To see the other types of publications on this topic, follow the link: Radiation Parameterization.

Dissertations / Theses on the topic 'Radiation Parameterization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 18 dissertations / theses for your research on the topic 'Radiation Parameterization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Stewart, Paul C. "Incorporation of a radiation parameterization scheme into the Naval Research Laboratory Limited Area Dynamical Weather Prediction Model." Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/23925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Maggiorano, Anna. "Solar radiation penetration in biogeochemical model of the coastal ocean. Numerical experiments." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13542/.

Full text
Abstract:
This study focus on the analysis of different algorithms used to describe underwater light attenuation in the coastal ocean and their impact on primary production processes in a numerical coupled model of the marine biogeochemical dynamics. Light parameterizations (novel and literature based) were embedded into the BFM-POM one dimensional modelling system. Results indicated that better representation of the light vertical profiles are obtained with a double exponential formulation, particu- larly when parameterized on the basis of extensive in situ data. Better representation of the light environment impacted positively on the quality of the marine ecosystem biogeochemical dynamics simulation.
APA, Harvard, Vancouver, ISO, and other styles
3

Mooring, Raymond Derrell. "On using empirical techniques to optimize the shortwave parameterization scheme of the community atmosphere model version two global climate model." Diss., Available online, Georgia Institute of Technology, 2005, 2005. http://etd.gatech.edu/theses/available/etd-04172005-231106/unrestricted/mooring%5Fraymond%5Fd%5F200505%5Fphd.PDF.

Full text
Abstract:
Thesis (Ph. D.)--Earth and Atmospheric Sciences, Georgia Institute of Technology, 2005.<br>Dickinson, Robert, Committee Chair ; Jenkins, Gregory, Committee Member ; Vidakovic, Brani, Committee Member ; Fu, Rong, Committee Member ; Cunnold, Derek, Committee Member. Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
4

Bosi, Cristiam. "Parameterization and evaluation of mechanistic crop models for estimating Urochloa brizantha cv. BRS Piatã productivity under full sun and in silvopastoral system." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/11/11152/tde-15052018-142008/.

