Journal articles on the topic 'Preclinical tumor models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Preclinical tumor models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Varticovski, L., M. G. Hollingshead, M. R. Anver, et al. "Preclinical testing using tumors from genetically engineered mouse mammary models." Journal of Clinical Oncology 24, no. 18_suppl (2006): 10067. http://dx.doi.org/10.1200/jco.2006.24.18_suppl.10067.
Full textKlenner, Marbod, Pia Freidel, Mariella G. Filbin, and Alexander Beck. "DIPG-39. New preclinical models for Diffuse Midline Glioma." Neuro-Oncology 24, Supplement_1 (2022): i27. http://dx.doi.org/10.1093/neuonc/noac079.096.
Full textLlaguno-Munive, Monserrat, Wilberto Villalba-Abascal, Alejandro Avilés-Salas, and Patricia Garcia-Lopez. "Near-Infrared Fluorescence Imaging in Preclinical Models of Glioblastoma." Journal of Imaging 9, no. 10 (2023): 212. http://dx.doi.org/10.3390/jimaging9100212.
Full textCosta, Alice, Livia Gozzellino, Margherita Nannini, Annalisa Astolfi, Maria Abbondanza Pantaleo, and Gianandrea Pasquinelli. "Preclinical Models of Visceral Sarcomas." Biomolecules 13, no. 11 (2023): 1624. http://dx.doi.org/10.3390/biom13111624.
Full textRoosen, Mieke, Chris Meulenbroeks, Phylicia Stathi, et al. "BIOL-11. PRECLINICAL MODELLING OF PEDIATRIC BRAIN TUMORS USING ORGANOID TECHNOLOGY." Neuro-Oncology 25, Supplement_1 (2023): i8. http://dx.doi.org/10.1093/neuonc/noad073.030.
Full textSewduth, Raj N., and Konstantina Georgelou. "Relevance of Carcinogen-Induced Preclinical Cancer Models." Journal of Xenobiotics 14, no. 1 (2024): 96–109. http://dx.doi.org/10.3390/jox14010006.
Full textOrtiz, Michael Vincent, Armaan Siddiquee, Daoqi You, et al. "Preclinical evaluation of XPO1 inhibition in Wilms tumors." Journal of Clinical Oncology 38, no. 15_suppl (2020): 3580. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.3580.
Full textSitta, Juliana, Pier Paolo Claudio, and Candace M. Howard. "Virus-Based Immuno-Oncology Models." Biomedicines 10, no. 6 (2022): 1441. http://dx.doi.org/10.3390/biomedicines10061441.
Full textBella, Ángela, Claudia Augusta Di Trani, Myriam Fernández-Sendin, et al. "Mouse Models of Peritoneal Carcinomatosis to Develop Clinical Applications." Cancers 13, no. 5 (2021): 963. http://dx.doi.org/10.3390/cancers13050963.
Full textStripay, Jennifer L., Thomas E. Merchant, Martine F. Roussel, and Christopher L. Tinkle. "Preclinical Models of Craniospinal Irradiation for Medulloblastoma." Cancers 12, no. 1 (2020): 133. http://dx.doi.org/10.3390/cancers12010133.
Full textJarry, Ulrich, Megane Bostoen, Jérome Archambeau, et al. "Afatinib or Bevacizumab in combination with Osimertinib efficiently control tumor development in orthotopic murine models of non-small lung cancer." PLOS ONE 19, no. 6 (2024): e0304914. http://dx.doi.org/10.1371/journal.pone.0304914.
Full textTada, Takuya, Thomas D. Norton, Rebecca Leibowitz, and Nathaniel R. Landau. "Checkpoint inhibitor-expressing lentiviral vaccine suppresses tumor growth in preclinical cancer models." Journal for ImmunoTherapy of Cancer 12, no. 4 (2024): e008761. http://dx.doi.org/10.1136/jitc-2023-008761.
Full textYu, Jie-Zeng, Zsofia Kiss, Weijie Ma, Ruqiang Liang, and Tianhong Li. "Preclinical Models for Functional Precision Lung Cancer Research." Cancers 17, no. 1 (2024): 22. https://doi.org/10.3390/cancers17010022.
Full textBaniahmad, Aria. "Tumor spheroids and organoids as preclinical model systems." Medizinische Genetik 33, no. 3 (2021): 229–34. http://dx.doi.org/10.1515/medgen-2021-2093.
Full textMahmoudian, Reihaneh Alsadat, Moein Farshchian, Fatemeh Fardi Golyan, et al. "Preclinical tumor mouse models for studying esophageal cancer." Critical Reviews in Oncology/Hematology 189 (September 2023): 104068. http://dx.doi.org/10.1016/j.critrevonc.2023.104068.
Full textTellez-Gabriel, Marta, Denis Cochonneau, Marie Cadé, Camille Jubelin, Marie-Françoise Heymann, and Dominique Heymann. "Circulating Tumor Cell-Derived Pre-Clinical Models for Personalized Medicine." Cancers 11, no. 1 (2018): 19. http://dx.doi.org/10.3390/cancers11010019.
Full textRodgers, Louis T., Bryan J. Maloney, Anika M. S. Hartz, and Björn Bauer. "Fluorescence-Guided Resection of GL261 Red-FLuc and TRP-mCherry-FLuc Mouse Glioblastoma Tumors." Cancers 17, no. 5 (2025): 734. https://doi.org/10.3390/cancers17050734.
Full textEhrenberg, Karl Roland, Jianpeng Gao, Felix Oppel, et al. "Systematic Generation of Patient-Derived Tumor Models in Pancreatic Cancer." Cells 8, no. 2 (2019): 142. http://dx.doi.org/10.3390/cells8020142.
Full textPinto, Bárbara, Ana C. Henriques, Patrícia M. A. Silva, and Hassan Bousbaa. "Three-Dimensional Spheroids as In Vitro Preclinical Models for Cancer Research." Pharmaceutics 12, no. 12 (2020): 1186. http://dx.doi.org/10.3390/pharmaceutics12121186.
Full textKoptyra, Mateusz, Valerie Baubet, David Beale, et al. "MODL-30. Children’s Brain Tumor Network preclinical tumor models development and sharing platform: collaborative model empowering pediatric brain tumor discovery and global research." Neuro-Oncology 24, Supplement_1 (2022): i175—i176. http://dx.doi.org/10.1093/neuonc/noac079.653.
Full textDavy, Mélodie, Laurie Genest, Christophe Legrand, et al. "Evaluation of Temozolomide and Fingolimod Treatments in Glioblastoma Preclinical Models." Cancers 15, no. 18 (2023): 4478. http://dx.doi.org/10.3390/cancers15184478.
Full textMinami, Jenna, Nicholas Bayley, Christopher Tse, et al. "TAMI-06. PRECLINICAL MODELS REVEAL BRAIN-MICROENVIRONMENT SPECIFIC METABOLIC DEPENDENCIES IN GLIOBLASTOMA." Neuro-Oncology 22, Supplement_2 (2020): ii214. http://dx.doi.org/10.1093/neuonc/noaa215.895.
Full textHollawell, Madison, Valerie Baubet, David Beale, et al. "BIOL-22. CHILDREN’S BRAIN TUMOR NETWORK PRECLINICAL TUMOR MODELS DEVELOPMENT AND SHARING PLATFORM: COLLABORATIVE MODEL EMPOWERING PEDIATRIC BRAIN TUMOR DISCOVERY AND GLOBAL RESEARCH." Neuro-Oncology 25, Supplement_1 (2023): i10—i11. http://dx.doi.org/10.1093/neuonc/noad073.041.
Full textMohr, Hermine, and Natalia S. Pellegata. "Animal models of MEN1." Endocrine-Related Cancer 24, no. 10 (2017): T161—T177. http://dx.doi.org/10.1530/erc-17-0249.
Full textHansson, Karin, Katarzyna Radke, Kristina Aaltonen, et al. "Therapeutic targeting of KSP in preclinical models of high-risk neuroblastoma." Science Translational Medicine 12, no. 562 (2020): eaba4434. http://dx.doi.org/10.1126/scitranslmed.aba4434.
Full textMinami, Jenna, Nicholas Bayley, Christopher Tse, et al. "ETMM-02. PRECLINICAL MODELS REVEAL BRAIN-MICROENVIRONMENT SPECIFIC METABOLIC DEPENDENCIES IN GLIOBLASTOMA." Neuro-Oncology Advances 3, Supplement_1 (2021): i14. http://dx.doi.org/10.1093/noajnl/vdab024.058.
Full textForde, Patrick F., Mira Sadadcharam, Michael G. Bourke, et al. "Preclinical evaluation of an endoscopic electroporation system." Endoscopy 48, no. 05 (2016): 477–83. http://dx.doi.org/10.1055/s-0042-101343.
Full textErnst, Kati, Konstantin Okonechnikov, Laura von Soosten, et al. "BIOL-07. DISTINCTIVE FEATURES OF HIGH-GRADE GLIOMA MOUSE MODELS REVEALED BY SINGLE-NUCLEUS RNA-SEQUENCING GUIDE PRE-CLINICAL MODEL SELECTION." Neuro-Oncology 25, Supplement_1 (2023): i7. http://dx.doi.org/10.1093/neuonc/noad073.026.
Full textSgouros, George, Robert F. Hobbs, and Diane S. Abou. "The Role of Preclinical Models in Radiopharmaceutical Therapy." American Society of Clinical Oncology Educational Book, no. 34 (May 2014): e121-e125. http://dx.doi.org/10.14694/edbook_am.2014.34.e121.
Full textDobson, Tara, and Vidya Gopalakrishnan. "Preclinical Models of Pediatric Brain Tumors—Forging Ahead." Bioengineering 5, no. 4 (2018): 81. http://dx.doi.org/10.3390/bioengineering5040081.
Full textDondossola, Eleonora, Andrey S. Dobroff, Serena Marchiò, et al. "Self-targeting of TNF-releasing cancer cells in preclinical models of primary and metastatic tumors." Proceedings of the National Academy of Sciences 113, no. 8 (2016): 2223–28. http://dx.doi.org/10.1073/pnas.1525697113.
Full textKenkre, Rishaan, Owen Chapman, Jens Luebeck, et al. "STEM-07. CONSERVATION AND FAITHFUL REPRESENTATION OF CIRCULAR EXTRACHROMOSOMAL DNA IN ORTHOTOPIC PATIENT-DERIVED MEDULLOBLASTOMA XENOGRAFTS." Neuro-Oncology 26, Supplement_4 (2024): 0. http://dx.doi.org/10.1093/neuonc/noae064.778.
Full textYildiz, Merve, Andrea Romano, and Sofia Xanthoulea. "Murine Xenograft Models as Preclinical Tools in Endometrial Cancer Research." Cancers 16, no. 23 (2024): 3994. http://dx.doi.org/10.3390/cancers16233994.
Full textKalra, Jessica, Jennifer Baker, Justin Song, Alastair Kyle, Andrew Minchinton, and Marcel Bally. "Inter-Metastatic Heterogeneity of Tumor Marker Expression and Microenvironment Architecture in a Preclinical Cancer Model." International Journal of Molecular Sciences 22, no. 12 (2021): 6336. http://dx.doi.org/10.3390/ijms22126336.
Full textHicks, William H., Cylaina E. Bird, Jeffrey I. Traylor, et al. "Contemporary Mouse Models in Glioma Research." Cells 10, no. 3 (2021): 712. http://dx.doi.org/10.3390/cells10030712.
Full textVitale, Giovanni, Silvia Carra, Ylenia Alessi, et al. "Carcinoid Syndrome: Preclinical Models and Future Therapeutic Strategies." International Journal of Molecular Sciences 24, no. 4 (2023): 3610. http://dx.doi.org/10.3390/ijms24043610.
Full textChauhan, Aman, Piotr Rychahou, Tadahide Izumi, et al. "Antitumor efficacy of M3814 as a radiation sensitizer in neuroendocrine tumor (NET) preclinical models." Journal of Clinical Oncology 37, no. 15_suppl (2019): e15699-e15699. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.e15699.
Full textMcCloskey, Curtis, Galaxia Rodriguez, Kristianne Galpin, and Barbara Vanderhyden. "Ovarian Cancer Immunotherapy: Preclinical Models and Emerging Therapeutics." Cancers 10, no. 8 (2018): 244. http://dx.doi.org/10.3390/cancers10080244.
Full textIndersie, Emilie, Léa Sinayen, Aurore Gorse, et al. "Abstract 1289: A preclinical platform of PDX breast cancer models and their cellular counterparts to identify resistance mechanisms and novel therapeutic options." Cancer Research 85, no. 8_Supplement_1 (2025): 1289. https://doi.org/10.1158/1538-7445.am2025-1289.
Full textSpoormans, Kaat, Melissa Crabbé, Lara Struelens, Marijke De Saint-Hubert, and Michel Koole. "A Review on Tumor Control Probability (TCP) and Preclinical Dosimetry in Targeted Radionuclide Therapy (TRT)." Pharmaceutics 14, no. 10 (2022): 2007. http://dx.doi.org/10.3390/pharmaceutics14102007.
Full textChen, Stephen R., Frederick F. Lang, and Peter Kan. "Preclinical animal brain tumor models for interventional neuro-oncology." Journal of NeuroInterventional Surgery 14, no. 5 (2022): neurintsurg—2022–018968. http://dx.doi.org/10.1136/neurintsurg-2022-018968.
Full textWu, Jianrong, and Peter J. Houghton. "Assessing Cytotoxic Treatment Effects in Preclinical Tumor Xenograft Models." Journal of Biopharmaceutical Statistics 19, no. 5 (2009): 755–62. http://dx.doi.org/10.1080/10543400903105158.
Full textBanerjee, Sulagna, Venugopal Thayanithy, Veena Sangwan, Tiffany N. Mackenzie, Ashok K. Saluja, and Subbaya Subramanian. "Minnelide reduces tumor burden in preclinical models of osteosarcoma." Cancer Letters 335, no. 2 (2013): 412–20. http://dx.doi.org/10.1016/j.canlet.2013.02.050.
Full textGolebiewska, Anna, Ann-Christin Hau, Anais Oudin, et al. "TMOD-08. PRIMARY AND RECURRENT GLIOMA PATIENT-DERIVED ORTHOTOPIC XENOGRAFTS (PDOX) REPRESENT RELEVANT PATIENT AVATARS FOR PRECISION MEDICINE." Neuro-Oncology 22, Supplement_2 (2020): ii229. http://dx.doi.org/10.1093/neuonc/noaa215.959.
Full textHaskell-Mendoza, Aden, Lucas Wachsmuth, and Peter Fecci. "LMAP-09 RECAPITULATING LASER INTERSTITIAL THERMAL THERAPY IN PRECLINICAL BRAIN TUMOR MODELS." Neuro-Oncology Advances 5, Supplement_3 (2023): iii11. http://dx.doi.org/10.1093/noajnl/vdad070.040.
Full textGadwa, Jacob, Justin Yu, Miles Piper, et al. "Divergent response to radio-immunotherapy is defined by intrinsic features of the tumor microenvironment." Journal for ImmunoTherapy of Cancer 13, no. 1 (2025): e010405. https://doi.org/10.1136/jitc-2024-010405.
Full textLee, Jung Woo, Jia Kim, Youngjae Shin, Byung Hoon Chi, Jung Hoon Kim, and Se Young Choi. "Patient-Specific Tumor Microenvironment Models." Korean Journal of Urological Oncology 19, no. 4 (2021): 197–222. http://dx.doi.org/10.22465/kjuo.2021.19.4.197.
Full textSaito, Yasuyuki, Afroj Tania, Satomi Komori та ін. "Preclinical Evaluation of the Efficacy of Human Sirpα Antibodies for B-Cell Lymphoma Immunotherapy in Humanized Mouse Models". Blood 142, Supplement 1 (2023): 1646. http://dx.doi.org/10.1182/blood-2023-181926.
Full textBarachini, Serena, Mariangela Morelli, Orazio Santo Santonocito, and Chiara Maria Mazzanti. "Preclinical glioma models in neuro-oncology: enhancing translational research." Current Opinion in Oncology 35, no. 6 (2023): 536–42. http://dx.doi.org/10.1097/cco.0000000000000997.
Full textGrausam, Katie, David Rincon Fernandez Pacheco, Emily Hatanaka, Stephen Shiao, and Joshua Breunig. "MODL-34. A SERIES OF EGFR-MUTANT MODELS OF GLIOBLASTOMA THAT RECAPITULATES PATIENT TUMOR HETEROGENEITY AND RESPONSE TO TREATMENT." Neuro-Oncology 25, Supplement_5 (2023): v306. http://dx.doi.org/10.1093/neuonc/noad179.1185.
Full text