To see the other types of publications on this topic, follow the link: Protéine T4 gene 32.

Journal articles on the topic 'Protéine T4 gene 32'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Protéine T4 gene 32.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kolo, P. S., B. Otu, A. A. Banjo, and H. N. Kolo. "A study on haematology and serum biochemistry of wattled and non wattled Red Sokoto does and their offspring." Nigerian Journal of Animal Production 48, no. 1 (February 28, 2021): 197–206. http://dx.doi.org/10.51791/njap.v48i1.2908.

Full text
Abstract:
Wattle is of utmost ornamental importance for courting potential mates and influencing thermoregulatory mechanisms which help the animal adapt to the environment. It also provides information on relationship between haematological and serum biochemical parameters. A study on haematology and serum biochemistry of wattled and non wattled Red Sokoto does and their offspring was carried out at the Teaching and Research Farm of the Department of Animal Production, Federal University of Technology, Minna. Fifty (52) Red Sokoto goats comprising of thirty-two (32) does four (4) bucks and sixteen (16) weaned kids managed semi-intensively were used for the study Blood samples were collected using 5 ml syringe and 22-guage needle from the jugular vein. 5 ml of blood was collected from each goat used out of which 2.5 ml was dispensed into Ethylene Diamine Tetra Acetic Acid (EDTA) bottle while the remaining 2.5 ml was dispensed into plain (anticoagulant free) bottles and labelled properly according to the treatment group. Data collected were analyzed using SAS statistical package. It was observed: that wattle had significant effect (p<0.05) on Mean Corpuscular Haemoglobin (MCH), Mean Corpuscular Haemoglobin Concentration (MCHC), White Blood Cell (WBC), Sodium, Potassium, Calcium, Chloride, Phosphorus, Cholesterol, Total Protein, Low Density Lipoprotein (LDL) and Total Bilirubin of Red Sokoto Does but had no significant influence on the haematology and serum biochemistry of wean Red Sokoto kids. Does in T3 had the highest MCH values of 63.50 mmo/l while treatments T1, T2 and T4 had values of 23.00 mmo/l, 33.00mmo/l and 34.00mmo/l respectively. Also Does in T2, T3 and T4 recorded higher calcium levels of 2.54mmo/l, 2.56mmol/l and 2.61mmo/l) respectively compared to values of 2.29mmo/l recorded in T1. These relevant influence of wattle therefore should suggest the deployment of deliberate effort to preserve the wattle gene to prevent the goats carrying the gene from going to extinction. L'acacia est de la plus haute importance ornementale pour courtiser les partenaires potentiels et influencer les mécanismes de thermorégulation qui aident l'animal à s'adapter à l'environnement. Il fournit également des informations sur la relation entre les paramètres hématologiques et biochimiques sériques. Une étude sur l'hématologie et la biochimie sérique des femelles de chèvres Sokoto femelle rouge et de leur progéniture a été réalisée à la Ferme d'enseignement et de recherche du Département de la production animale, Université fédérale de technologie, Minna. Cinquante (52) chèvres Sokoto femelle rouges comprenant trente-deux (32) femelles quatre (4) mâles et seize (16) chevreaux sevrés gérés de manière semi-intensive ont été utilisés pour l'étude. Des échantillons de sang ont été prélevés à l'aide d'une seringue de 5 ml et d'une aiguille de calibre 22 de la veine jugulaire. 5 ml de sang ont été collectés sur chaque chèvre utilisée, dont 2,5 ml ont été distribués dans un flacon d'acide éthylène diamine tétra acétique (le 'EDTA') tandis que les 2,5 ml restants ont été distribués dans des flacons simples (sans anticoagulant) et étiquetés correctement selon le groupe de traitement. Les données collectées ont été analysées à l'aide du progiciel statistique 'SAS'. Il a été observé : que l'acacia avait un effet significatif (p <0,05) sur l'hémoglobine corpusculaire moyenne (le 'MCH'), la concentration moyenne d'hémoglobine corpusculaire (le 'MCHC'), les globules blancs (GB), le sodium, le potassium, le calcium, le chlorure, le phosphore, le cholestérol, Protéine, lipoprotéine de faible densité (LDL) et bilirubine totale de chèvres Sokoto femelle rouges mais n'ont eu aucune influence significative sur l'hématologie et la biochimie sérique des enfants sevrés Red Sokoto. Les lapins de T3 avaient les valeurs 'MCH' les plus élevées de 63,50 mmo / l tandis que les traitements T1, T2 et T4 avaient des valeurs de 23,00 mmo / l, 33,00 mmo / l et 34,00 mmo / l respectivement. En T2, T3 et T4 ont également enregistré des taux de calcium plus élevés de 2,54 mmo / l, 2,56 mmol / l et 2,61 mmo / l) respectivement par rapport aux valeurs de 2,29 mmo / l enregistrées en T1. Ces influences pertinentes de l'acacia devraient donc suggérer le déploiement d'efforts délibérés pour préserver le gène de l'acacia afin d'éviter que les chèvres porteuses du gène ne s'éteignent.
APA, Harvard, Vancouver, ISO, and other styles
2