Full text
Abstract:
Silvopastoral systems are a kind of agroforestry system in which trees or shrubs are combined with animals and pastures. Silvopastoral systems are important to intensify pasture production and mitigate climate change effects. However, very few studies have been performed to adapt crop models to simulate these systems. The aim of this study was to parameterize and test the mechanistic crop models APSIM and CROPGRO for estimating Urochloa brizantha cv. BRS Piatã productivity under full sun and in a silvopastoral system, to evaluate the models\' performance to simulate tree-crop interactions, and to develop tools to improve these simulations. For this purpose, four field experiments were conducted under full sun to investigate cutting management under irrigated and rainfed conditions and grazing management under rainfed conditions with high and low N supply. Another experiment was carried out in a silvopastoral system with the trees arranged in simple rows, in East-West orientation, with 15 m between rows and 2 m between plants in the rows. This experiment was conducted under grazing management and rainfed conditions with the pasture variables, microclimate and soil water content being assessed at four distances from the North row (0.00 m, 3.75 m, 7.50 m and 11.25 m). The forage mass simulations for the pasture at full sun, performed using the APSIM-Tropical Pasture model, showed good agreement between observed and estimated data (R2 between 0.82 and 0.97, d between 0.92 and 0.98, and NSE ranging from 0.72 to 0.92), while the simulations with the CROPGRO-Perennial Forage model achieved good precision (R2 between 0.65 and 0.93) and good accuracy (d from 0.86 to 0.97, and NSE from 0.60 to 0.90), for the various managements and environmental conditions. Even considering the promising performance of both models for pastures under full sun, they already needs to be tested in other locations, climate conditions, soils, and grazing or cutting intensities, to prove its accuracy and reach enough confidence. The pasture growth simulations at the silvopastoral system indicated that the APSIM-Tropical Pasture was efficient when only competition by solar radiation was considered (R2 from 0.69 to 0.88, d from 0.90 to 0.96, and NSE between 0.51 and 0.85), but inefficient when considering only competition by soil water (R2 between 0.58 and 0.85, d between 0.58 and 0.82, and NSE from -4.07 to -0.14). The CROPGRO-Perennial Forage achieved good performance on pasture growth simulation at the distances 0.00 m, 3.75 m, and 7.50 m from the trees (R2 from 0.75 to 0.90, d from 0.93 to 0.96, NSE between 0.74 and 0.85). Despite the good results, improvements should be performed in both models for simulating all factors that affect forage growth in silvopastoral systems.<br>Os sistemas silvipastoris são um tipo de sistema agroflorestal em que árvores ou arbustos são combinados com animais e pastagens. Os sistemas silvipastoris são importantes para a intensificação de pastagens e para a mitigação dos efeitos das mudanças climáticas. Entretanto, poucos estudos vêm sendo realizados visando à adaptação de modelos para a simulação desses sistemas. O objetivo desse estudo foi parametrizar e testar os modelos mecanísticos APSIM e CROPGRO para estimar a produtividade de Urochloa brizantha cv. BRS Piatã a pleno sol e em um sistema silvipastoril, avaliar o desempenho dos modelos para simular as interações árvore-pastagem e desenvolver ferramentas para aprimorar tais simulações. Para isso, foram conduzidos quatro experimentos de campo, a pleno sol, para avaliar diferentes manejos da pastagem: corte, em irrigado e sequeiro; e pastejo, em sequeiro e com alto ou baixo suprimento de nitrogênio. Outro experimento foi conduzido em um sistema silvipastoril com as árvores arranjadas em renques simples, com orientação Leste-Oeste, com espaçamento de 15 m entre renques e 2 m entre plantas nos renques. Esse experimento foi conduzido sob pastejo e em sequeiro, com avaliações das variáveis da pastagem, microclima e água no solo em quatro distâncias em relação ao renque Norte (0,00 m; 3,75 m; 7,50 m and 11,25 m). As estimativas de massa de forragem a pleno sol, realizadas com o modelo APSIM-Tropical Pasture, apresentaram boa concordância entre os dados observados e os estimados (R2 entre 0,82 e 0,97, d entre 0,92 e 0,98 e NSE de 0,72 a 0,92), enquanto que, as estimativas geradas pelo modelo CROPGRO-Perennial Forage alcançaram boa precisão (R2 entre 0,65 e 0,93) e boa exatidão (d entre 0,86 e 0,97 e NSE de 0,60 a 0,90), para os diferentes manejos e condições ambientais. Mesmo considerando o desempenho promissor de ambos os modelos para simular pastagens a pleno sol, para confirmar a acurácia e a eficiência destes, são necessários testes em outros locais, condições climáticas, tipos de solo e intensidades de corte ou pastejo. As simulações do crescimento da pastagem no sistema silvipastoril indicaram que o modelo APSIM-Tropical Pasture, foi eficiente quando somente a competição por radiação solar foi considerada (R2 de 0,69 a 0,88, d entre 0,90 e 0,96 e NSE de 0,51 a 0,85), mas ineficiente quando somente a competição por água no solo foi considerada (R2 entre 0,58 e 0,85, d entre 0,58 e 0,82 e NSE de -4,07 a -0,14). O modelo CROPGRO-Perennial Forage atingiu bom desempenho na simulação do crescimento da pastagem para as distâncias 0,00 m, 3,75 m e 7,50 m em relação às árvores (R2 de 0,75 a 0,90, d entre 0,93 e 0,96, NSE de 0,74 a 0,85). Apesar dos bons resultados, ambos os modelos devem ser melhorados para simular todos os fatores que afetam o crescimento de pastagens em sistemas silvipastoris.
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Wei-Liang. "Radiative transfer in atmosphere-ocean and atmosphere-mountain systems application and parameterization /." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1581421911&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jerg, Matthias. "Solar radiative transfer parameterizations for three-dimensional effects in cloudy atmospheres." Diss., lmu, 2006. http://nbn-resolving.de/urn:nbn:de:bvb:19-62898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cizmeli, Servet Ahmet. "Parameterization, regionalization and radiative transfer coherence of optical measurements acquired in the St-Lawrence ecosystem." Thèse, Université de Sherbrooke, 2008. http://savoirs.usherbrooke.ca/handle/11143/2771.

