Journal articles on the topic 'Pyrrole derivative polymer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Pyrrole derivative polymer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Soganci, Tugba, Hakan Can Soyleyici, and Metin Ak. "A soluble and fluorescent new type thienylpyrrole based conjugated polymer: optical, electrical and electrochemical properties." Physical Chemistry Chemical Physics 18, no. 21 (2016): 14401–7. http://dx.doi.org/10.1039/c6cp02214f.
Full textSu, Chang, Ling Min Wang, Li Huan Xu, Jun Lei Liu, Fang Yang, and Cheng Zhang. "Syntheses and Properties of Pyrrole Derivative as a Cathode Material for Li-Ion Batteries." Applied Mechanics and Materials 236-237 (November 2012): 731–35. http://dx.doi.org/10.4028/www.scientific.net/amm.236-237.731.
Full textXu, Li Huan, Fang Yang, Chang Su, and Cheng Zhang. "Research of Properties on Li-Ion Batteries Based on a Polypyrrole Derivative Bearing TEMPO as a Cathode Material." Advanced Materials Research 936 (June 2014): 447–51. http://dx.doi.org/10.4028/www.scientific.net/amr.936.447.
Full textOuyang, Mi, Genghao Wang, and Cheng Zhang. "A novel electrochromic polymer containing triphenylamine derivative and pyrrole." Electrochimica Acta 56, no. 12 (2011): 4645–49. http://dx.doi.org/10.1016/j.electacta.2011.02.103.
Full textYasuzawa, Mikito, Shigeru Inoue, and Shinji Imai. "Preparation of Glucose Sensor Using Polydimethylsiloxane / Polypyrrole Complex." International Journal of Modern Physics B 17, no. 08n09 (2003): 1217–22. http://dx.doi.org/10.1142/s0217979203018776.
Full textGuerra, Silvia, Vincenzina Barbera, Alessandra Vitale, et al. "Edge Functionalized Graphene Layers for (Ultra) High Exfoliation in Carbon Papers and Aerogels in the Presence of Chitosan." Materials 13, no. 1 (2019): 39. http://dx.doi.org/10.3390/ma13010039.
Full textMunro, Orde Q., and Greville L. Camp. "Self-recognition in a flexible bis(pyrrole) Schiff base derivative: formation of a one-dimensional hydrogen-bonded polymer." Acta Crystallographica Section C Crystal Structure Communications 59, no. 12 (2003): o672—o675. http://dx.doi.org/10.1107/s0108270103023230.
Full textNowik-Zajac, Anna, Iwona Zawierucha, and Cezary Kozlowski. "Selective Transport of Ag(I) through a Polymer Inclusion Membrane Containing a Calix[4]pyrrole Derivative from Nitrate Aqueous Solutions." International Journal of Molecular Sciences 21, no. 15 (2020): 5348. http://dx.doi.org/10.3390/ijms21155348.
Full textXuan, Duc Dau. "Recent Progress in the Synthesis of Pyrroles." Current Organic Chemistry 24, no. 6 (2020): 622–57. http://dx.doi.org/10.2174/1385272824666200228121627.
Full textAzak, Hacer, Huseyin Bekir Yildiz, and Buket Bezgin Carbas. "Synthesis and characterization of a new poly(dithieno (3,2-b:2′, 3′-d) pyrrole) derivative conjugated polymer: Its electrochromic and biosensing applications." Polymer 134 (January 2018): 44–52. http://dx.doi.org/10.1016/j.polymer.2017.11.044.
Full textAgneeswari, Rajalingam, Insoo Shin, Vellaiappillai Tamilavan, et al. "Modulation of the properties of pyrrolo[3,4-c]pyrrole-1,4-dione based polymers containing 2,5-di(2-thienyl)pyrrole derivatives with different substitutions on the pyrrole unit." New Journal of Chemistry 39, no. 6 (2015): 4658–69. http://dx.doi.org/10.1039/c5nj00606f.
Full textJarosz, Tomasz, and Przemyslaw Ledwon. "Electrochemically Produced Copolymers of Pyrrole and Its Derivatives: A Plentitude of Material Properties Using “Simple” Heterocyclic Co-Monomers." Materials 14, no. 2 (2021): 281. http://dx.doi.org/10.3390/ma14020281.
Full textJarosz, Tomasz, and Przemyslaw Ledwon. "Electrochemically Produced Copolymers of Pyrrole and Its Derivatives: A Plentitude of Material Properties Using “Simple” Heterocyclic Co-Monomers." Materials 14, no. 2 (2021): 281. http://dx.doi.org/10.3390/ma14020281.
Full textWelterlich, Irina, Jörg-Martin Neudörfl, and Bernd Tieke. "Electrochemical polymerization of 1,3,4,6-tetraarylpyrrolo[3,2-b]pyrrole-2,5-dione (isoDPP) derivatives." Polymer Chemistry 6, no. 6 (2015): 1005–13. http://dx.doi.org/10.1039/c4py01315h.
Full textTsujimoto, Masaki, Kenichi Maruyama, Yuji Mishima, and Junko Motonaka. "Enzyme Biosensor Based on an Electropolymerized Osmium Redox Polymer." International Journal of Modern Physics B 17, no. 08n09 (2003): 1517–22. http://dx.doi.org/10.1142/s0217979203019253.
Full textZhu, Yu, Kai Zhang, and Bernd Tieke. "Electrochemical Polymerization of Bis(3,4-ethylenedioxythiophene)-Substituted 1,4-Diketo-3,6-diphenyl-pyrrolo[3,4-c]pyrrole (DPP) Derivative." Macromolecular Chemistry and Physics 210, no. 6 (2009): 431–39. http://dx.doi.org/10.1002/macp.200800507.
Full textAgneeswari, Rajalingam, Insoo Shin, Vellaiappillai Tamilavan, et al. "Effects of the incorporation of an additional pyrrolo[3,4-c]pyrrole-1,3-dione unit on the repeating unit of highly efficient large band gap polymers containing benzodithiophene and pyrrolo[3,4-c]pyrrole-1,3-dione derivatives." Organic Electronics 30 (March 2016): 253–64. http://dx.doi.org/10.1016/j.orgel.2015.12.032.
Full textZargar, N. D., and K. Z. Khan. "Interesting Mechanistic Approach for Nitrogen Heterocycles of Industrial Importance." International Journal of Advanced Chemistry 6, no. 1 (2018): 89. http://dx.doi.org/10.14419/ijac.v6i1.10382.
Full textTamilavan, Vellaiappillai, Seungmin Kim, Rajalingam Agneeswari, et al. "Two new tercopolymers incorporating electron-rich benzodithiophene and electron-accepting pyrrolo[3,4-c]pyrrole-1,3-dione and difluorobenzothiadiazole derivatives for polymer solar cells." Polymer Bulletin 75, no. 1 (2017): 239–53. http://dx.doi.org/10.1007/s00289-017-2028-9.
Full textIshii, Kanji, Kosuke Sato, Yuya Oaki, and Hiroaki Imai. "Highly porous polymer dendrites of pyrrole derivatives synthesized through rapid oxidative polymerization." Polymer Journal 51, no. 1 (2018): 11–18. http://dx.doi.org/10.1038/s41428-018-0115-x.
Full textCosnier, Serge, and Michael Holzinger. "Design of carbon nanotube-polymer frameworks by electropolymerization of SWCNT-pyrrole derivatives." Electrochimica Acta 53, no. 11 (2008): 3948–54. http://dx.doi.org/10.1016/j.electacta.2007.10.027.
Full textChen, Xuegang, Kai Guo, Fanchao Li, Li Zhou, and Hongbin Qiao. "Synthesis and properties of Zn2+/Cd2+-directed self-assembled metallo-supramolecular polymers based on 1,4-diketo-pyrrolo[3,4-c]pyrrole (DPP) derivatives." RSC Adv. 4, no. 101 (2014): 58027–35. http://dx.doi.org/10.1039/c4ra10685g.
Full textMansour, Anissa, Yassin Belghith, Mohamed Salah Belkhiria, Anna Bujacz, Vincent Guérineau та Habib Nasri. "Synthesis, crystal structures and spectroscopic characterization of Co(II) bis(4,4′-bipyridine) with meso-porphyrins α,β,α,β-tetrakis(o-pivalamidophenyl) porphyrin (α,β,α,β-TpivPP) and tetraphenylporphyrin (TPP)". Journal of Porphyrins and Phthalocyanines 17, № 11 (2013): 1094–103. http://dx.doi.org/10.1142/s1088424613500843.
Full textYin, Yin, Li Chao Dong, Na Jin, Yan Guan, Jun Ge Zhi, and Wen Sheng Deng. "Synthesis and Aggregation-Induced Emission Feature of Series of Polysiloxanes Containing Triphenylpyrrole Side-Chain." Key Engineering Materials 842 (May 2020): 47–52. http://dx.doi.org/10.4028/www.scientific.net/kem.842.47.
Full textEtaiw, Safaa Eldin H., Moustafa Sh Ibrahim, and Dina M. Abd El-Aziz. "Supramolecular host–guest systems constructed of pyrrole derivatives and 3D-coordination polymers." Journal of Materials Science 45, no. 9 (2010): 2474–83. http://dx.doi.org/10.1007/s10853-010-4219-8.
Full textTamilavan, Vellaiappillai, Kyung Hwan Roh, Rajalingam Agneeswari, et al. "Benzodithiophene-Based Broad Absorbing Random Copolymers Incorporating Weak and Strong Electron Accepting Imide and Lactam Functionalized Pyrrolo[3,4-c]pyrrole Derivatives for Polymer Solar Cells." Macromolecular Chemistry and Physics 216, no. 9 (2015): 996–1007. http://dx.doi.org/10.1002/macp.201400614.
Full textWeiss, Zehava, Daniel Mandler, Galit Shustak, and Abraham J. Domb. "Pyrrole derivatives for electrochemical coating of metallic medical devices." Journal of Polymer Science Part A: Polymer Chemistry 42, no. 7 (2004): 1658–67. http://dx.doi.org/10.1002/pola.11097.
Full textAudebert, Pierre, and Gerard Bidan. "Synthesis and Electrochemical Behaviour of Some Polymers Issued From Halogenated Derivatives of Pyrrole." Molecular Crystals and Liquid Crystals 118, no. 1 (1985): 187–91. http://dx.doi.org/10.1080/00268948508076209.
Full textRuggeri, G., M. Bianchi, G. Puncioni, and F. Ciardelli. "Molecular control of electric conductivity and structural properties of polymers of pyrrole derivatives." Pure and Applied Chemistry 69, no. 1 (1997): 143–50. http://dx.doi.org/10.1351/pac199769010143.
Full textYang, Tianbao, Niu Tang, Qizhong Wan, Shuang-Feng Yin, and Renhua Qiu. "Recent Progress on Synthesis of N,N′-Chelate Organoboron Derivatives." Molecules 26, no. 5 (2021): 1401. http://dx.doi.org/10.3390/molecules26051401.
Full textHeravi, Majid M., Afsaneh Feiz, and Ayoob Bazgir. "Recent Advances in the Chemistry and Synthesis of Thienopyrazine, Pyrrolopyrazine and Furopyrazine Derivatives." Current Organic Chemistry 23, no. 24 (2020): 2635–63. http://dx.doi.org/10.2174/1385272823666191106101954.
Full textOkner, Regina, Abraham J. Domb, and Daniel Mandler. "Electrochemical Formation and Characterization of Copolymers Based onN-Pyrrole Derivatives." Biomacromolecules 8, no. 9 (2007): 2928–35. http://dx.doi.org/10.1021/bm7004752.
Full textZhang, Kai, Bernd Tieke, John C. Forgie, and Peter J. Skabara. "Electrochemical Polymerisation ofN-Arylated andN-Alkylated EDOT-Substituted Pyrrolo[3,4-c]pyrrole-1,4-dione (DPP) Derivatives: Influence of Substitution Pattern on Optical and Electronic Properties." Macromolecular Rapid Communications 30, no. 21 (2009): 1834–40. http://dx.doi.org/10.1002/marc.200900442.
Full textMaas, Gerhard, Hans-Georg Herz, Elke Scheppach, Barbara Susanne, and Hans-Jörg Schneider. "Reactivity of Tetracyclic Iminium Salts of the Benzo[f]pyrido[2,1-a]- isoindole and Azepino[2,1-a]benzo[f]isoindole Type, with a Preliminary Analysis of their Interactions with Nucleic Acids*." Zeitschrift für Naturforschung B 59, no. 4 (2004): 486–97. http://dx.doi.org/10.1515/znb-2004-0417.
Full textHan, GY, GQ Shi, LT Qu, JY Yuan, FE Chen, and PY Wu. "Electrochemical polymerization of chiral pyrrole derivatives in electrolytes containing chiral camphor sulfonic acid." Polymer International 53, no. 10 (2004): 1554–60. http://dx.doi.org/10.1002/pi.1597.
Full textKotkar, Dilip, Vishwas Joshi, and Pushpito K. Ghosh. "Towards chiral metals. Synthesis of chiral conducting polymers from optically active thiophene and pyrrole derivatives." Journal of the Chemical Society, Chemical Communications, no. 14 (1988): 917. http://dx.doi.org/10.1039/c39880000917.
Full textKim, Kyu-Sik, Kaname Katsuraya, Yoshihide Yachi, Kenichi Hatanaka, and Toshiyuki Uryu. "Synthesis of Lysine-Core Dendrimer Containing Long Pyrrole-Terminated Alkylene Derivative." FIBER 56, no. 12 (2000): 584–91. http://dx.doi.org/10.2115/fiber.56.584.
Full textMoon, Doo-Kyung, Anne Buyle Padias, H. K. Hall, Trey Huntoon, and Paul D. Calvert. "Electroactive Polymeric Materials for Battery Electrodes: Copolymers of Pyrrole and Pyrrole Derivatives with Oligo(ethyleneoxy) Chains at the 3-Position." Macromolecules 28, no. 18 (1995): 6205–10. http://dx.doi.org/10.1021/ma00122a030.
Full textTarkuc, Simge, Metin Ak, Erdal Onurhan, and Levent Toppare. "Electrochromic Properties of ‘Trimeric' Thiophene‐pyrrole‐thiophene Derivative Grown from Electrodeposited 6‐(2,5‐di(thiophen‐2‐yl)‐1H‐pyrrol‐1‐yl)hexan‐1‐amine and its Copolymer." Journal of Macromolecular Science, Part A 45, no. 2 (2007): 164–71. http://dx.doi.org/10.1080/10601320701786976.
Full textUdum, Yasemin Arslan, Hüseyin Bekir Yıldız, Hacer Azak, et al. "Synthesis and spectroelectrochemistry of dithieno(3,2-b:2′,3′-d)pyrrole derivatives." Journal of Applied Polymer Science 131, no. 17 (2014): n/a. http://dx.doi.org/10.1002/app.40701.
Full textGreen, Joshua P., Haojie Dai, Filip Aniés, and Martin Heeney. "Functional 4H-Dithieno[3,2-b:2′,3′-d]pyrrole Derivatives in Base-Dopable Conjugated Polymers and Oligomers." Macromolecules 53, no. 15 (2020): 6649–55. http://dx.doi.org/10.1021/acs.macromol.0c01071.
Full textLedwon, Przemyslaw, Alina Brzeczek, Sandra Pluczyk, et al. "Synthesis and electrochemical properties of novel, donor–acceptor pyrrole derivatives with 1,8-naphthalimide units and their polymers." Electrochimica Acta 128 (May 2014): 420–29. http://dx.doi.org/10.1016/j.electacta.2013.10.163.
Full textRen, Fei, Zhiqi Liu, Yunxiang Lei, et al. "Coumarin-substituted pyrrole derivatives with aggregation-enhanced emission characteristics for detecting the glass transition temperature of polymers." Dyes and Pigments 188 (April 2021): 109222. http://dx.doi.org/10.1016/j.dyepig.2021.109222.
Full textCetiner, Suat, Fatma Kalaoglu, Hale Karakas, and A. Sezai Sarac. "Characterization of conductive poly(acrylonitrile-co-vinyl acetate) composites: Matrix polymerization of pyrrole derivatives." Fibers and Polymers 12, no. 2 (2011): 151–58. http://dx.doi.org/10.1007/s12221-011-0151-z.
Full textMourato, Ana, Ana S. Viana, Franz-Peter Montforts, and Luisa Maria Abrantes. "Polypyrrole on self-assembled monolayers of a pyrrolyl lipoic acid derivative—electrosynthesis and polymer film characterization." Journal of Solid State Electrochemistry 14, no. 11 (2010): 1985–95. http://dx.doi.org/10.1007/s10008-010-1036-6.
Full textTamilavan, Vellaiappillai, Jihoon Lee, Rajalingam Agneeswari, et al. "Photocurrent enhancement of an efficient large band gap polymer incorporating benzodithiophene and weak electron accepting pyrrolo[3,4−c]pyrrole−1,3−dione derivatives via the insertion of a strong electron accepting thieno[3,4−b]thiophene unit." Polymer 80 (December 2015): 95–103. http://dx.doi.org/10.1016/j.polymer.2015.10.054.
Full textDeng, Zhiping, and David C. Stone. "Characterization of Polymer Films of Pyrrole Derivatives for Chemical Sensing by Cyclic Voltammetry, X-ray Photoelectron Spectroscopy and Vapour Sorption Studies." Analyst 122, no. 10 (1997): 1129–38. http://dx.doi.org/10.1039/a703165c.
Full textCoche-Guerente, L., S. Cosnier, C. Innocent, and P. Mailley. "Development of amperometric biosensors based on the immobilization of enzymes in polymer films electrogenerated from a series of amphiphilic pyrrole derivatives." Analytica Chimica Acta 311, no. 1 (1995): 23–30. http://dx.doi.org/10.1016/0003-2670(95)00178-3.
Full textPaul, Sanjay, and Asish R. Das. "A new application of polymer supported, homogeneous and reusable catalyst PEG–SO3H in the synthesis of coumarin and uracil fused pyrrole derivatives." Catalysis Science & Technology 2, no. 6 (2012): 1130. http://dx.doi.org/10.1039/c2cy20117h.
Full textWarnan, Julien, Clément Cabanetos, Romain Bude, Abdulrahman El Labban, Liang Li, and Pierre M. Beaujuge. "Electron-Deficient N-Alkyloyl Derivatives of Thieno[3,4-c]pyrrole-4,6-dione Yield Efficient Polymer Solar Cells with Open-Circuit Voltages > 1 V." Chemistry of Materials 26, no. 9 (2014): 2829–35. http://dx.doi.org/10.1021/cm5002303.
Full text