Belin, D., E. A. Mudd, P. Prentki, Yu Yi-Yi, and H. M. Krisch. "Sense and antisense transcription of bacteriophage T4 gene 32." Journal of Molecular Biology 194, no. 2 (March 1987): 231–43. http://dx.doi.org/10.1016/0022-2836(87)90371-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Giedroc, David P., Huawei Qiu, Raza Khan, Garry C. King, and Katherine Chen. "Zinc(II) coordination domain mutants of T4 gene 32 protein." Biochemistry 31, no. 3 (January 28, 1992): 765–74. http://dx.doi.org/10.1021/bi00118a018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Giedroc, David P., Kathleen M. Keating, Kenneth R. Williams, and Joseph E. Coleman. "The function of zinc in gene 32 protein from T4." Biochemistry 26, no. 17 (August 25, 1987): 5251–59. http://dx.doi.org/10.1021/bi00391a007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Loayza, D., A. J. Carpousis, and H. M. Krisch. "Gene 32 transcription and mRNA processing in T4-related bacteriophages." Molecular Microbiology 5, no. 3 (March 1991): 715–25. http://dx.doi.org/10.1111/j.1365-2958.1991.tb00742.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wachsman, Joseph T., and John W. Drake. "A New Epistasis Group for the Repair of DNA Damage in Bacteriophage T4: Replication Repair." Genetics 115, no. 3 (March 1, 1987): 405–17. http://dx.doi.org/10.1093/genetics/115.3.405.

Full text
Abstract:
ABSTRACT The gene 32 mutation amA453 sensitizes bacteriophage T4 to the lethal effects of ultraviolet (UV) irradiation, methyl methanesulfonate and angelicin-mediated photodynamic irradiation when treated particles are plated on amber-suppressing host cells. The increased UV sensitivity caused by amA453 is additive to that caused by mutations in both the T4 excision repair (denV) and recombination repair (uvsWXY) systems, suggesting the operation of a third kind of repair system. The mutation uvs79, with many similarities to amA453 but mapping in gene 41, is largely epistatic to amA453. The mutation mms1, also with many similarities to amA453, maps close to amA453 within gene 32 and is largely epistatic to uvs79. Neither amA453 nor uvs79 affect the ratio of UV-induced mutational to lethal hits, nor does amA453 affect spontaneous or UV-enhanced recombination frequencies. Gene 32 encodes the major T4 ssDNA-binding protein (the scaffolding of DNA replication) and gene 41 encodes a DNA helicase, both being required for T4 DNA replication. We conclude that a third repair process operates in phage T4 and suggest that it acts during rather than before or after DNA replication.
APA, Harvard, Vancouver, ISO, and other styles
7

Giedroc, D. P., C. Robertson, and R. Khan. "Coordination chemistry of metallo-derivatives of phage T4 gene 32 protein." Journal of Inorganic Biochemistry 36, no. 3-4 (August 1989): 343. http://dx.doi.org/10.1016/0162-0134(89)84571-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Watanabe, Fumiyuki. "Interaction between bacteriophage T4 coded gene 32 protein and poly(rA)." FEBS Letters 242, no. 2 (January 2, 1989): 444–46. http://dx.doi.org/10.1016/0014-5793(89)80519-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

McPheeters, David S., Gary D. Stormo, and Larry Gold. "Autogenous regulatory site on the bacteriophage T4 gene 32 messenger RNA." Journal of Molecular Biology 201, no. 3 (June 1988): 517–35. http://dx.doi.org/10.1016/0022-2836(88)90634-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Carpousis, Agamemnon J., Elisabeth A. Mudd, and Henry M. Krisch. "Transcription and messenger RNA processing upstream of bacteriophage T4 gene 32." Molecular and General Genetics MGG 219, no. 1-2 (October 1989): 39–48. http://dx.doi.org/10.1007/bf00261155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Mosig, Gisela. "BACTERIOPHAGE T4 GENE 32 PARTICIPATES IN EXCISION REPAIR AS WELL AS RECOMBINATIONAL REPAIR OF UV DAMAGES." Genetics 110, no. 2 (June 1, 1985): 159–71. http://dx.doi.org/10.1093/genetics/110.2.159.

Full text
Abstract:
ABSTRACT Gene 32 of phage T4 has been shown previously to be involved in recombinational repair of UV damages but, based on a mutant study, was thought not to be required for excision repair. However, a comparison of UV-inactivation curves of several gene 32 mutants grown under conditions permissive for progeny production in wild-type or polA - hosts demonstrates that gene 32 participates in both kinds of repair. Different gene 32 mutations differentially inactivate these repair functions. Under conditions permissive for DNA replication and progeny production, all gene 32 mutants investigated here are partially defective in recombinational repair, whereas only two of them, P7 and P401, are also defective in excision repair. P401 is the only mutant whose final slope of the inactivation curve is significantly steeper than that of wildtype T4. These results are discussed in terms of interactions of gp32, a single-stranded DNA-binding protein, with DNA and with other proteins.
APA, Harvard, Vancouver, ISO, and other styles
12

Gangisetty, Omkaram, Charles E. Jones, Medha Bhagwat, and Nancy G. Nossal. "Maturation of Bacteriophage T4 Lagging Strand Fragments Depends on Interaction of T4 RNase H with T4 32 Protein Rather than the T4 Gene 45 Clamp." Journal of Biological Chemistry 280, no. 13 (January 18, 2005): 12876–87. http://dx.doi.org/10.1074/jbc.m414025200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kodadek, T. "The role of the bacteriophage T4 gene 32 protein in homologous pairing." Journal of Biological Chemistry 265, no. 34 (December 1990): 20966–69. http://dx.doi.org/10.1016/s0021-9258(17)45311-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Miranda, E. I., E. Garrido-Guerrero, A. Garcia-Carranca, and P. Gariglio. "Immunoprecipitation of SV40 replicating minichromosomes complexed with bacteriophage T4 gene 32 protein." Nucleic Acids Research 20, no. 4 (1992): 903–7. http://dx.doi.org/10.1093/nar/20.4.903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Tarumi, Kyoko, and Tetsuro Yonesaki. "Functional Interactions of Gene 32, 41, and 59 Proteins of Bacteriophage T4." Journal of Biological Chemistry 270, no. 6 (February 10, 1995): 2614–19. http://dx.doi.org/10.1074/jbc.270.6.2614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Yonesaki, T., and T. Minagawa. "Synergistic action of three recombination gene products of bacteriophage T4, uvsX, uvsY, and gene 32 proteins." Journal of Biological Chemistry 264, no. 14 (May 1989): 7814–20. http://dx.doi.org/10.1016/s0021-9258(18)83114-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Giedroc, D. P., R. Khan, and K. Barnhart. "Overexpression, purification, and characterization of recombinant T4 gene 32 protein22-301 (g32P-B)." Journal of Biological Chemistry 265, no. 20 (July 1990): 11444–55. http://dx.doi.org/10.1016/s0021-9258(19)38418-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Keating, Kathleen M., Lily R. Ghosaini, David P. Giedroc, Kenneth R. Williams, Joseph E. Coleman, and Julian M. Sturtevant. "Thermal denaturation of T4 gene 32 protein: effects of zinc removal and substitution." Biochemistry 27, no. 14 (July 12, 1988): 5240–45. http://dx.doi.org/10.1021/bi00414a044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Villemain, Jana L., and David P. Giedroc. "Characterization of a Cooperativity Domain Mutant Lys3→ Ala (K3A) T4 Gene 32 Protein." Journal of Biological Chemistry 271, no. 44 (November 1, 1996): 27623–29. http://dx.doi.org/10.1074/jbc.271.44.27623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Williams, Mark C., Kiran Pant, Ioulia Rouzina, and Richard L. Karpel. "Single molecule force spectroscopy studies of DNA denaturation by T4 gene 32 protein." Spectroscopy 18, no. 2 (2004): 203–11. http://dx.doi.org/10.1155/2004/403203.

Full text
Abstract:
Single molecule force spectroscopy is an emerging technique that can be used to measure the biophysical properties of single macromolecules such as nucleic acids and proteins. In particular, single DNA molecule stretching experiments are used to measure the elastic properties of these molecules and to induce structural transitions. We have demonstrated that double‒stranded DNA molecules undergo a force‒induced melting transition at high forces. Force–extension measurements of single DNA molecules using optical tweezers allow us to measure the stability of DNA under a variety of solution conditions and in the presence of DNA binding proteins. Here we review the evidence of DNA melting in these experiments and discuss the example of DNA force‒induced melting in the presence of the single‒stranded DNA binding protein T4 gene 32. We show that this force spectroscopy technique is a useful probe of DNA–protein interactions, which allows us to obtain binding rates and binding free energies for these interactions.
APA, Harvard, Vancouver, ISO, and other styles
21

Waidner, Lisa A., Elizabeth K. Flynn, Min Wu, Xing Li, and Richard L. Karpel. "Domain Effects on the DNA-interactive Properties of Bacteriophage T4 Gene 32 Protein." Journal of Biological Chemistry 276, no. 4 (October 25, 2000): 2509–16. http://dx.doi.org/10.1074/jbc.m007778200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Casas-Finet, Jose R. "Binding properties of T4 gene 32 protein fragments carrying partially cleaved terminal domains." FEBS Letters 249, no. 2 (June 5, 1989): 396–400. http://dx.doi.org/10.1016/0014-5793(89)80666-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Sandhu, Dharambir K., and Phouthone Keohavong. "Effects of the T4 bacteriophage gene 32 product on the efficiency and fidelity of DNA amplification using T4 DNA polymerase." Gene 144, no. 1 (June 1994): 53–58. http://dx.doi.org/10.1016/0378-1119(94)90202-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Chibani-Chennoufi, Sandra, Carlos Canchaya, Anne Bruttin, and Harald Brüssow. "Comparative Genomics of the T4-Like Escherichia coli Phage JS98: Implications for the Evolution of T4 Phages." Journal of Bacteriology 186, no. 24 (December 15, 2004): 8276–86. http://dx.doi.org/10.1128/jb.186.24.8276-8286.2004.

Full text
Abstract:
ABSTRACT About 130 kb of sequence information was obtained from the coliphage JS98 isolated from the stool of a pediatric diarrhea patient in Bangladesh. The DNA shared up to 81% base pair identity with phage T4. The most conserved regions between JS98 and T4 were the structural genes, but their degree of conservation was not uniform. The head genes showed the highest sequence conservation, followed by the tail, baseplate, and tail fiber genes. Many tail fiber genes shared only protein sequence identity. Except for the insertion of endonuclease genes in T4 and gene 24 duplication in JS98, the structural gene maps of the two phages were colinear. The receptor-recognizing tail fiber proteins gp37 and gp38 were only distantly related to T4, but shared up to 83% amino acid identity to other T6-like phages, suggesting lateral gene transfer. A greater degree of variability was seen between JS98 and T4 over DNA replication and DNA transaction genes. While most of these genes came in the same order and shared up to 76% protein sequence identity, a few rearrangements, insertions, and replacements of genes were observed. Many putative gene insertions in the DNA replication module of T4 were flanked by intron-related endonuclease genes, suggesting mobile DNA elements. A hotspot of genome diversification was located downstream of the DNA polymerase gene 43 and the DNA binding gene 32. Comparative genomics of 100-kb genome sequence revealed that T4-like phages diversify more by the accumulation of point mutations and occasional gene duplication events than by modular exchanges.
APA, Harvard, Vancouver, ISO, and other styles
25

Pant, Kiran, Richard L. Karpel, and Mark C. Williams. "Kinetic Regulation of Single DNA Molecule Denaturation by T4 Gene 32 Protein Structural Domains." Journal of Molecular Biology 327, no. 3 (March 2003): 571–78. http://dx.doi.org/10.1016/s0022-2836(03)00153-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Pan, Tao, David P. Giedroc, and Joseph E. Coleman. "Proton NMR studies of T4 gene 32 protein: effects of zinc removal and reconstitution." Biochemistry 28, no. 22 (October 1989): 8828–32. http://dx.doi.org/10.1021/bi00448a022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Shamoo, Y., K. R. Webster, K. R. Williams, and W. H. Konigsberg. "A retrovirus-like zinc domain is essential for translational repression of bacteriophage T4 gene 32." Journal of Biological Chemistry 266, no. 13 (May 1991): 7967–70. http://dx.doi.org/10.1016/s0021-9258(18)92923-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Lee, Wonbae, John P. Gillies, Davis Jose, Peter H. von Hippel, and Andrew H. Marcus. "Repetitive Single-Molecule FRET Fluctuations upon T4 Gene 32 Protein Binding to Single-Stranded DNA." Biophysical Journal 108, no. 2 (January 2015): 399a. http://dx.doi.org/10.1016/j.bpj.2014.11.2186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kreader, C. A. "Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein." Applied and environmental microbiology 62, no. 3 (1996): 1102–6. http://dx.doi.org/10.1128/aem.62.3.1102-1106.1996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Pant, Kiran, Leila Shokri, Richard L. Karpel, Scott W. Morrical, and Mark C. Williams. "Modulation of T4 gene 32 protein DNA binding activity by the recombination mediator protein UvsY." Journal of Molecular Biology 380, no. 5 (July 2008): 799–811. http://dx.doi.org/10.1016/j.jmb.2008.05.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Montoya, Daniel, Matilde D’Angelo, Susana M. Martín-Orúe, Agustina Rodríguez-Sorrento, Mireia Saladrigas-García, Coralie Araujo, Thibaut Chabrillat, Sylvain Kerros, and Lorena Castillejos. "Effectiveness of Two Plant-Based In-Feed Additives against an Escherichia coli F4 Oral Challenge in Weaned Piglets." Animals 11, no. 7 (July 6, 2021): 2024. http://dx.doi.org/10.3390/ani11072024.

Full text
Abstract:
This study evaluates the efficacy of two plant-based feed supplementations to fight colibacillosis in weanlings. A total of 96 piglets (32 pens) were assigned to four diets: a control diet (T1) or supplemented with ZnO (2500 ppm Zn) (T2) or two different plant supplements, T3 (1 kg/t; based on essential oils) and T4 (T3 + 1.5 kg/t based on non-volatile compounds). After one week, animals were challenged with ETEC F4, and 8 days after, one animal per pen was euthanized. Performance, clinical signs, microbial analysis, inflammatory response, intestinal morphology, and ileal gene expression were assessed. ZnO improved daily gains 4 days after challenge, T3 and T4 showing intermediate values (96, 249, 170, and 157 g/d for T1, T2, T3, and T4, p = 0.035). Fecal lactobacilli were higher with T3 and T4 compared to ZnO (7.55, 6.26, 8.71, and 8.27 cfu/gFM; p = 0.0007) and T3 increased the lactobacilli/coliforms ratio (p = 0.002). T4 was associated with lower levels of Pig-MAP (p = 0.07) and increases in villus/crypt ratio (1.49, 1.90, 1.73, and 1.84; p = 0.009). Moreover, T4 was associated with an upregulation of the REG3G gene (p = 0.013; pFDR = 0.228) involved in the immune response induced by enteric pathogens. In conclusion, both plant supplements enhanced animal response in front of an ETEC F4 challenge probably based on different modes of action.
APA, Harvard, Vancouver, ISO, and other styles
32

Rouzina, Ioulia, Kiran Pant, Richard L. Karpel, and Mark C. Williams. "Theory of Electrostatically Regulated Binding of T4 Gene 32 Protein to Single- and Double-Stranded DNA." Biophysical Journal 89, no. 3 (September 2005): 1941–56. http://dx.doi.org/10.1529/biophysj.105.063776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Dombroski, D. F., and A. R. Morgan. "Restriction nuclease digestions driven to completion by Escherichia coli RNA polymerase and T4 gene 32 protein." Journal of Biological Chemistry 260, no. 1 (January 1985): 415–17. http://dx.doi.org/10.1016/s0021-9258(18)89747-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Shamoo, Y., L. R. Ghosaini, K. M. Keating, K. R. Williams, J. M. Sturtevant, and W. H. Konigsberg. "Site-specific mutagenesis of T4 gene 32: the role of tyrosine residues in protein.cntdot.nucleic acid interactions." Biochemistry 28, no. 18 (September 1989): 7409–17. http://dx.doi.org/10.1021/bi00444a039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Wheeler, Linda J., Nancy B. Ray, Christian Ungermann, Stephen P. Hendricks, Mark A. Bernard, Eric S. Hanson, and Christopher K. Mathews. "T4 Phage Gene 32 Protein as a Candidate Organizing Factor for the Deoxyribonucleoside Triphosphate Synthetase Complex." Journal of Biological Chemistry 271, no. 19 (May 10, 1996): 11156–62. http://dx.doi.org/10.1074/jbc.271.19.11156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Giedroc, D. P., K. M. Keating, K. R. Williams, W. H. Konigsberg, and J. E. Coleman. "Gene 32 protein, the single-stranded DNA binding protein from bacteriophage T4, is a zinc metalloprotein." Proceedings of the National Academy of Sciences 83, no. 22 (November 1, 1986): 8452–56. http://dx.doi.org/10.1073/pnas.83.22.8452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hurley, J. Michael, Stephen A. Chervitz, Thale C. Jarvis, Britta S. Singer, and Larry Gold. "Assembly of the Bacteriophage T4 Replication Machine Requires the Acidic Carboxy Terminus of Gene 32 Protein." Journal of Molecular Biology 229, no. 2 (January 1993): 398–418. http://dx.doi.org/10.1006/jmbi.1993.1042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Casas-Finet, Jose R., and Richard L. Karpel. "Bacteriophage T4 gene 32 protein: Modulation of protein-nucleic acid and protein-protein association by structural domains." Biochemistry 32, no. 37 (September 1993): 9735–44. http://dx.doi.org/10.1021/bi00088a028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Villemain, Jana L., and David P. Giedroc. "Energetics of arginine-4 substitution mutants in the N-terminal cooperativity domain of T4 gene 32 protein." Biochemistry 32, no. 41 (October 1993): 11235–46. http://dx.doi.org/10.1021/bi00092a038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Pan, Tao, Garry C. King, and Joseph E. Coleman. "Comparison of cooperative and isolated site binding of T4 gene 32 protein to ssDNA by proton NMR." Biochemistry 28, no. 22 (October 1989): 8833–39. http://dx.doi.org/10.1021/bi00448a023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kodadek, T., M. L. Wong, and B. M. Alberts. "The mechanism of homologous DNA strand exchange catalyzed by the bacteriophage T4 uvsX and gene 32 proteins." Journal of Biological Chemistry 263, no. 19 (July 1988): 9427–36. http://dx.doi.org/10.1016/s0021-9258(19)76558-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Shamoo, Yousif, Amy Tam, William H. Konigsberg, and Kenneth R. Williams. "Translational Repression by the Bacteriophage T4 Gene 32 Protein Involves Specific Recognition of an RNA Pseudoknot Structure." Journal of Molecular Biology 232, no. 1 (July 1993): 89–104. http://dx.doi.org/10.1006/jmbi.1993.1372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mudd, E. A., P. Prentki, D. Belin, and H. M. Krisch. "Processing of unstable bacteriophage T4 gene 32 mRNAs into a stable species requires Escherichia coli ribonuclease E." EMBO Journal 7, no. 11 (November 1988): 3601–7. http://dx.doi.org/10.1002/j.1460-2075.1988.tb03238.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Pant, Kiran, Richard L. Karpel, Ioulia Rouzina, and Mark C. Williams. "Mechanical Measurement of Single-molecule Binding Rates: Kinetics of DNA Helix-destabilization by T4 Gene 32 Protein." Journal of Molecular Biology 336, no. 4 (February 2004): 851–70. http://dx.doi.org/10.1016/j.jmb.2003.12.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Gorski, K., J. M. Roch, P. Prentki, and H. M. Krisch. "The stability of bacteriophage T4 gene 32 mRNA: A 5′ leader sequence that can stabilize mRNA transcripts." Cell 43, no. 2 (December 1985): 461–69. http://dx.doi.org/10.1016/0092-8674(85)90176-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Charette, Marc F., David T. Weaver, and Melvin L. DePamphilis. "Persistence of DNA synthesis arrest sites in the presence of T4 DNA polymerase and T4 gene 32, 44, 45 and 62 DNA polymerase accessory proteins." Nucleic Acids Research 14, no. 8 (1986): 3343–62. http://dx.doi.org/10.1093/nar/14.8.3343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Jiang, Hua, Frank Salinas, and Thomas Kodadek. "The Gene 32 Single-Stranded DNA-Binding Protein Is Not Bound Stably to the Phage T4 Presynaptic Filament." Biochemical and Biophysical Research Communications 231, no. 3 (February 1997): 600–605. http://dx.doi.org/10.1006/bbrc.1997.6160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kim, JuHyun, Linda J. Wheeler, Rongkun Shen, and Christopher K. Mathews. "Protein-DNA interactions in the T4 dNTP synthetase complex dependent on gene 32 single-stranded DNA-binding protein." Molecular Microbiology 55, no. 5 (December 20, 2004): 1502–14. http://dx.doi.org/10.1111/j.1365-2958.2004.04486.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Trevisan, F., B. M. J. Mendes, S. C. Maciel, M. L. C. Vieira, L. M. M. Meletti, and J. A. M. Rezende. "Resistance to Passion fruit woodiness virus in Transgenic Passionflower Expressing the Virus Coat Protein Gene." Plant Disease 90, no. 8 (August 2006): 1026–30. http://dx.doi.org/10.1094/pd-90-1026.