Full text
Abstract:
In-water biogeochemical constituents and bio-optical properties of the St-Lawrence Gulf and Estuary were monitored during 5 cruises conducted between 1997-2001 accross different seasons. Measured inherent optical properties (IOPs) included vertical profiles of the absorption and attenuation coefficients and the volume scattering function as well as absorption by particles, non-algal particles, phytoplankton and coloured dissolved organic matter (CDOM). Apparent Optical parameters (AOPs) included vertical profiles of the upwelling radiance and downwelling irradiance. The spectral shape of the major IOPs like absorption by phytoplankton, CDOM and non-algal particles as well as the particulate backscattering were parameterized using conventional models and adaptations of conventional models. Descriptive statistics of each variable in the collected dataset were analysed and compared with previous findings in the literature. The optical coherence of the measurements was verified using a radiative transfer closure approach. A complete set of IOP cross-sections for optically significant biogeochemical variables were generated. The magnitude and the spatial, temporal and spectral variation exhibited by the optically significant inwater biogeochemical constituents as well as the bio-optical parameters was consistent with our current knowledge of the ecosystem. The variation of the bio-optical parameters throughout the seasons was also coherent with our expectations. All the measured and derived parameters were found to vary within the ranges reported in the literature. Evidence was presented wherein the Gulf waters, which are usually considered as case I waters could also behave like case II waters. Moreover, spectral signatures exhibited by the IOPs and AOPs were coherent with the variation detected in the concentrations of the measured (optically significant) constituents. The extracted IOP cross-sections were consistent with the results of similar studies previously performed and could eventually be used in the estimation of the biogeochemical constituent concentrations given the related component IOPs. First-order radiative transfer closure was achieved; this underscored the validity of our experimental dataset based on considerations of higher level, integrative, physics. We argue that the current data collection campaign succeeded as a comprehensive framework for describing the behavior of the St-Lawrence bio-optical provinces within the context of remote sensing objectives. This bio-optical dataset should provide the basis for the development of a rigorous, satellite-based, remote sensing algorithm for the retrieval of near surface chlorophyll, fine-tuned to the local characteristics of the St-Lawrence system.
APA, Harvard, Vancouver, ISO, and other styles
8

Menon, Surabo, Jean-Louis Brenguier, Olivier Boucher, et al. "Evaluating aerosol/cloud/radiation process parameterizations with single-column models and Second Aerosol Characterization Experiment (ACE-2) cloudy column observations: Evaluating aerosol/cloud/radiation process parameterizations withsingle-column models and Second Aerosol Characterization Experiment (ACE-2) cloudy column observations." Wiley, 2003. https://ul.qucosa.de/id/qucosa%3A13455.

Full text
Abstract:
The Second Aerosol Characterization Experiment (ACE-2) data set along with ECMWF reanalysis meteorological fields provided the basis for the single column model (SCM) simulations, performed as part of the PACE (Parameterization of the Aerosol Indirect Climatic Effect) project. Six different SCMs were used to simulate ACE-2 case studies of clean and polluted cloudy boundary layers, with the objective being to identify limitations of the aerosol/cloud/radiation interaction schemes within the range of uncertainty in in situ, reanalysis and satellite retrieved data. The exercise proceeds in three steps. First, SCMs are configured with the same fine vertical resolution as the ACE-2 in situ data base to evaluate the numerical schemes for prediction of aerosol activation, radiative transfer and precipitation formation. Second, the same test is performed at the coarser vertical resolution of GCMs to evaluate its impact on the performance of the parameterizations. Finally, SCMs are run for a 24–48 hr period to examine predictions of boundary layer clouds when initialized with large-scale meteorological fields. Several schemes were tested for the prediction of cloud droplet number concentration (N). Physically based activation schemes using vertical velocity show noticeable discrepancies compared to empirical schemes due to biases in the diagnosed cloud base vertical velocity. Prognostic schemes exhibit a larger variability than the diagnostic ones, due to a coupling between aerosol activation and drizzle scavenging in the calculation of N. When SCMs are initialized at a fine vertical resolution with locally observed vertical profiles of liquid water, predicted optical properties are comparable to observations. Predictions however degrade at coarser vertical resolution and are more sensitive to the mean liquid water path than to its spatial heterogeneity. Predicted precipitation fluxes are severely underestimated and improve when accounting for sub-grid liquid water variability. Results from the 24–48 hr runs suggest that most models have problems in simulating boundary layer cloud morphology, since the large-scale initialization fields do not accurately reproduce observed meteorological conditions. As a result, models significantly overestimate optical properties. Improved cloud morphologies were obtained for models with subgrid inversions and subgrid cloud thickness schemes. This may be a result of representing subgrid scale effects though we do not rule out the possibility that better large-forcing data may also improve cloud morphology predictions.
APA, Harvard, Vancouver, ISO, and other styles
9

Martinazzo, Michele. "Cloud optical properties parameterizations for infrared high spectral resolution fast codes." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21747/.

Full text
Abstract:
Lo scopo principale di questo lavoro di tesi è quello di produrre un set di parametrizzazioni analitiche per le proprietà ottiche delle nubi e degli aerosoli, utili per essere implementate in un codice veloce di trasferimento radiativo. Il codice veloce da noi preso in considerazione è sigma-IASI-as. Allo stato attuale, questo modello incorpora delle routines di Mie, le quali vengono sfruttate per il calcolo dello spessore ottico in presenza di nubi o aerosoli. Inoltre il codice sfrutta l'approssimazione di Chou allo scopo di tener conto dello scattering della radiazione infrarossa da parte delle particelle di nube o aerosol. La parametrizzazione prodotta potrà essere sfruttata allo scopo di creare un set di tabelle consultabili dal codice, che potranno essere usate per sostituire le routine di Mie. Lo studio sugli effetti indotti dalla implementazione della approssimazione di Chou è stata investigata considerando diversi scenari atmosferici. Il modello sfruttato per calcolare le radianze è LBLDIS. Per ogni scenario sono quindi calcolate e confrontate le due soluzioni, implementando o non implementando l’approssimazione di Chou. Una parametrizzazione in funzione del raggio della distribuzione è trovata per: l’efficienza di estinzione, l’albedo si singolo scattering, il parametro di asimmetria, e il parametro di backscattering di Chou. L’impatto e le differenze nelle radianze introdotte dall'utilizzo dell’approssimazione di Chou e della parametrizzazione delle proprietà ottiche, è valutato per diversi scenari atmosferici.
APA, Harvard, Vancouver, ISO, and other styles
10

Menon, Surabo, Jean-Louis Brenguier, Olivier Boucher, et al. "Evaluating aerosol/cloud/radiation process parameterizations with single-column models and Second Aerosol Characterization Experiment (ACE-2) cloudy column observations." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-177303.

Full text
Abstract:
The Second Aerosol Characterization Experiment (ACE-2) data set along with ECMWF reanalysis meteorological fields provided the basis for the single column model (SCM) simulations, performed as part of the PACE (Parameterization of the Aerosol Indirect Climatic Effect) project. Six different SCMs were used to simulate ACE-2 case studies of clean and polluted cloudy boundary layers, with the objective being to identify limitations of the aerosol/cloud/radiation interaction schemes within the range of uncertainty in in situ, reanalysis and satellite retrieved data. The exercise proceeds in three steps. First, SCMs are configured with the same fine vertical resolution as the ACE-2 in situ data base to evaluate the numerical schemes for prediction of aerosol activation, radiative transfer and precipitation formation. Second, the same test is performed at the coarser vertical resolution of GCMs to evaluate its impact on the performance of the parameterizations. Finally, SCMs are run for a 24–48 hr period to examine predictions of boundary layer clouds when initialized with large-scale meteorological fields. Several schemes were tested for the prediction of cloud droplet number concentration (N). Physically based activation schemes using vertical velocity show noticeable discrepancies compared to empirical schemes due to biases in the diagnosed cloud base vertical velocity. Prognostic schemes exhibit a larger variability than the diagnostic ones, due to a coupling between aerosol activation and drizzle scavenging in the calculation of N. When SCMs are initialized at a fine vertical resolution with locally observed vertical profiles of liquid water, predicted optical properties are comparable to observations. Predictions however degrade at coarser vertical resolution and are more sensitive to the mean liquid water path than to its spatial heterogeneity. Predicted precipitation fluxes are severely underestimated and improve when accounting for sub-grid liquid water variability. Results from the 24–48 hr runs suggest that most models have problems in simulating boundary layer cloud morphology, since the large-scale initialization fields do not accurately reproduce observed meteorological conditions. As a result, models significantly overestimate optical properties. Improved cloud morphologies were obtained for models with subgrid inversions and subgrid cloud thickness schemes. This may be a result of representing subgrid scale effects though we do not rule out the possibility that better large-forcing data may also improve cloud morphology predictions.
APA, Harvard, Vancouver, ISO, and other styles
11

Schomburg, Annika [Verfasser]. "Improving the simulation of small-scale variability in radiation and land-surface parameterizations in a mesoscale numerical weather prediction model / Annika Schomburg. Mathematisch-Naturwissenschaftliche Fakultät." Bonn : Universitäts- und Landesbibliothek Bonn, 2011. http://d-nb.info/1016198094/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lange, Stefan. "On the evaluation of regional climate model simulations over South America." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17342.

Full text
Abstract:
Diese Dissertation beschäftigt sich mit regionaler Klimamodellierung über Südamerika, der Analyse von Modellsensitivitäten bezüglich Wolkenparametrisierungen und der Entwicklung neuer Methoden zur Modellevaluierung mithilfe von Klimanetzwerken. Im ersten Teil untersuchen wir Simulationen mit dem COnsortium for Small scale MOdeling model in CLimate Mode (COSMO-CLM) und stellen die erste umfassende Evaluierung dieses dynamischen regionalen Klimamodells über Südamerika vor. Dabei untersuchen wir insbesondere die Abhängigkeit simulierter tropischer Niederschläge von Parametrisierungen subgitterskaliger cumuliformer und stratiformer Wolken und finden starke Sensitivitäten bezüglich beider Wolkenparametrisierungen über Land. Durch einen simultanen Austausch der entsprechenden Schemata gelingt uns eine beträchtliche Reduzierung von Fehlern in klimatologischen Niederschlags- und Strahlungsmitteln, die das COSMO-CLM über tropischen Regionen für lange Zeit charakterisierten. Im zweiten Teil führen wir neue Metriken für die Evaluierung von Klimamodellen bezüglich räumlicher Kovariabilitäten ein. Im Kern bestehen diese Metriken aus Unähnlichkeitsmaßen für den Vergleich von simulierten mit beobachteten Klimanetzwerken. Wir entwickeln lokale und globale Unähnlichkeitsmaße zum Zwecke der Darstellung lokaler Unähnlichkeiten in Form von Fehlerkarten sowie der Rangordnung von Modellen durch Zusammenfassung lokaler zu globalen Unähnlichkeiten. Die neuen Maße werden dann für eine vergleichende Evaluierung regionaler Klimasimulationen mit COSMO-CLM und dem Statistical Analogue Resampling Scheme über Südamerika verwendet. Dabei vergleichen wir die sich ergebenden Modellrangfolgen mit solchen basierend auf mittleren quadratischen Abweichungen klimatologischer Mittelwerte und Varianzen und untersuchen die Abhängigkeit dieser Rangfolgen von der betrachteten Jahreszeit, Variable, dem verwendeten Referenzdatensatz und Klimanetzwerktyp.<br>This dissertation is about regional climate modeling over South America, the analysis of model sensitivities to cloud parameterizations, and the development of novel model evaluation techniques based on climate networks. In the first part we examine simulations with the COnsortium for Small scale MOdeling weather prediction model in CLimate Mode (COSMO-CLM) and provide the first thorough evaluation of this dynamical regional climate model over South America. We focus our analysis on the sensitivity of simulated tropical precipitation to the parameterizations of subgrid-scale cumuliform and stratiform clouds. It is shown that COSMO-CLM is strongly sensitive to both cloud parameterizations over tropical land. Using nondefault cumulus and stratus parameterization schemes we are able to considerably reduce long-standing precipitation and radiation biases that have plagued COSMO-CLM across tropical domains. In the second part we introduce new performance metrics for climate model evaluation with respect to spatial covariabilities. In essence, these metrics consist of dissimilarity measures for climate networks constructed from simulations and observations. We develop both local and global dissimilarity measures to facilitate the depiction of local dissimilarities in the form of bias maps as well as the aggregation of those local to global dissimilarities for the purposes of climate model intercomparison and ranking. The new measures are then applied for a comparative evaluation of regional climate simulations with COSMO-CLM and the STatistical Analogue Resampling Scheme (STARS) over South America. We compare model rankings obtained with our new performance metrics to those obtained with conventional root-mean-square errors of climatological mean values and variances, and analyze how these rankings depend on season, variable, reference data set, and climate network type.
APA, Harvard, Vancouver, ISO, and other styles
13

Doerksen, Geoff N. "Parameterization of net radiation in urban and suburban environments." Thesis, 2004. http://hdl.handle.net/2429/15237.

Full text
Abstract:
Radiation budgets are currently understudied in urban environments. It is especially difficult, almost impossible, to find an existing urban radiation site where the radiation budget is continually being monitored. This creates the need to model the radiative components in cities: such information is used for several applied purposes (solar energy, building and urban design) and as input to meteorological pre-processors used to calculate urban heat, mass and momentum fluxes, atmospheric stability and mixed layer depth, that in turn drive climate and air quality models. Recently field measurements of the component surface radiation budget fluxes have been gathered at several urban sites in different climates and with different surface structure and cover. Data collected in Basel, Lodz, Marseille, Miami, and Vancouver are used here to devise an urban radiation scheme that uses measurements of solar radiation and routine weather observations to estimate net radiation. The simplest approach to obtain net radiation (Q*) is to use linear regression relations between net radiation (Q*) and incoming solar radiation (K↓) derived from data measured at the above urban, suburban and rural radiation sites. Multiple regression incorporating a cloud parameter shows a marked improvement over such simple linear regression at the study sites. The major limitation of these regression methods is that they are strictly daytime Q* schemes and cannot generate estimates during the night. An alternative is to parameterize each surface radiation budget component separately. Here this involved both tests of existing models and schemes and development of a new urban L↑ scheme. Several incoming longwave all-sky radiation schemes were tested at the study sites where the Maykut and Church all-sky L↓ scheme provides lower error and a smaller bias than Crawford and Duchon all-sky L↓, when both are combined with the Dilley and O'Brien clear-sky L↓ parameterization. To estimate outgoing longwave radiation a correction term (CT), to account for the difference between the surface and air temperature, was evaluated at a densely-built urban site in Basel. A new urban outgoing longwave radiation scheme (termed LUST) was created based on the strong correlation found between the difference between the surface and air temperature (T[sub s] – T₃) and solar radiation. The scheme, also evaluated at the densely-built urban site in Basel, uses measurements of air temperature and solar radiation to estimate outgoing longwave radiation. The LUST scheme generally performed better than the CT models at most sites with a reduction of RMSE by as much as 30% at the urban and suburban sites. Finally, two net radiation parameterization schemes, both including LUST, were tested. The Q* scheme where L↓ was modelled with a cloud parameter was found to give the best results at two suburban sites, while the scheme that modelled L↓ with cloud observations performed best at two heavily-built urban sites, an urban parking lot site and a rural grassland site, and error was similar at a third central city site. It is recommended that if cloud observations are available that latter Q* scheme be used, however if they are not then use of the other Q* scheme is acceptable.
APA, Harvard, Vancouver, ISO, and other styles
14

Oh, Jai-Ho. "Physically-based general circulation model parameterization of clouds and their radiative interaction." Thesis, 1989. http://hdl.handle.net/1957/30052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Valiente, Jose Antonio. "A study and parameterization of oceanic aerosol interactions by interpreting spectral solar radiation measurements at Nauru during TOGA-COARE." Thesis, 1996. https://eprints.utas.edu.au/21975/1/whole_ValienteJoseAntonio1997_thesis.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ryglicki, David R. "The effects of cumulus parameterizations and radiation schemes on tropical cyclone frequency and structure." 2007. http://etd.lib.fsu.edu/theses/available/etd-11072007-152924.

Full text
Abstract:
Thesis (M.S.)--Florida State University, 2007.<br>Advisor: T. N. Krishnamurti, Florida State University, College of Arts & Sciences, Dept. of Meteorology. Title and description from dissertation home page (viewed Apri. 9, 2008). Document formatted into pages; contains xvii, 127 pages. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
17

Jerg, Matthias Peter [Verfasser]. "Solar radiative transfer parameterizations for three-dimensional effects in cloudy atmospheres / Matthias Peter Jerg." 2006. http://d-nb.info/982653190/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Yi, Bingqi. "Radiative Effects of Dust Aerosols, Natural Cirrus Clouds and Contrails: Broadband Optical Properties and Sensitivity Studies." Thesis, 2013. http://hdl.handle.net/1969.1/151136.

Full text
Abstract:
This dissertation aims to study the broadband optical properties and radiative effects of dust aerosols and ice clouds. It covers three main topics: the uncertainty of dust optical properties and radiative effects from the dust particle shape and refractive index, the influence of ice particle surface roughening on the global cloud radiative effect, and the simulations of the global contrail radiative forcing. In the first part of this dissertation, the effects of dust non-spherical shape on radiative transfer simulations are investigated. We utilize a spectral database of the single-scattering properties of tri-axial ellipsoidal dust-like aerosols and determined a suitable dust shape model. The radiance and flux differences between the spherical and ellipsoidal models are quantified, and the non-spherical effect on the net flux and heating rate is obtained over the solar spectrum. The results indicate the particle shape effect is related to the dust optical depth and surface albedo. Under certain conditions, the dust particle shape effect contributes to 30% of the net flux at the top of the atmosphere. The second part discusses how the ice surface roughening can exert influence on the global cloud radiative effect. A new broadband parameterization for ice cloud bulk scattering properties is developed using severely roughened ice particles. The effect of ice particle surface roughness is derived through simulations with the Fu-Liou and RRTMG radiative transfer codes and the Community Atmospheric Model. The global averaged net cloud radiative effect due to surface roughness is around 1.46 Wm-2. Non-negligible increase in longwave cloud radiative effect is also found. The third part is about the simulation of global contrail radiative forcing and its sensitivity studies using both offline and online modeling frameworks. Global contrail distributions from the literature and Contrail Cirrus Prediction Tool are used. The 2006 global annual averaged contrail net radiative forcing from the offline model is estimated to be 11.3 mW m^(-2), with the regional contrail radiative forcing being more than ten times stronger. Sensitivity tests show that contrail effective size, contrail layer height, the model cloud overlap assumption, and contrail optical properties are among the most important factors.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!