To see the other types of publications on this topic, follow the link: Programming (Mathematics) Convex programming.

Journal articles on the topic 'Programming (Mathematics) Convex programming'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Programming (Mathematics) Convex programming.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ceria, Sebastián, and João Soares. "Convex programming for disjunctive convex optimization." Mathematical Programming 86, no. 3 (December 1, 1999): 595–614. http://dx.doi.org/10.1007/s101070050106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Xu, Z. K., and S. C. Fang. "Unconstrained convex programming approach to linear programming." Journal of Optimization Theory and Applications 86, no. 3 (September 1995): 745–52. http://dx.doi.org/10.1007/bf02192167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

fang, S. C., and H. S. J. Tsao. "An unconstrained convex programming approach to solving convex quadratic programming problems." Optimization 27, no. 3 (January 1993): 235–43. http://dx.doi.org/10.1080/02331939308843884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fang, S. C. "An unconstrained convex programming view of linear programming." ZOR Zeitschrift f� Operations Research Methods and Models of Operations Research 36, no. 2 (March 1992): 149–61. http://dx.doi.org/10.1007/bf01417214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kutateladze, S. S. "Variant of nontandard convex programming." Siberian Mathematical Journal 27, no. 4 (1987): 537–44. http://dx.doi.org/10.1007/bf00969166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jeyakumar, V., and B. Mond. "On generalised convex mathematical programming." Journal of the Australian Mathematical Society. Series B. Applied Mathematics 34, no. 1 (July 1992): 43–53. http://dx.doi.org/10.1017/s0334270000007372.

Full text
Abstract:
AbstractThe sufficient optimality conditions and duality results have recently been given for the following generalised convex programming problem:where the funtion f and g satisfyfor some η: X0 × X0 → ℝnIt is shown here that a relaxation defining the above generalised convexity leads to a new class of multi-objective problems which preserves the sufficient optimality and duality results in the scalar case, and avoids the major difficulty of verifying that the inequality holds for the same function η(. , .). Further, this relaxation allows one to treat certain nonlinear multi-objective fractional programming problems and some other classes of nonlinear (composite) problems as special cases.
APA, Harvard, Vancouver, ISO, and other styles
7

Rajasekera, J. R., and S. C. Fang. "On the convex programming approach to linear programming." Operations Research Letters 10, no. 6 (August 1991): 309–12. http://dx.doi.org/10.1016/0167-6377(91)90001-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Trujillo-Cortez, R., and S. Zlobec. "Bilevel convex programming models." Optimization 58, no. 8 (November 2009): 1009–28. http://dx.doi.org/10.1080/02331930701763330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Weir, T. "Programming with semilocally convex functions." Journal of Mathematical Analysis and Applications 168, no. 1 (July 1992): 1–12. http://dx.doi.org/10.1016/0022-247x(92)90185-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Champion, T. "Duality gap in convex programming." Mathematical Programming 99, no. 3 (April 1, 2004): 487–98. http://dx.doi.org/10.1007/s10107-003-0461-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Jeyakumar, V., D. T. Luc, and P. N. Tinh. "Convex composite non-Lipschitz programming." Mathematical Programming 92, no. 1 (March 1, 2002): 177–95. http://dx.doi.org/10.1007/s101070100274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Guerra, P. Jiménez, M. A. Melguizo, and M. J. Muñoz-Bouzo. "Sensitivity analysis in convex programming." Computers & Mathematics with Applications 58, no. 6 (September 2009): 1239–46. http://dx.doi.org/10.1016/j.camwa.2009.06.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Thuy, Le Quang, Nguyen Thi Bach Kim, and Nguyen Tuan Thien. "Generating Efficient Outcome Points for Convex Multiobjective Programming Problems and Its Application to Convex Multiplicative Programming." Journal of Applied Mathematics 2011 (2011): 1–21. http://dx.doi.org/10.1155/2011/464832.

Full text
Abstract:
Convex multiobjective programming problems and multiplicative programming problems have important applications in areas such as finance, economics, bond portfolio optimization, engineering, and other fields. This paper presents a quite easy algorithm for generating a number of efficient outcome solutions for convex multiobjective programming problems. As an application, we propose an outer approximation algorithm in the outcome space for solving the multiplicative convex program. The computational results are provided on several test problems.
APA, Harvard, Vancouver, ISO, and other styles
14

Tseng, P. "Linearly constrained convex programming as unconstrained differentiable concave programming." Journal of Optimization Theory and Applications 85, no. 2 (May 1995): 489–94. http://dx.doi.org/10.1007/bf02192238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Shizheng, Li. "A constraint qualification for convex programming." Acta Mathematicae Applicatae Sinica 16, no. 4 (October 2000): 362–65. http://dx.doi.org/10.1007/bf02671125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Lahmdani, Anouar, and Mohamed Tifroute. "A smoothing sequential convex programming method." Applied Mathematical Sciences 15, no. 1 (2021): 33–45. http://dx.doi.org/10.12988/ams.2021.914344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Batagelj, Vladimir, Simona Korenjak-Černe, and Sandi Klavžar. "Dynamic programming and convex clustering." Algorithmica 11, no. 2 (February 1994): 93–103. http://dx.doi.org/10.1007/bf01182769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Mukherjee, R. N., and S. K. Mishra. "Multiobjective Programming with Semilocally Convex Functions." Journal of Mathematical Analysis and Applications 199, no. 2 (April 1996): 409–24. http://dx.doi.org/10.1006/jmaa.1996.0150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Jeyakumar, V., and X. Q. Yang. "Convex composite multi-objective nonsmooth programming." Mathematical Programming 59, no. 1-3 (March 1993): 325–43. http://dx.doi.org/10.1007/bf01581251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

McCormick, Garth P., and Christoph Witzgall. "Logarithmic SUMT limits in convex programming." Mathematical Programming 90, no. 1 (March 2001): 113–45. http://dx.doi.org/10.1007/pl00011416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

de Oliveira, Welington. "Sequential Difference-of-Convex Programming." Journal of Optimization Theory and Applications 186, no. 3 (August 4, 2020): 936–59. http://dx.doi.org/10.1007/s10957-020-01721-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Mishra, S. K., and R. N. Mukherjee. "On generalised convex multi-objective nonsmooth programming." Journal of the Australian Mathematical Society. Series B. Applied Mathematics 38, no. 1 (July 1996): 140–48. http://dx.doi.org/10.1017/s0334270000000515.

Full text
Abstract:
AbstractWe extend the concept of V-pseudo-invexity and V-quasi-invexity of multi-objective programming to the case of nonsmooth multi-objective programming problems. The generalised subgradient Kuhn-Tucker conditions are shown to be sufficient for a weak minimum of a multi-objective programming problem under certain assumptions. Duality results are also obtained.
APA, Harvard, Vancouver, ISO, and other styles
23

He, B., M. Tao, and X. Yuan. "A splitting method for separable convex programming." IMA Journal of Numerical Analysis 35, no. 1 (January 3, 2014): 394–426. http://dx.doi.org/10.1093/imanum/drt060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Zhou, XueGang, and JiHui Yang. "Global Optimization for the Sum of Concave-Convex Ratios Problem." Journal of Applied Mathematics 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/879739.

Full text
Abstract:
This paper presents a branch and bound algorithm for globally solving the sum of concave-convex ratios problem (P) over a compact convex set. Firstly, the problem (P) is converted to an equivalent problem (P1). Then, the initial nonconvex programming problem is reduced to a sequence of convex programming problems by utilizing linearization technique. The proposed algorithm is convergent to a global optimal solution by means of the subsequent solutions of a series of convex programming problems. Some examples are given to illustrate the feasibility of the proposed algorithm.
APA, Harvard, Vancouver, ISO, and other styles
25

Yan, Zhaoxiang, and Shizheng Li. "A new class of generalized convex programming." Journal of Applied Mathematics and Computing 17, no. 1-2 (March 2005): 351–60. http://dx.doi.org/10.1007/bf02936061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Jarre, Florian. "Interior-point methods for convex programming." Applied Mathematics & Optimization 26, no. 3 (November 1992): 287–311. http://dx.doi.org/10.1007/bf01371086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Egudo, R. R., T. Weir, and B. Mond. "Duality without constraint qualification for multiobjective programming." Journal of the Australian Mathematical Society. Series B. Applied Mathematics 33, no. 4 (April 1992): 531–44. http://dx.doi.org/10.1017/s0334270000007219.

Full text
Abstract:
AbstractExtending earlier duality results for multiobjective programs, this paper defines dual problems for convex and generalised convex multiobjective programs without requiring a constraint qualification. The duals provide multiobjective extensions of the classical duals of Wolfe and Schechter and some of the more recent duals of Mond and Weir.
APA, Harvard, Vancouver, ISO, and other styles
28

Levitin, E. S. "Investigation of some parametric convex programming problems." Computational Mathematics and Modeling 3, no. 4 (1992): 402–9. http://dx.doi.org/10.1007/bf01133068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Oliveira, Rúbia M., and Paulo A. V. Ferreira. "A convex analysis approach for convex multiplicative programming." Journal of Global Optimization 41, no. 4 (December 21, 2007): 579–92. http://dx.doi.org/10.1007/s10898-007-9267-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Jung, Jin Hyuk, Dianne P. O’Leary, and André L. Tits. "Adaptive constraint reduction for convex quadratic programming." Computational Optimization and Applications 51, no. 1 (March 9, 2010): 125–57. http://dx.doi.org/10.1007/s10589-010-9324-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Fukushima, Masao, Mounir Haddou, Hien Van Nguyen, Jean-Jacques Strodiot, Takanobu Sugimoto, and Eiki Yamakawa. "A parallel descent algorithm for convex programming." Computational Optimization and Applications 5, no. 1 (January 1996): 5–37. http://dx.doi.org/10.1007/bf00429749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Shvartsman, Ilya. "On stability of minimizers in convex programming." Nonlinear Analysis: Theory, Methods & Applications 75, no. 3 (February 2012): 1563–71. http://dx.doi.org/10.1016/j.na.2011.03.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Henrion, R., and T. Surowiec. "On calmness conditions in convex bilevel programming." Applicable Analysis 90, no. 6 (June 2011): 951–70. http://dx.doi.org/10.1080/00036811.2010.495339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lewis, A. S. "Facial reduction in partially finite convex programming." Mathematical Programming 65, no. 1-3 (February 1994): 123–38. http://dx.doi.org/10.1007/bf01581693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zhou, X., F. Sharifi Mokhtarian, and S. Zlobec. "A simple constraint qualification in convex programming." Mathematical Programming 61, no. 1-3 (August 1993): 385–97. http://dx.doi.org/10.1007/bf01582159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Iusem, Alfredo N., and B. F. Svaiter. "A row-action method for convex programming." Mathematical Programming 64, no. 1-3 (March 1994): 149–71. http://dx.doi.org/10.1007/bf01582569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Emama, Tarek. "Optimality for E-[0,1] convex multi-objective programming." Filomat 31, no. 3 (2017): 529–41. http://dx.doi.org/10.2298/fil1703529e.

Full text
Abstract:
In this paper, we interest with deriving the sufficient and necessary conditions for optimal solution of special classes of Programming. These classes involve generalized E-[0,1] convex functions. Characterization of efficient solutions for E-[0,1] convex multi-objective Programming are obtained. Finally, sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient solution are derived.
APA, Harvard, Vancouver, ISO, and other styles
38

Chan, Timothy M. "Deterministic Algorithms for 2-d Convex Programming and 3-d Online Linear Programming." Journal of Algorithms 27, no. 1 (April 1998): 147–66. http://dx.doi.org/10.1006/jagm.1997.0914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Asgharian, M., and S. Zlobec. "Convex Parametric Programming in Abstract Spaces." Optimization 51, no. 6 (August 2002): 841–61. http://dx.doi.org/10.1080/0233193021000015659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Craven, B. D., D. Ralph, and B. M. Glover. "Small convex-valued subdifferentials in mathematical programming." Optimization 32, no. 1 (January 1995): 1–21. http://dx.doi.org/10.1080/02331939508844032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Mu, Xuewen, and Yaling Zhang. "An Alternating Direction Method for Convex Quadratic Second-Order Cone Programming with Bounded Constraints." Mathematical Problems in Engineering 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/379734.

Full text
Abstract:
An alternating direction method is proposed for convex quadratic second-order cone programming problems with bounded constraints. In the algorithm, the primal problem is equivalent to a separate structure convex quadratic programming over second-order cones and a bounded set. At each iteration, we only need to compute the metric projection onto the second-order cones and the projection onto the bound set. The result of convergence is given. Numerical results demonstrate that our method is efficient for the convex quadratic second-order cone programming problems with bounded constraints.
APA, Harvard, Vancouver, ISO, and other styles
42

Özöğür‐Akyüz, Süreyya, Buse Çisil Otar, and Pınar Karadayı Atas. "Ensemble cluster pruning via convex‐concave programming." Computational Intelligence 36, no. 1 (January 5, 2020): 297–319. http://dx.doi.org/10.1111/coin.12267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Jansson, Christian. "On verified numerical computations in convex programming." Japan Journal of Industrial and Applied Mathematics 26, no. 2-3 (October 2009): 337–63. http://dx.doi.org/10.1007/bf03186539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Fu, J. Y., and Y. H. Wang. "Arcwise Connected Cone-Convex Functions and Mathematical Programming." Journal of Optimization Theory and Applications 118, no. 2 (August 2003): 339–52. http://dx.doi.org/10.1023/a:1025451422581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Fan, Xiaona, and Bo Yu. "A polynomial path following algorithm for convex programming." Applied Mathematics and Computation 196, no. 2 (March 2008): 866–78. http://dx.doi.org/10.1016/j.amc.2007.07.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Weir, T., and V. Jeyakumar. "A class of nonconvex functions and mathematical programming." Bulletin of the Australian Mathematical Society 38, no. 2 (October 1988): 177–89. http://dx.doi.org/10.1017/s0004972700027441.

Full text
Abstract:
A class of functions, called pre-invex, is defined. These functions are more general than convex functions and when differentiable are invex. Optimality conditions and duality theorems are given for both scalar-valued and vector-valued programs involving pre-invex functions.
APA, Harvard, Vancouver, ISO, and other styles
47

Preda, Vasile. "On nonlinear programming and matrix game equivalence." Journal of the Australian Mathematical Society. Series B. Applied Mathematics 35, no. 4 (April 1994): 429–38. http://dx.doi.org/10.1017/s0334270000009528.

Full text
Abstract:
AbstractIn the framework of Mond-Weir duality a new equivalence between nonlinear programming and a matrix game is given. Finally, certain conclusions about convex programming with nested maxima and matrix games are also included.
APA, Harvard, Vancouver, ISO, and other styles
48

Carlone, L., V. Srivastava, F. Bullo, and G. C. Calafiore. "Distributed Random Convex Programming via Constraints Consensus." SIAM Journal on Control and Optimization 52, no. 1 (January 2014): 629–62. http://dx.doi.org/10.1137/120885796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Alvarez, Felipe, Jérôme Bolte, and Olivier Brahic. "Hessian Riemannian Gradient Flows in Convex Programming." SIAM Journal on Control and Optimization 43, no. 2 (January 2004): 477–501. http://dx.doi.org/10.1137/s0363012902419977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Glazos, Michael P., Stefen Hui, and Stanislaw H. Zak. "Sliding Modes in Solving Convex Programming Problems." SIAM Journal on Control and Optimization 36, no. 2 (March 1998): 680–97. http://dx.doi.org/10.1137/s0363012993255880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography