Academic literature on the topic 'Quantum mechanics/molecular'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum mechanics/molecular.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Quantum mechanics/molecular"

1

Hujun, Xie, Lei Qunfang, and Fang Wenjun. "Combined Quantum Mechanics and Molecular Mechanics." University Chemistry 30, no. 2 (2015): 44–49. http://dx.doi.org/10.3866/pku.dxhx20150244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zheng, Min, and Mark P. Waller. "Adaptive quantum mechanics/molecular mechanics methods." Wiley Interdisciplinary Reviews: Computational Molecular Science 6, no. 4 (2016): 369–85. http://dx.doi.org/10.1002/wcms.1255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cournia, Zoe, A. C. Vaiana, G. M. Ullmann, and J. C. Smith. "Derivation of a molecular mechanics force field for cholesterol." Pure and Applied Chemistry 76, no. 1 (2004): 189–96. http://dx.doi.org/10.1351/pac200476010189.

Full text
Abstract:
As a necessary step toward realistic cholesterol:biomembrane simulations, we have derived CHARMM molecular mechanics force-field parameters for cholesterol. For the parametrization we use an automated method that involves fitting the molecular mechanics potential to both vibrational frequencies and eigenvector projections derived from quantum chemical calculations. Results for another polycyclic molecule, rhodamine 6G, are also given. The usefulness of the method is thus demonstrated by the use of reference data from two molecules at different levels of theory. The frequency-matching plots for both cholesterol and rhodamine 6G show overall agreement between the CHARMM and quantum chemical normal modes, with frequency matching for both molecules within the error range found in previous benchmark studies.
APA, Harvard, Vancouver, ISO, and other styles
4

Harrison, Robert W. "Integrating quantum and molecular mechanics." Journal of Computational Chemistry 20, no. 15 (1999): 1618–33. http://dx.doi.org/10.1002/(sici)1096-987x(19991130)20:15<1618::aid-jcc3>3.0.co;2-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

W.J.O.-T. "Methods of Molecular Quantum Mechanics." Journal of Molecular Structure: THEOCHEM 279 (February 1993): 322. http://dx.doi.org/10.1016/0166-1280(93)90082-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lin, Hai, Yan Zhao, Oksana Tishchenko, and Donald G. Truhlar. "Multiconfiguration Molecular Mechanics Based on Combined Quantum Mechanical and Molecular Mechanical Calculations." Journal of Chemical Theory and Computation 2, no. 5 (2006): 1237–54. http://dx.doi.org/10.1021/ct600171u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Leach, Christine A., and Richard E. Moss. "Spectroscopy and Quantum Mechanics of the Hydrogen Molecular Cation: A Test of Molecular Quantum Mechanics." Annual Review of Physical Chemistry 46, no. 1 (1995): 55–82. http://dx.doi.org/10.1146/annurev.pc.46.100195.000415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sun, Qiming, and Garnet Kin-Lic Chan. "Exact and Optimal Quantum Mechanics/Molecular Mechanics Boundaries." Journal of Chemical Theory and Computation 10, no. 9 (2014): 3784–90. http://dx.doi.org/10.1021/ct500512f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Burger, Steven K., Jeremy Schofield, and Paul W. Ayers. "Quantum Mechanics/Molecular Mechanics Restrained Electrostatic Potential Fitting." Journal of Physical Chemistry B 117, no. 48 (2013): 14960–66. http://dx.doi.org/10.1021/jp409568h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ma, Buyong, Jenn-Huei Lii, Kuohsiang Chen, and Norman L. Allinger. "Quantum Mechanical and Molecular Mechanics (MM3) Studies of Hydrazines." Journal of Physical Chemistry 100, no. 27 (1996): 11297–304. http://dx.doi.org/10.1021/jp960920x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Quantum mechanics/molecular"

1

Porro, Cristina Shino. "Quantum mechanical/molecular mechanics studies of Cytochrome P450BM3." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/quantum-mechanical--molecular-mechanics-studies-of-cytochrome-p450bm3(ad4255e7-b779-47a2-a2c5-8dbf6b603ca5).html.

Full text
Abstract:
Cytochrome P450 (P450) enzymes are found in all kingdoms of life, catalysing a wide range of biosynthetic and metabolic processes. They are, in fact, of particular interest in a variety of applications such as the design of agents for the inhibition of a particular P450 to combat pathogens or the engineering of enzymes to produce a particular activity. Bacterial P450BM3 is of particular interest as it is a self-sufficient multi-domain protein with high reaction rates and a primary structure and function similar to mammalian isoforms. It is an attractive enzyme to study due to its potential for engineering catalysts with fast reaction rates which selectively produce molecules of high value.In order to study this enzyme in detail and characterise intermediate species and reactions, the first step was to design a general hybrid quantum mechanical /molecular mechanics (QM/MM) computational method for their investigation. Two QM/MM approaches were developed and tested against existing experimental and theoretical data and were then applied to subsequent investigations.The dissociation of water from the water-bound resting state was scrutinised to determine the nature of the spin conversion that occurs during this transformation. A displacement of merely 0.5 Å from the starting state was found to trigger spin crossing, with no requirement for the presence of a substrate or large conformational changes in the enzyme.A detailed investigation of the sulfoxidation reaction was undertaken to establish the nature of the oxidant species. Both reactions involving Compound 0 (Cpd0) and Compound I (CpdI) confirmed a concerted pathway proceeding via a single-state reactivity mechanism. As the reaction involving Cpd0 was found to be unrealistically high, the reaction proceeds preferentially via the quartet state of CpdI. This QM/MM study revealed that the preferred spin-state and the transition state structure for sulfoxidation are influenced by the protein environment. P450cam and P450BM3 were found to have CpdI species with different Fe-S distances and spin density distributions, and the latter having a larger reaction barrier for sulfoxidation.A novel P450 species, the doubly-reduced pentacoordinated system, was characterised using gas-phase and QM/MM methods. It was discovered to have a heme radical coupled to two unpaired electrons on the iron centre, making it the only P450 species to have similar characteristics to CpdI. Calculated spectroscopic parameters may assist experimentalists in the identification of the elusive CpdI.
APA, Harvard, Vancouver, ISO, and other styles
2

Thomas, Robert Edward. "Novel stochastic approaches in molecular quantum mechanics." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Meliá, Fortuño Concepción. "Quantum Mechanics/Molecular Mechanics modeling of biological relevant reactions catalyzed by enzymes." Doctoral thesis, Universitat Jaume I, 2017. http://hdl.handle.net/10803/455140.

Full text
Abstract:
A theoretical study of the hydrolysis of a β-lactam antibiotic was carried out in gas phase at different levels of theory. Later, the reaction was studied in solution, describing the sub-set of atoms of the QM region with semiempirical and density functional theory methods while classical force fields were used to describe the explicit solvent water molecules. QM/MM Molecular Dynamics simulations were used to generate the potential of mean force for the reaction in solution. The mechanism of hydrolysis of two antibiotics were explored in the active site of a mononuclear β lactamase. QM/MM methods have been applied to the study of an enzyme belonging to the family of copper monooxygenases. In particular the mechanism of hydroxylation by peptidylglycine α-hydroxylating monooxygenase was the subject of the study. Due to the electronic complexity of the system, ab initio MD simulations were required in order to get a proper description of the reaction.<br>Se realizó un estudio teórico de la hidrólisis de un antibiótico β-lactámico en vacio a diferentes niveles de cálculo. A continuación la reacción se estudió en disolución acuosa utilizando métodos semiempíricos y métodos basados en la teoría del funcional de la densidad para describir el subconjunto de átomos de la región QM, las moléculas de agua se describieron de forma discreta con campos de fuerza clásicos. Se utilizaron simulaciones de dinámica molecular con potenciales híbridos QM/MM para generar el potencial de fuerza media para la reacción en disolución. Se exploró el mecanismo de hidrólisis de dos antibióticos en el centro activo de una enzima β lactamasa. Y se estudió una enzima de la familia de las monooxigenasas de cobre. El objeto de estudio fue el mecanismo de hidroxilación por la peptidilglicina α-monooxigenasa hidroxilante. Fue necesario simulaciones de MD ab initio con el fin de obtener una descripción adecuada de la reacción.
APA, Harvard, Vancouver, ISO, and other styles
4

Almoukhalalati, Adel. "Applications of variational perturbation theory in relativistic molecular quantum mechanics." Toulouse 3, 2016. http://www.theses.fr/2016TOU30172.

Full text
Abstract:
Le père même de la mécanique quantique relativiste P. A. M. Dirac a prédit que la version plus réaliste de la mécanique quant ique qu'il a misen place n'offrirait pas beaucoup plus par rapport à la formulation non relativiste de la mécanique quantique lorsqu'il est appliqué à des systèmes atomiques et moléculaires ordinaires. Lorsque la théorie quantique relativiste avait environ 40 années, les gens avaient commencé à recogenize à quel point les effets relativistes peuvent être même pour l'étude des systèmes atomiques et moléculaires. Les effets relativistes se manifestent par la contraction dess atomiques et orbitales p, l'expansion des orbitales d et 1 atomiques, et le couplage spin-orbite. Un exemple classique de l'importance des effets relativistes est la structure de bande d'or métallique pour lequel les calculs non-relativistes vont conduire à une surestimation de l'écart 5d - 6p et prédire une bande d'absorption UV qui est compatible avec un métal qui ressemble à l'argent. La thèse porte sur les calculs atomiques et moléculaires dans le cadre relativiste à 4-composantes. En particulier, l'utilisation de la théorie des perturbations variationnelle dans un cadre relativiste. La théorie des perturbations dans la mécanique quantique, est basée sur le partitionnement du Hamiltonien il en l'Hamiltonien Ho a l'ordre zéro et \Î qui forme la perturbation par le biais d'un paramètre lambda. Dans la théorie des perturbations à N-corps {Rayleigh-Schrodinger), nous disposons d 'une solution exacte de l'Hamiltonien Ho. Alors que dans la théorie des perturbations variationnelle, nous supposons d'avoir une énergie optimisée pour toute valeur du paramètre À. La thèse contient deux projets principaux. Le premier projet concerne la discription de la corrélation électronique dans le cadre relativiste. Dans ce projet, nous nous sommes concentrés sur l'approche perturbative pour dériver des formules necessiry relativiste de l'énergie dans les atomes à deux électrons. L'énergie de corrélation est la différence entre la valeur propre exacte de l'hamiltonien et sa valeur d'attente dans l'approximationHartree-Fock. La valeur propre exacte ne sont pas disponibles, mais dans le domaine non-relativiste la meilleure solution est un Cl complet pour une base donnée. Notre objectif principal, dans ce projet, est de montrer que la meilleure solution de l'équation d'onde pour l' Hamiltonien DiracCoulomb, n'est pas un Cl complète, comme dans le cas non-relativis te, mais un MCSCF q ui utilise un développement Cl en orbitales énergiepositive seulement, mais qui permet la rotation entre les o rbitales d 'énerg ie positive et négative afin d 'optimiser l'opérateur de project ion. Le second projet concerne une étude sur les effets du volume nucléaire dans les spectres de vibration des molécules d iatomiques. Au début desannées 80, le groupe du professeur Eberhardt T iemann à Hanovre a util isé la spectroscopie de rotation avec une haute résolution pour étudier unesérie de molécules diatomiques contenant des atomes lo urds comme le plomb, afin d'établir des constantes spectroscopiques (Re longueur de laliaison, la fréquence vibratoire w. Etc. ) avec une grande précision. Une molécule AB a plusieurs isotopomères selon les isotopes des atomes A etB, et il était bien connu à cette époque que le spectre de chaque isotopomère est légèrement différente en raison des d ifférences de masse entrechaque isotope de l'atomes A et B. Prof. Tiemann et ses collaborateurs découvert que nous devons également ten ir compte de la différence devolume nucléa ire de chaque isotope. Nous fournissons un contrôle indépendant sur les études expérimentales et t héoriques précédentes d'effetsde volume nucléaires en spectroscopie de rotation, notamment re-calcul de la t héorie et des calculs antérieurs de référence par l'état relativiste4-composantes de l'art corrélée calculs<br>The father of relativistic quantum mechan ics P. A. M. Dirac predicted that, the more realistic version of quantum mechanics that he established wouId not offer much more when compared to the non-relativistic formulation of quantum mechanics when applied to ordinary atomic and molecular systems. When the relativistic quantum theory was around forty years old, people had started to recognize how important relativistic effects can beeven for the study of atomic and molecular systems. Relativistic effects are manifested via the contraction of atomics and p orbitais, the expansion of atomic d and 1 orbitais, and spin-orbit coupling. A classical example on t he importance of relativistic effects is the band struct ure of metallic gold for which non-relativistic caleulations will lead to an overestimation of the 5d-6p gap predicting a UV absorption band which is compatible with a metal that looks like silver. The thesis focuses on the atomic and molecular calculations within the 4-component relativistic framework. Ln particular, the use of the variational perturbation theory in relativistic framework. The perturbation theory in quantum mechanics is based on partitioning the Hamiltonian H into zeroth-order Hamiltonian Ho and V that forms the perturbation through a para meter lambda. Ln many-body (Rayleigh-Sch rodinger) perturbation theory, we have an exact solution of t he Hamiltonian l/0 , whereas in the variational perturbation theory, we assume to have anoptimized energy for any value of the parameter À. The thesis contains two principal projects, the first project concerns the description of the electron correlation in the relativistic framework. Ln this project , we focused on the perturbative approach to derive t he relativistic formulas nece~sary for the energy in two-electron atoms. T hecorrelation energy is the difference between the exact eigenvalue of the Ha mi ltonian and its expectation value in the Hartree-Fock approximation. The exact eigenvalue is not avail able, but in the non- relativistic domain t he best solution is a full Cl for a given basis. Our main goal, in this project , will be to show that the best solution of the wave equation for the embedded Dirac-Coulomb Hamil tonian, is not a Full Cl, as in thenon- relativistic case, but a MCSCF which uses a Cl development in positive-energy orbitais only, but which keeps rotations between the positive and negative energy orbitais to optimize the projection operator. The second project concerns a study of the effects of t he nuclear volume in the vibrational spectra of diatomic molecules. Ln the early 80s, Theg roup of Professor Eberhardt Tiemann in Hanover used the rotational spectroscopy with high resolution to study a series of diatomic molecules containing heavy a toms like lead in order to establish spectroscopie constants (R. Bond length, vibrational frequency W c etc. ) with a great precision. A molecule AB has several isotopomers according to isotopes atoms A and B and it was weil known at that t ime only the spectrum of eachisotopomer is slightly d iffe rent because of the mass differences between each isotope of the atoms A and B. Prof. Tiemann and his collaborators discovered that we must also take into account the difference in nuclear volume of each isotope. We provide an independent check on previous experimental and t heoretical studies of nuclear volume effects in rotational spectroscopy, notably re-derivation of theory and benchmark previous calculations by 4-component relativistic state of the art correlated calculations
APA, Harvard, Vancouver, ISO, and other styles
5

Pugh, Steven. "First-principles simulation of molecular adsorption at oxide surfaces." Thesis, Keele University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tomsah, Ibrahim Basharei Ibrahim. "Quantum and classical aspects of molecular dynamics studied by NMR spectroscopy." Thesis, University of Nottingham, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Donehoo, Brandon. "A superconducting investigation of nanoscale mechanics in niobium quantum point contacts." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24784.

Full text
Abstract:
Thesis (Ph.D.)--Physics, Georgia Institute of Technology, 2008.<br>Committee Chair: Alexei Marchenkov; Committee Member: Bruno Frazier; Committee Member: Dragomir Davidovic; Committee Member: Markus Kindermann; Committee Member: Phillip First
APA, Harvard, Vancouver, ISO, and other styles
8

Siriwong, Khatcharin. "A combined quantum mechanics and molecular dynamics study of charge transfer in DNA." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972057528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Samsonov, Sergey A., Stephan Theisgen, Thomas Riemer, Daniel Huster, and M. Teresa Pisabarro. "Glycosaminoglycan Monosaccharide Blocks Analysis by Quantum Mechanics, Molecular Dynamics, and Nuclear Magnetic Resonance." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-147183.

Full text
Abstract:
Glycosaminoglycans (GAGs) play an important role in many biological processes in the extracellular matrix. In a theoretical approach, structures of monosaccharide building blocks of natural GAGs and their sulfated derivatives were optimized by a B3LYP6311ppdd//B3LYP/ 6-31+G(d) method. The dependence of the observed conformational properties on the applied methodology is described. NMR chemical shifts and proton-proton spin-spin coupling constants were calculated using the GIAO approach and analyzed in terms of the method's accuracy and sensitivity towards the influence of sulfation, O1-methylation, conformations of sugar ring, and ω dihedral angle. The net sulfation of the monosaccharides was found to be correlated with the 1H chemical shifts in the methyl group of the N-acetylated saccharides both theoretically and experimentally. The ω dihedral angle conformation populations of free monosaccharides and monosaccharide blocks within polymeric GAG molecules were calculated by a molecular dynamics approach using the GLYCAM06 force field and compared with the available NMR and quantum mechanical data. Qualitative trends for the impact of sulfation and ring conformation on the chemical shifts and proton-proton spin-spin coupling constants were obtained and discussed in terms of the potential and limitations of the computational methodology used to be complementary to NMR experiments and to assist in experimental data assignment.
APA, Harvard, Vancouver, ISO, and other styles
10

Ozog, David. "High Performance Computational Chemistry: Bridging Quantum Mechanics, Molecular Dynamics, and Coarse-Grained Models." Thesis, University of Oregon, 2017. http://hdl.handle.net/1794/22778.

Full text
Abstract:
The past several decades have witnessed tremendous strides in the capabilities of computational chemistry simulations, driven in large part by the extensive parallelism offered by powerful computer clusters and scalable programming methods in high performance computing (HPC). However, such massively parallel simulations increasingly require more complicated software to achieve good performance across the vastly diverse ecosystem of modern heterogeneous computer systems. Furthermore, advanced “multi-resolution” methods for modeling atoms and molecules continue to evolve, and scientific software developers struggle to keep up with the hardships involved with building, scaling, and maintaining these coupled code systems. This dissertation describes these challenges facing the computational chemistry community in detail, along with recent solutions and techniques that circumvent some primary obstacles. In particular, I describe several projects and classify them by the 3 primary models used to simulate atoms and molecules: quantum mechanics (QM), molecular mechanics (MM), and coarse-grained (CG) models. Initially, the projects investigate methods for scaling simulations to larger and more relevant chemical applications within the same resolution model of either QM, MM, or CG. However, the grand challenge lies in effectively bridging these scales, both spatially and temporally, to study richer chemical models that go beyond single-scale physics and toward hybrid QM/MM/CG models. This dissertation concludes with an analysis of the state of the art in multiscale computational chemistry, with an eye toward improving developer productivity on upcoming computer architectures, in which we require productive software environments, enhanced support for coupled scientific workflows, useful abstractions to aid with data transfer, adaptive runtime systems, and extreme scalability. This dissertation includes previously published and co-authored material, as well as unpublished co-authored material.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Quantum mechanics/molecular"

1

Atkins, P. W. Molecular quantum mechanics. 2nd ed. Oxford University Press, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Atkins, P. W. Molecular quantum mechanics. 4th ed. Oxford University Press, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Atkins, P. W. Molecular quantum mechanics. 3rd ed. Oxford University Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sabin, John R., Sylvio Canuto, and Erkki Brändas. Combining quantum mechanics and molecular mechanics. Edited by ScienceDirect (Online service). Academic, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yamanouchi, Kaoru. Quantum Mechanics of Molecular Structures. Springer Berlin Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

T, Sutcliffe B., ed. Methods of molecular quantum mechanics. 2nd ed. Academic Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

McWeeny, Roy. Methods of molecular quantum mechanics. 2nd ed. Academic Press, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yamanouchi, Kaoru. Quantum Mechanics of Molecular Structures. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32381-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

McWeeny, R. Methods of molecular quantum mechanics. 2nd ed. Academic Press, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Atkins, P. W. Solutions manual for Molecular quantum mechanics. 3rd ed. Oxford University Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Quantum mechanics/molecular"

1

Hecht, K. T. "Rigid Rotators: Molecular Rotational Spectra." In Quantum Mechanics. Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1272-0_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Adelman, Steven A. "Toward Quantum Mechanics." In Basic Molecular Quantum Mechanics. CRC Press, 2021. http://dx.doi.org/10.1201/9780429155741-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Levi, Gianluca. "The Quantum Mechanics/Molecular Mechanics Method." In Springer Theses. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28611-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Basdevant, Jean-Louis, and Jean Dalibard. "Colored Molecular Ions." In The Quantum Mechanics Solver. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13724-3_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zanzinger, Stephan. "Coherence and Quantum Mechanics." In Large-Scale Molecular Systems. Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5940-1_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Adelman, Steven A. "Mathematics for Quantum Mechanics." In Basic Molecular Quantum Mechanics. CRC Press, 2021. http://dx.doi.org/10.1201/9780429155741-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Xin, Lung Wa Chung, and Keiji Morokuma. "Modeling Photobiology Using Quantum Mechanics and Quantum Mechanics/Molecular Mechanics Calculations." In Computational Methods for Large Systems. John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470930779.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Habgood, Matthew, Tim James, and Alexander Heifetz. "Conformational Searching with Quantum Mechanics." In Methods in Molecular Biology. Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0282-9_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Adelman, Steven A. "Molecular Electronic Structure and Chemical Bonding." In Basic Molecular Quantum Mechanics. CRC Press, 2021. http://dx.doi.org/10.1201/9780429155741-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

McClain, William Martin. "Symmetry and quantum mechanics." In Symmetry Theory in Molecular Physics with Mathematica. Springer New York, 2009. http://dx.doi.org/10.1007/b13137_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Quantum mechanics/molecular"

1

Prevenslik, Thomas. "Validity of Molecular Dynamics by Quantum Mechanics." In ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/mnhmt2013-22027.

Full text
Abstract:
MD is commonly used in computational physics to determine the atomic response of nanostructures. MD stands for molecular dynamics. With theoretical basis in statistical mechanics, MD relates the thermal energy of the atom to its momentum by the equipartition theorem. Momenta of atoms in an ensemble are determined by solving Newton’s equations with inter-atomic forces derived from Lennard-Jones potentials. MD therefore assumes the atom always has heat capacity as otherwise the momenta of the atoms cannot be related to their temperature. In bulk materials, the continuum is simulated in MD by imposing PBC on an ensemble of atoms, the atoms always having heat capacity. PBC stands for periodic boundary conditions. MD simulations of the bulk are valid because atoms in the bulk do indeed have heat capacity. Nanostructures differ from the bulk. Unlike the continuum, the atom confined in discrete submicron geometries is precluded by QM from having the heat capacity necessary to conserve absorbed EM energy by an increase in temperature. QM stands for quantum mechanics and EM for electromagnetic. Quantum corrections of MD solutions that would show the heat capacity of nanostructures vanishes are not performed. What this means is the MD simulations of discrete nanostructures in the literature not only have no physical meaning, but are knowingly invalid by QM. In the alternative, conservation of absorbed EM energy is proposed to proceed by the creation of QED induced non-thermal EM radiation at the TIR frequency of the nanostructure. QED stands for quantum electrodynamics and TIR for total internal reflection. The QED radiation creates excitons (holon and electron pairs) that upon recombination produce EM radiation that charges the nanostructure or is emitted to the surroundings — a consequence only possible by QM as charge is not created in statistical mechanics. Invalid discrete MD simulations are illustrated with nanofluids, nanocars, linear motors, and sputtering. Finally, a valid MD simulation by QM is presented for the stiffening of NWs in tensile tests. NW stands for nanowire.
APA, Harvard, Vancouver, ISO, and other styles
2

Gimzewski, J. K. "Nanomechanics and quantum mechanics of molecular systems." In IEE Seminar Nanotechnology and Quantum Computing. IEE, 2000. http://dx.doi.org/10.1049/ic:20000678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Khare, Roopam, Steven Mielke, Jeffrey Paci, Sulin Zhang, George Schatz, and Ted Belytschko. "Two quantum mechanical/molecular mechanical coupling schemes appropriate for fracture mechanics studies." In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-2171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Wenjian. "The 'big picture' of relativistic molecular quantum mechanics." In THEORY AND APPLICATIONS IN COMPUTATIONAL CHEMISTRY: THE FIRST DECADE OF THE SECOND MILLENNIUM: International Congress TACC-2012. AIP, 2012. http://dx.doi.org/10.1063/1.4730643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Harter, W., and T. C. Reimer. ""SIMPLEST MOLECULE" CLARIFIES MODERN PHYSICS II. RELATIVISTIC QUANTUM MECHANICS." In 69th International Symposium on Molecular Spectroscopy. University of Illinois at Urbana-Champaign, 2014. http://dx.doi.org/10.15278/isms.2014.rh16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aldoshin, Gennady T., and Sergey P. Yakovlev. "Applying classical mechanics methods to modelling molecular oscillations problems of quantum mechanics." In 2015 International Conference on Mechanics-Seventh Polyakhov's Reading. IEEE, 2015. http://dx.doi.org/10.1109/polyakhov.2015.7106710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shipman, Steven. "SPECTROSCOPIC CASE-BASED STUDIES IN A FLIPPED QUANTUM MECHANICS COURSE." In 70th International Symposium on Molecular Spectroscopy. University of Illinois at Urbana-Champaign, 2015. http://dx.doi.org/10.15278/isms.2015.tc07.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Filinov, Vladimir S. "Wigner approach and generalization molecular dynamics method in quantum mechanics." In AeroSense '97, edited by Steven P. Hotaling and Andrew R. Pirich. SPIE, 1997. http://dx.doi.org/10.1117/12.277655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Oh, Kyung Su, DongHyun Kim, Seungho Park, Ohmyoung Kwon, Young Ki Choi, and Joon Sik Lee. "Transport of Hydrogen Molecules in Single-Walled Carbon Nanotube." In 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2008. http://dx.doi.org/10.1115/micronano2008-70248.

Full text
Abstract:
Carbon nanotubes are considered as promising nanoscale materials because of their unique structural, mechanical, and electronic properties. From the unique structure of long seamless cylindrical shape, it would be applied as effective nano-channels for mass transfer and relevant container for hydrogen molecules. We study hydrogen transport mechanisms in single-walled carbon nanotube (SWNT) for various chiral indices and different peculiarities, using the molecular dynamics simulation and quantum mechanics. The behavior of hydrogen molecules (H2) inside a SWNT is analyzed using mean-square displacements. From the quantum mechanics, also, the electronic density of SWNT is calculated for verifying the smooth characteristics of inner surfaces of nanotubes.
APA, Harvard, Vancouver, ISO, and other styles
10

TUCKERMAN, MARK E., and ADAM HUGHES. "Path integral molecular dynamics: a computational approach to quantum statistical mechanics." In Proceedings of the International School of Physics. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789812839664_0014.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Quantum mechanics/molecular"

1

Oh, H. G., H. R. Lee, Thomas F. George, C. I. Um, Y. M. Choi, and W. H. Kahng. Quantum Mechanics of a Molecular System Adsorbed on a Dielectric Surface. Defense Technical Information Center, 1989. http://dx.doi.org/10.21236/ada206473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Author, Not Given. Molecular Quantum Mechanics 2010: From Methylene to DNA and Beyond Conference Support. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1079680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Langhoff, P. W., J. D. Mills, J. A. Boatz, and G. A. Gallup. Quantum-Mechanical Definition of Atoms and Chemical Bonds in Molecules. Defense Technical Information Center, 2015. http://dx.doi.org/10.21236/ada626631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Freitag, Mark A. From First Principles: The Application of Quantum Mechanics to Complex Molecules and Solvated Systems. Office of Scientific and Technical Information (OSTI), 2001. http://dx.doi.org/10.2172/803098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!