To see the other types of publications on this topic, follow the link: Poly(acrylate) networks.

Journal articles on the topic 'Poly(acrylate) networks'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Poly(acrylate) networks.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Rault, J., A. Lucas, R. Neffati, and M. Monleón Pradas. "Thermal Transitions in Hydrogels of Poly(ethyl acrylate)/Poly(hydroxyethyl acrylate) Interpenetrating Networks." Macromolecules 30, no. 25 (1997): 7866–73. http://dx.doi.org/10.1021/ma970344i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mellal, T., M. Habchi, and B. Dali Youcef. "Effect of nature and degree of crosslinking agent of poly(hydroxy-butyl-methacrylate-co-2-ethyl-hexyl-acrylate) networks on the swelling properties in nematic liquid crystal 5CB." Revista Mexicana de Física 66, no. 5 Sept-Oct (2020): 617. http://dx.doi.org/10.31349/revmexfis.66.617.

Full text
Abstract:
We experimentally measured the effect of nature and concentration of crosslinker on the photopolymerized time of the poly(hydroxy-butyl-methacrylate-co-2-ethyl-hexyl-acrylate)/5CB system. Initial mixtures are composed of monofunctional monomers hydroxy-butyl-methacrylate (HBMA) and 2-ethyl-hexyl-acrylate (2-EHA), and one of the three bifunctional monomers, poly-propylene-glycol-di-acrylate (PPGDA), tri-propylene-glycol-di-acrylate (TPGDA), or 1,6-hexane-diol-di-acrylate (HDDA), and 2-hydroxy-2-methylpropiophenone (Darocur 1173) as a photoinitiator. The copolymers were elaborated via UV irradia
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Lei, Huaming Wang, Xibin Shen, et al. "Nanocomposites of Poly(n-Butyl Acrylate) with Fe3O4: Crosslinking with Hindered Urea Bonds, Reprocessing and Related Functional Properties." Polymers 16, no. 18 (2024): 2638. http://dx.doi.org/10.3390/polym16182638.

Full text
Abstract:
In this contribution, we reported the synthesis of the nanocomposites of poly(n-butyl acrylate) with Fe3O4 nanoparticles (NPs) via dynamic crosslinking of poly(n-butyl acrylate)-grafted Fe3O4 NPs with hindered urea bonds (HUBs). Towards this end, the surfaces of Fe3O4 NPs were grafted with poly(n-butyl acrylate-ran-2-(3-tert-butyl-3-ethylureido)ethyl acrylate) chains [denoted as Fe3O4-g-P(BA-r-TBEA)] via living radical polymerization. Thereafter, 1,2-bis(tert-butyl)ethylenediamine was used as a crosslinker to afford the organic–inorganic networks with variable contents of Fe3O4 NPs and crossli
APA, Harvard, Vancouver, ISO, and other styles
4

Andreopoulos, A. G. "Properties of poly(2-hydroxyethyl acrylate) networks." Biomaterials 10, no. 2 (1989): 101–4. http://dx.doi.org/10.1016/0142-9612(89)90040-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yan, Liang, Duc-Truc Pham, Philip Clements та ін. "β-Cyclodextrin- and adamantyl-substituted poly(acrylate) self-assembling aqueous networks designed for controlled complexation and release of small molecules". Beilstein Journal of Organic Chemistry 13 (7 вересня 2017): 1879–92. http://dx.doi.org/10.3762/bjoc.13.183.

Full text
Abstract:
Three aqueous self-assembling poly(acrylate) networks have been designed to gain insight into the factors controlling the complexation and release of small molecules within them. These networks are formed between 8.8% 6A-(2-aminoethyl)amino-6A-deoxy-6A-β-cyclodextrin, β-CDen, randomly substituted poly(acrylate), PAAβ-CDen, and one of the 3.3% 1-(2-aminoethyl)amidoadamantyl, ADen, 3.0% 1-(6-aminohexyl)amidoadamantyl, ADhn, or 2.9% 1-(12-aminododecyl)amidoadamantyl, ADddn, randomly substituted poly(acrylate)s, PAAADen, PAAADhn and PAAADddn, respectively, such that the ratio of β-CDen to adamanty
APA, Harvard, Vancouver, ISO, and other styles
6

G�mez Ribelles, J. L., M. Monle�n Pradas, G. Gallego Ferrer, et al. "Poly(methyl acrylate)/poly(hydroxyethyl acrylate) sequential interpenetrating polymer networks. Miscibility and water sorption behavior." Journal of Polymer Science Part B: Polymer Physics 37, no. 14 (1999): 1587–99. http://dx.doi.org/10.1002/(sici)1099-0488(19990715)37:14<1587::aid-polb4>3.0.co;2-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Campillo-Fernández, Alberto J., Manuel Salmerón Sánchez, Roser Sabater i Serra, José María Meseguer Dueñas, Manuel Monleón Pradas, and José Luis Gómez Ribelles. "Water-induced (nano) organization in poly(ethyl acrylate-co-hydroxyethyl acrylate) networks." European Polymer Journal 44, no. 7 (2008): 1996–2004. http://dx.doi.org/10.1016/j.eurpolymj.2008.04.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mpoukouvalas, Anastasia, Wenwen Li, Robert Graf, Kaloian Koynov, and Krzysztof Matyjaszewski. "Soft Elastomers via Introduction of Poly(butyl acrylate) “Diluent” to Poly(hydroxyethyl acrylate)-Based Gel Networks." ACS Macro Letters 2, no. 1 (2012): 23–26. http://dx.doi.org/10.1021/mz300614m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Frisch, Harry L., Linfu Wang, Weiyu Huang, Yao He Hua, Han X. Xiao, and Kurt C. Frisch. "Interpenetrating polymer networks from polyurethanes and poly(methyl acrylate)." Journal of Applied Polymer Science 43, no. 3 (1991): 475–79. http://dx.doi.org/10.1002/app.1991.070430308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Meseguer Dueñas, J. M., D. Torres Escuriola, G. Gallego Ferrer, et al. "Miscibility of Poly(butyl acrylate)−Poly(butyl methacrylate) Sequential Interpenetrating Polymer Networks." Macromolecules 34, no. 16 (2001): 5525–34. http://dx.doi.org/10.1021/ma002046i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Li, Binyao, Xiping Bi, Donghua Zhang, and Fosong Wang. "Mutual entanglements in poly(vinyl acetate)/poly(methyl acrylate) interpenetrating polymer networks." Polymer 33, no. 13 (1992): 2740–43. http://dx.doi.org/10.1016/0032-3861(92)90447-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hirose, Atsuko, Keisuke Shimada, Chie Hayashi, Hideyuki Nakanishi, Tomohisa Norisuye, and Qui Tran-Cong-Miyata. "Polymer networks with bicontinuous gradient morphologies resulting from the competition between phase separation and photopolymerization." Soft Matter 12, no. 6 (2016): 1820–29. http://dx.doi.org/10.1039/c5sm02399h.

Full text
Abstract:
3D uniaxially graded bicontinuous morphology obtained for a rhodamine B-labeled poly(ethyl acrylate)/methyl methacrylate (PEAR/MMA (11/89)) mixture along theZ-direction generated by the computer-assisted irradiation (CAI) method.
APA, Harvard, Vancouver, ISO, and other styles
13

Kamal, Meet, and A. K. Srivastava. "STUDY ON THE MORPHOLOGY AND PROPERTIES OF INTERPENETRATING POLYMER NETWORKS OF POLY(ANTIMONY ACRYLATE) AND POLY(BISMUTH ACRYLATE)." Polymer-Plastics Technology and Engineering 40, no. 3 (2001): 293–309. http://dx.doi.org/10.1081/ppt-100000250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Yang, Guang, Xueyang Liu, Alfred Iing Yoong Tok, and Vitali Lipik. "Body temperature-responsive two-way and moisture-responsive one-way shape memory behaviors of poly(ethylene glycol)-based networks." Polymer Chemistry 8, no. 25 (2017): 3833–40. http://dx.doi.org/10.1039/c7py00786h.

Full text
Abstract:
In this work, crosslinked shape-memory polymer networks were prepared by thermally induced free-radical polymerizations of methacrylate-terminated poly(ethylene glycol) (PEG) and n-butyl acrylate (BA), which integrate thermal-responsive two-way and moisture-responsive one-way shape memory effects (SME).
APA, Harvard, Vancouver, ISO, and other styles
15

Gupta, Nidhi, and A. K. Srivastava. "Interpenetrating Polymer Networks Based on Poly Chromium Acrylate/Poly Acrylonitrile: Synthesis and Properties of Semi IPN-1." High Performance Polymers 4, no. 4 (1992): 225–35. http://dx.doi.org/10.1088/0954-0083/4/4/003.

Full text
Abstract:
A series of semi-I tpe interpenetrating polymer networks (IPN) based on poly chromium acrylate and poly acrylonitrile crosslinked with divinyl benzene have been synthesized. Synthetic details, including concentration of poly chromium acriylate (PCrA), acrylonitrile (AN) and divinyl benzene (DVB) and average molecular weight of PCrA were varied and their effect on the crosslink density of the network was studied by swelling experiments. High [PCrAJ and low [AN] increases swelling and thereby average molecular weight between crosslinks (M,). SEM micrographs and glass transition temperature show
APA, Harvard, Vancouver, ISO, and other styles
16

Sánchez, M. Salmerón, G. Gallego Ferrer, C. Torregrosa Cabanilles, J. M. Meseguer Dueñas, M. Monleón Pradas, and J. L. Gómez Ribelles. "Forced compatibility in poly(methyl acrylate)/poly(methyl methacrylate) sequential interpenetrating polymer networks." Polymer 42, no. 25 (2001): 10071–75. http://dx.doi.org/10.1016/s0032-3861(01)00530-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Darras, Vincent, Odile Fichet, Françoise Perrot, Sylvie Boileau, and Dominique Teyssié. "Polysiloxane–poly(fluorinated acrylate) interpenetrating polymer networks: Synthesis and characterization." Polymer 48, no. 3 (2007): 687–95. http://dx.doi.org/10.1016/j.polymer.2006.11.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zhao, Chun-tian, Mao Xu, Wei Zhu, and Xiaolie Luo. "Novel interpenetrating polymer networks of polypropylene/poly( n -butyl acrylate)." Polymer 39, no. 2 (1998): 275–81. http://dx.doi.org/10.1016/s0032-3861(97)00138-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Jian, Xiao Xia, Le Qin Xiao, Wei Liang Zhou, and Hai Qin Ding. "Influence of Polyacrylate on the Compatibility in P(MMA/EA)/PU Semi-IPNs." Advanced Materials Research 627 (December 2012): 873–77. http://dx.doi.org/10.4028/www.scientific.net/amr.627.873.

Full text
Abstract:
The Semi-Interpenetrating Polymer Networks(Semi-IPNs) of poly(methyl methyacrylate/ethyl acrylate)(P(MMA/EA)) and polyurethane thermoplastic elastomer (PU) were synthesized by PU and copolymer of methyl methacrylate and ethyl acrylate to improve the compatibility of polymethyl methacrylate(PMMA) and PU Semi-IPNs . The structure and properties were investigated by Fourier transform infrared spectrometer, Solid nuclear magnetic resonance spectrometry, Dynamic mechanical thermal analysis and Mechanical properties. The tensile stress of (P(MMA/EA)/PU)( P(MMA/EA):PU=3:7) can get to 9.6MPa, the addi
APA, Harvard, Vancouver, ISO, and other styles
20

Qazvini, N. Taheri, and N. Mohammadi. "Segmental Dynamics in net -poly(methyl methacrylate)- co -poly(n-butyl acrylate) Copolymer Networks." Journal of Macromolecular Science, Part B 47, no. 6 (2008): 1161–75. http://dx.doi.org/10.1080/00222340802403388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Meseguer Dueñas, J. M., and J. L. Gómez Ribelles. "Main dielectric relaxation of poly(methyl acrylate)–polystyrene interpenetrating polymer networks." Journal of Non-Crystalline Solids 351, no. 6-7 (2005): 482–88. http://dx.doi.org/10.1016/j.jnoncrysol.2004.11.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Jaisankar, S. N., Y. Lakshminarayana, and Ganga Radhakrishnan. "Polyurethane-Poly(Ethyl Hexyl Acrylate-Co-Methyl Methacrylate) Interpenetrating Polymer Networks." Polymer-Plastics Technology and Engineering 44, no. 4 (2005): 633–43. http://dx.doi.org/10.1081/pte-200057789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Das, Bibekananda, Tanmoy Gangopadhyay, and Sudipta Sinha. "Studies on polyester-poly(ethyl acrylate-co-styrene) interpenetrating polymer networks." European Polymer Journal 30, no. 2 (1994): 245–49. http://dx.doi.org/10.1016/0014-3057(94)90167-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hevilla, Víctor, Águeda Sonseca, Coro Echeverría, Alexandra Muñoz-Bonilla, and Marta Fernández-García. "Photocured Poly(Mannitol Sebacate) with Functional Methacrylic Monomer: Analysis of Physical, Chemical, and Biological Properties." Polymers 15, no. 6 (2023): 1561. http://dx.doi.org/10.3390/polym15061561.

Full text
Abstract:
In this work, we described the formation of polymeric networks with potential antimicrobial character based on an acrylate oligomer, poly(mannitol sebacate) (PMS), and an enzymatically synthesized methacrylic monomer with thiazole groups (MTA). Networks with different content of MTA were prepared, and further physico-chemically characterized by microhardness, water contact angle measurements, and differential scanning calorimetry. Monomer incorporation into the networks and subsequent quaternization to provide thiazolium moieties affected the mechanical behavior and the surface wettability of
APA, Harvard, Vancouver, ISO, and other styles
25

Laurano, Rossella, Monica Boffito, Claudio Cassino, et al. "Thiol-Ene Photo-Click Hydrogels with Tunable Mechanical Properties Resulting from the Exposure of Different -Ene Moieties through a Green Chemistry." Materials 16, no. 5 (2023): 2024. http://dx.doi.org/10.3390/ma16052024.

Full text
Abstract:
Temperature and light responsiveness are widely exploited stimuli to tune the physico-chemical properties of double network hydrogels. In this work, new amphiphilic poly(ether urethane)s bearing photo-sensitive moieties (i.e., thiol, acrylate and norbornene functionalities) were engineered by exploiting the versatility of poly(urethane) chemistry and carbodiimide-mediated green functionalization procedures. Polymers were synthesized according to optimized protocols maximizing photo-sensitive group grafting while preserving their functionality (approx. 1.0 × 1019, 2.6 × 1019 and 8.1 × 1017 thio
APA, Harvard, Vancouver, ISO, and other styles
26

Mengnjoh, Paul C., and Harry L. Frisch. "Interpenetrating polymer networks of poly(2,6-dimethyl-1,4 phenylene oxide) and poly(urethane acrylate). II." Journal of Polymer Science Part C: Polymer Letters 27, no. 9 (1989): 285–87. http://dx.doi.org/10.1002/pol.1989.140270901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Mengnjoh, Paul C., and Harry L. Frisch. "Interpenetrating polymer networks of poly(2,6-dimethyl-1,4 phenylene oxide) and poly(urethane acrylate). I." Journal of Polymer Science Part A: Polymer Chemistry 27, no. 10 (1989): 3363–70. http://dx.doi.org/10.1002/pola.1989.080271015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ilavský, M., J. Hasa, and K. Dušek. "Photoelastic behavior of poly(n-alkyl acrylate) networks in the rubbery state." Journal of Polymer Science: Polymer Symposia 53, no. 1 (2007): 239–56. http://dx.doi.org/10.1002/polc.5070530127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Tsebriienko, Tamara, and Anatoli I. Popov. "Effect of Poly(Titanium Oxide) on the Viscoelastic and Thermophysical Properties of Interpenetrating Polymer Networks." Crystals 11, no. 7 (2021): 794. http://dx.doi.org/10.3390/cryst11070794.

Full text
Abstract:
The influence of poly(titanium oxide) obtained using the sol-gel method in 2-hydroxyethyl methacrylate medium on the viscoelastic and thermophysical properties of interpenetrating polymer networks (IPNs) based on cross-linked polyurethane (PU) and poly(hydroxyethyl methacrylate) (PHEMA) was studied. It was found that both the initial (IPNs) and organo-inorganic interpenetrating polymer networks (OI IPNs) have a two-phase structure by using methods of dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). The differential scanning calorimetry methods and scanning electro
APA, Harvard, Vancouver, ISO, and other styles
30

Wang, Zhi Chao, Huan Liu, Hua Hou, Zhen Xing Yang, and Zhong Wei. "Preparation of IPNs SBS/PBMA-b-PMA and Effect of Compatibility with PVC." Advanced Materials Research 320 (August 2011): 97–102. http://dx.doi.org/10.4028/www.scientific.net/amr.320.97.

Full text
Abstract:
Interpenetrating polymer networks (IPNs) Poly(styrene-butadiene-styrene)/Poly(n-butyl methacrylate-b-methyl acrylate) (SBS/PBMA-b-PMA) was prepared by atom transfer radical polymerization (ATRP) and characterized by FT-IR, 1H NMR and TEM. The TEM photos illustrated that SBS/PBMA-b-PMA formed an obvious core-shell structure, with cross-linked SBS/PBMA core and linear PMA shell. The compatibility of IPNs with PVC was studied using SEM and DSC instruments. The mixed polymers displayed one Tg (Tg=79.4°C, ΔTg=32.5°C) and showed good compatibility. The SEM fracture surface morphologies displayed par
APA, Harvard, Vancouver, ISO, and other styles
31

Zhyhailo, Mariia, Andriy Horechyy, Jochen Meier‐Haack, et al. "Proton Conductive Membranes from Covalently Cross‐Linked Poly(Acrylate)/Silica Interpenetrating Networks." Macromolecular Materials and Engineering 306, no. 4 (2021): 2170013. http://dx.doi.org/10.1002/mame.202170013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Zhyhailo, Mariia, Andriy Horechyy, Jochen Meier‐Haack, et al. "Proton Conductive Membranes from Covalently Cross‐Linked Poly(Acrylate)/Silica Interpenetrating Networks." Macromolecular Materials and Engineering 306, no. 4 (2021): 2000776. http://dx.doi.org/10.1002/mame.202000776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Das, Bibekananda, Debabrata Chakraborty, and Asok Hajra. "Epoxy resin/poly(ethyl acrylate)—interpenetrating polymer networks: engineering properties and morphology." European Polymer Journal 30, no. 11 (1994): 1269–76. http://dx.doi.org/10.1016/0014-3057(94)90137-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Vendamme, Richard, Tewfik Bouchaour, Tadeusz Pakula, Xavier Coqueret, Mustapha Benmouna, and Ulrich Maschke. "Phase Behavior of Poly(butyl acrylate) Networks in Nematic Liquid Crystal Solvents." Macromolecular Materials and Engineering 289, no. 2 (2004): 153–57. http://dx.doi.org/10.1002/mame.200300236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Patel, Prashant, Mayur Patel, and Bhikhu Suthar. "Interpenetrating polymer networks from castor oil based polyurethanes and poly(ethyl acrylate)." British Polymer Journal 20, no. 6 (1988): 525–30. http://dx.doi.org/10.1002/pi.4980200611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Li, Shucai, and Wei Zeng. "Effect of crosslinker, buffer, and blending on damping properties of poly(styrene-acrylonitrile)/poly(ethyl acrylate-n-butyl acrylate) latex interpenetrating polymer networks." Journal of Applied Polymer Science 84, no. 13 (2002): 2347–51. http://dx.doi.org/10.1002/app.10388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ribelles, J. L. G. mez, J. M. Meseguer Due as, C. Torregrosa Cabanilles, and M. Monle n. Pradas. "Segmental dynamics in poly(methyl acrylate) poly(methyl methacrylate) sequential interpenetrating polymer networks: structural relaxation experiments." Journal of Physics: Condensed Matter 15, no. 11 (2003): S1149—S1161. http://dx.doi.org/10.1088/0953-8984/15/11/335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Lozano Picazo, P., M. Pérez Garnes, C. Martínez Ramos, A. Vallés-Lluch та M. Monleón Pradas. "New Semi-Biodegradable Materials from Semi-Interpenetrated Networks of Poly(ϵ-caprolactone) and Poly(ethyl acrylate)". Macromolecular Bioscience 15, № 2 (2014): 229–40. http://dx.doi.org/10.1002/mabi.201400331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Hayakawa, Tadashi, and Toshiaki Matsunaga. "Effects of epoxy resin on mechanical and thermal characteristics of poly(propylene oxide)/poly(butyl acrylate) networks." Journal of Applied Polymer Science 77, no. 9 (2000): 1886–93. http://dx.doi.org/10.1002/1097-4628(20000829)77:9<1886::aid-app4>3.0.co;2-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Mathew, Annakutty, and P. C. Deb. "Studies on semi-interpenetrating polymer networks from poly(vinyl chloride-co-vinyl acetate) and poly(butyl acrylate)." Journal of Applied Polymer Science 45, no. 12 (1992): 2145–51. http://dx.doi.org/10.1002/app.1992.070451210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Patel, Mr Prashant, and Bhikhu Suthar. "Interpenetrating Polymer Networks from Castor Oil Based Polyurethanes and Poly(n-Butyl Acrylate)." International Journal of Polymeric Materials 12, no. 2 (1988): 135–45. http://dx.doi.org/10.1080/00914038808033929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Patel, Mayur, and Bhikhu Suthar. "Interpenetrating polymer networks from castor oil based polyurethanes and poly(methyl acrylate)—IV." European Polymer Journal 23, no. 5 (1987): 399–402. http://dx.doi.org/10.1016/0014-3057(87)90170-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Patel, Mayur, and Bhikhu Suthar. "Interpenetrating polymer networks from caster oil-based-polyurethanes and poly(ethyl acrylate). VII." Journal of Applied Polymer Science 34, no. 5 (1987): 2037–45. http://dx.doi.org/10.1002/app.1987.070340520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Martinez, Michael R., Ziye Zhuang, Megan Treichel, et al. "Thermally Degradable Poly(n-butyl acrylate) Model Networks Prepared by PhotoATRP and Radical Trap-Assisted Atom Transfer Radical Coupling." Polymers 14, no. 4 (2022): 713. http://dx.doi.org/10.3390/polym14040713.

Full text
Abstract:
Model poly(n-butyl acrylate) (PBA) networks were prepared by photoinduced atom transfer radical polymerization (photoATRP), followed by curing of polymer stars via atom transfer radical coupling (ATRC) with a nitrosobenzene radical trap. The resulting nitroxyl radical installed thermally labile alkoxyamine functional groups at the junctions of the network. The alkoxyamine crosslinks of the network were degraded back to star-like products upon exposure to temperatures above 135 °C. Characterization of the degraded products via gel permeation chromatography (GPC) confirmed the inversion of polym
APA, Harvard, Vancouver, ISO, and other styles
45

Su, Yuan, Jia Liu, Qian Li, Qin Yan Yue, and Bao Yu Gao. "Synthesis and Swelling Behaviors of Wheat Straw Cellulose-g-Poly (Potassium Acrylate)/PDMDAAC Amphoteric Semi-IPNs Superabsorbent Resin." Advanced Materials Research 750-752 (August 2013): 1415–19. http://dx.doi.org/10.4028/www.scientific.net/amr.750-752.1415.

Full text
Abstract:
A novel superabsorbent resin (SAR) which was called wheat straw cellulose-g-poly (potassium acrylate)/poly-diallyl dimethyl ammonium-chloride (WSC-g-PKA/PDMDAAC) semi-interpenetrating polymer networks (semi-IPNs) amphoteric SAR was synthetized by graft polymerization and semi-interpenetrating technology with the present of initiator and crosslinker. The effects of AA, PDMDAAC and crosslinker content on water absorbency of semi-IPNs SAR were studied. The semi-IPNs SAR prepared under optimized synthesis condition gave the best water absorption of 210.57 g/g in distilled water and 22.13 g/g in 0.
APA, Harvard, Vancouver, ISO, and other styles
46

Patel, Mayur, and Bhikhu Suthar. "Interpenetrating Polymer Networks from Castor Oil Based Polyurethanes and Poly(n-Butyl Acrylate). VI." International Journal of Polymeric Materials 12, no. 1 (1987): 43–52. http://dx.doi.org/10.1080/00914038708033920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Pérez-Garnes, Manuel, and Manuel Monleón-Pradas. "Poly(methacrylated hyaluronan-co-ethyl acrylate) copolymer networks with tunable properties and enzymatic degradation." Polymer Degradation and Stability 144 (October 2017): 241–50. http://dx.doi.org/10.1016/j.polymdegradstab.2017.08.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Das, B., and D. Chakraborty. "Epoxy-poly(2-ethylhexyl acrylate) interpenetrating polymer networks morphology and mechanical and thermal properties." Polymer Gels and Networks 3, no. 2 (1995): 197–208. http://dx.doi.org/10.1016/0966-7822(94)00033-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Rodríguez-Pérez, E., A. Lloret Compañ, M. Monleón Pradas, and C. Martínez-Ramos. "Scaffolds of Hyaluronic Acid-Poly(Ethyl Acrylate) Interpenetrating Networks: Characterization and In Vitro Studies." Macromolecular Bioscience 16, no. 8 (2016): 1147–57. http://dx.doi.org/10.1002/mabi.201600028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Youcef, Boumédiène Dali, Tewfik Bouchaour, and Ulrich Maschke. "Swelling Behaviour of Isotropic Poly(n-butyl acrylate) Networks in Isotropic and Anisotropic Solvents." Macromolecular Symposia 273, no. 1 (2008): 66–72. http://dx.doi.org/10.1002/masy.200851309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!