 (2020): 3060. http://dx.doi.org/10.3390/s20113060.
Full textDissertations / Theses on the topic "Plankton image classification"
Liu, Zonghua. "A shape-based image classification and identification system for digital holograms of marine particles and plankton." Thesis, University of Aberdeen, 2018. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=238473.
Full textFernandez, Mariela Atausinchi. "Classificação de imagens de plâncton usando múltiplas segmentações." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/45/45134/tde-29052017-141908/.
Full textBureš, Jaroslav. "Klasifikace obrazů planktonu s proměnlivou velikosti pomocí konvoluční neuronové sítě." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2020. http://www.nusl.cz/ntk/nusl-417282.
Full textDave, Palak P. "A Quantitative Analysis of Shape Characteristics of Marine Snow Particles with Interactive Visualization: Validation of Assumptions in Coagulation Models." Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7279.
Full textIyer, Neeraj. "Machine Vision Assisted In Situ Ichthyoplankton Imaging System." 2013. http://hdl.handle.net/1805/3368.
Full textBook chapters on the topic "Plankton image classification"
Philippe, Grosjean, and Denis Kevin. "Supervised Classification of Images, Applied to Plankton Samples Using R and Zooimage." In Data Mining Applications with R. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-411511-8.00013-x.
Full textConference papers on the topic "Plankton image classification"
Zhao, Feng, Feng Lin, and Hock Soon Seah. "Bagging based plankton image classification." In 2009 16th IEEE International Conference on Image Processing ICIP 2009. IEEE, 2009. http://dx.doi.org/10.1109/icip.2009.5414357.
Full textFeng Zhao, Xiaoou Tang, Feng Lin, S. Samson, and A. Remsen. "Binary plankton image classification using random subspace." In 2005 International Conference on Image Processing. IEEE, 2005. http://dx.doi.org/10.1109/icip.2005.1529761.
Full textHirata, Nina S. T., Mariela A. Fernandez, and Rubens M. Lopes. "Plankton Image Classification Based on Multiple Segmentations." In 2016 ICPR 2nd Workshop on Computer Vision for Analysis of Underwater Imagery (CVAUI). IEEE, 2016. http://dx.doi.org/10.1109/cvaui.2016.022.
Full textLiu, Jing, Angang Du, Chao Wang, et al. "Deep Pyramidal Residual Networks for Plankton Image Classification." In 2018 OCEANS - MTS/IEEE Kobe Techno-Ocean (OTO). IEEE, 2018. http://dx.doi.org/10.1109/oceanskobe.2018.8559106.
Full textDing, Hao, Bin Wei, Ning Tang, et al. "Plankton Image Classification via Multi-Class Imbalanced Learning." In 2018 OCEANS - MTS/IEEE Kobe Techno-Ocean (OTO). IEEE, 2018. http://dx.doi.org/10.1109/oceanskobe.2018.8559238.
Full textRodrigues, Francisco Caio Maia, Nina S. T. Hirata, Antonio A. Abello, Leandro T. De La Cruz, Rubens M. Lopes, and R. Hirata Jr. "Evaluation of Transfer Learning Scenarios in Plankton Image Classification." In International Conference on Computer Vision Theory and Applications. SCITEPRESS - Science and Technology Publications, 2018. http://dx.doi.org/10.5220/0006626703590366.
Full textRawat, Sarthak Singh, Abhishek Bisht, and Rahul Nijhawan. "A Deep Learning based CNN framework approach for Plankton Classification." In 2019 Fifth International Conference on Image Information Processing (ICIIP). IEEE, 2019. http://dx.doi.org/10.1109/iciip47207.2019.8985838.
Full textLiu, Yiran, Xu Qiao, and Rui Gao. "Plankton Classification on Imbalanced Dataset via Hybrid Resample Method with LightBGM." In 2021 6th International Conference on Image, Vision and Computing (ICIVC). IEEE, 2021. http://dx.doi.org/10.1109/icivc52351.2021.9526988.
Full textWang, Chao, Zhibin Yu, Haiyong Zheng, Nan Wang, and Bing Zheng. "CGAN-plankton: Towards large-scale imbalanced class generation and fine-grained classification." In 2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017. http://dx.doi.org/10.1109/icip.2017.8296402.
Full textDu, Angang, Zhaorui Gu, Zhibin Yu, Haiyong Zheng, and Bing Zheng. "Plankton Image Classification Using Deep Convolutional Neural Networks with Second-order Features." In Global Oceans 2020: Singapore - U.S. Gulf Coast. IEEE, 2020. http://dx.doi.org/10.1109/ieeeconf38699.2020.9389034.
Full textReports on the topic "Plankton image classification"
Neeley, Aimee, Stace E. Beaulieu, Chris Proctor, et al. Standards and practices for reporting plankton and other particle observations from images. Woods Hole Oceanographic Institution, 2021. http://dx.doi.org/10.1575/1912/27377.
Full text