Full text
Abstract:
We report the use of the coat protein (CP) gene from Passion fruit woodiness virus (PWV) to produce resistant transgenic plants of yellow passion fruit. A full-length CP gene from a severe PWV isolate from the state of São Paulo, Brazil (PWV-SP) was cloned into pCAMBIA 2300 binary vector, which was further introduced into Agrobacterium tumefaciens strain EHA 105. Leaf disks were used as explants for transformation assays, e.g., 2,700 and 2,730 disks excised from plants from the Brazilian cultivars IAC-275 and IAC-277, respectively. In vitro selection was performed in kanamycin. After transferring to the elongation medium, 119 and 109 plantlets of IAC-275 and IAC-277, respectively, were recovered. Integration of the PWV CP gene was confirmed in seven of eight plants evaluated by Southern blot analysis, showing different numbers of insertional events for the CP gene. Three transgenic plants (T3, T4, and T7) expressed the expected transcript, but the 32 kDa PWV CP was detected by Western blot in only two plants (T3 and T4). The results of three successive mechanical inoculations against the transgenic plants using three PWV isolates showed that the primary transformant T2 of IAC-277 was immune to all isolates.
APA, Harvard, Vancouver, ISO, and other styles
50

Bhagwat, Medha, Lisa J. Hobbs, and Nancy G. Nossal. "The 5′-Exonuclease Activity of Bacteriophage T4 RNase H Is Stimulated by the T4 Gene 32 Single-stranded DNA-binding Protein, but Its Flap Endonuclease Is Inhibited." Journal of Biological Chemistry 272, no. 45 (November 7, 1997): 28523–30. http://dx.doi.org/10.1074/jbc.272.45.28523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography