Journal articles on the topic 'Reinforcement Learning in Databases'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Reinforcement Learning in Databases.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Pakzad, Armie E., Raine Mattheus Manuel, Jerrick Spencer Uy, Xavier Francis Asuncion, Joshua Vincent Ligayo, and Lawrence Materum. "Reinforcement Learning-Based Television White Space Database." Baghdad Science Journal 18, no. 2(Suppl.) (2021): 0947. http://dx.doi.org/10.21123/bsj.2021.18.2(suppl.).0947.
Full textNzenwata, Uchenna Jeremiah, Goodness Oluwamayokun Opateye, Noze-Otote Aisosa, et al. "Autonomous Database Systems – A Systematic Review of Self-Healing and Self-Tuning Database Systems." Asian Journal of Research in Computer Science 18, no. 7 (2025): 77–87. https://doi.org/10.9734/ajrcos/2025/v18i7721.
Full textKumar, Ritesh. "AI-Augmented Database Indexing for High-Performance Query Optimization." International Scientific Journal of Engineering and Management 02, no. 11 (2023): 1–7. https://doi.org/10.55041/isjem01292.
Full textBhattarai, Sushil, and Suman Thapaliya. "A Novel Approach to Self-tuning Database Systems Using Reinforcement Learning Techniques." NPRC Journal of Multidisciplinary Research 1, no. 7 (2024): 143–49. https://doi.org/10.3126/nprcjmr.v1i7.72480.
Full textShi, Lei, Tian Li, Lin Wei, Yongcai Tao, Cuixia Li, and Yufei Gao. "FASTune: Towards Fast and Stable Database Tuning System with Reinforcement Learning." Electronics 12, no. 10 (2023): 2168. http://dx.doi.org/10.3390/electronics12102168.
Full textBlank, Sebastian, Florian Wilhelm, Hans-Peter Zorn, and Achim Rettinger. "Querying NoSQL with Deep Learning to Answer Natural Language Questions." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 9416–21. http://dx.doi.org/10.1609/aaai.v33i01.33019416.
Full textSrikanth Reddy Keshireddy. "Reinforcement Learning Based Optimization of Query Execution Plans in Distributed Databases." Research Briefs on Information and Communication Technology Evolution 11 (March 11, 2025): 42–61. https://doi.org/10.69978/rebicte.v11i.211.
Full textSharma, Manas. "Machine Learning-Based Inferential Statistics for Query Optimization: A Novel Approach." European Journal of Computer Science and Information Technology 13, no. 18 (2025): 76–90. https://doi.org/10.37745/ejcsit.2013/vol13n187690.
Full textSassi, Najla, and Wassim Jaziri. "Efficient AI-Driven Query Optimization in Large-Scale Databases: A Reinforcement Learning and Graph-Based Approach." Mathematics 13, no. 11 (2025): 1700. https://doi.org/10.3390/math13111700.
Full textSun, Jun, Feng Ye, Nadia Nedjah, Ming Zhang, and Dong Xu. "Workload-Aware Performance Tuning for Multimodel Databases Based on Deep Reinforcement Learning." International Journal of Intelligent Systems 2023 (September 5, 2023): 1–17. http://dx.doi.org/10.1155/2023/8835111.
Full textWarveen, merza eido, and Maseeh Yasin Hajar. "Machine Learning Approaches for Enhancing Query Optimization in Large Databases." Engineering and Technology Journal 10, no. 03 (2025): 4326–49. https://doi.org/10.5281/zenodo.15105850.
Full textGerhard, Detlef, Julian Rolf, Pascalis Trentsios, and Jan Luca Siewert. "Machine Learning Methods for (Dis-)Assembly Sequence Planning - A Systematic Literature Review." International Journal of Advances in Production Research 1, no. 1 (2024): 83–98. http://dx.doi.org/10.62743/uad.8279.
Full textLiu, Siqi, Kay Choong See, Kee Yuan Ngiam, Leo Anthony Celi, Xingzhi Sun, and Mengling Feng. "Reinforcement Learning for Clinical Decision Support in Critical Care: Comprehensive Review." Journal of Medical Internet Research 22, no. 7 (2020): e18477. http://dx.doi.org/10.2196/18477.
Full textBarbosa, Diogo, Le Gruenwald, Laurent D’Orazio, and Jorge Bernardino. "QRLIT: Quantum Reinforcement Learning for Database Index Tuning." Future Internet 16, no. 12 (2024): 439. http://dx.doi.org/10.3390/fi16120439.
Full textOlayinka Akinbolajo. "Intelligent load balancing and concurrency control in cloud-based distributed databases: A machine learning approach." International Journal of Science and Research Archive 9, no. 1 (2023): 847–54. https://doi.org/10.30574/ijsra.2023.9.1.0350.
Full textWarnke, Benjamin, Kevin Martens, Tobias Winker, et al. "ReJOOSp: Reinforcement Learning for Join Order Optimization in SPARQL." Big Data and Cognitive Computing 8, no. 7 (2024): 71. http://dx.doi.org/10.3390/bdcc8070071.
Full textChoi, Seul-Gi, and Sung-Bae Cho. "Evolutionary Reinforcement Learning for Adaptively Detecting Database Intrusions." Logic Journal of the IGPL 28, no. 4 (2019): 449–60. http://dx.doi.org/10.1093/jigpal/jzz053.
Full textBinashir, Rofi'ah, Fakhrurroja Hanif, and Machbub Carmadi. "Dialogue management using reinforcement learning." TELKOMNIKA (Telecommunication, Computing, Electronics and Control) 19, no. 3 (2021): 931–38. https://doi.org/10.12928/telkomnika.v19i3.18319.
Full textRafea M. Ibrahim. "Exploring the Impact of Data Locality in Distributed Databases: A Machine Learning-Driven Approach to Optimizing Data Placement Strategies." Journal of Information Systems Engineering and Management 10, no. 11s (2025): 329–37. https://doi.org/10.52783/jisem.v10i11s.1595.
Full textDabiri, Hamed, Visar Farhangi, Mohammad Javad Moradi, Mehdi Zadehmohamad, and Moses Karakouzian. "Applications of Decision Tree and Random Forest as Tree-Based Machine Learning Techniques for Analyzing the Ultimate Strain of Spliced and Non-Spliced Reinforcement Bars." Applied Sciences 12, no. 10 (2022): 4851. http://dx.doi.org/10.3390/app12104851.
Full textModrak, Vladimir, Ranjitharamasamy Sudhakarapandian, Arunmozhi Balamurugan, and Zuzana Soltysova. "A Review on Reinforcement Learning in Production Scheduling: An Inferential Perspective." Algorithms 17, no. 8 (2024): 343. http://dx.doi.org/10.3390/a17080343.
Full textMehmood, Saba, and Syaharuddin Syaharuddin. "Reinforcement Learning for Automated Systems: Review of Concepts and Implementations." Jurnal Pemikiran dan Penelitian Pendidikan Matematika (JP3M) 7, no. 2 (2025): 146–66. https://doi.org/10.36765/jp3m.v7i2.734.
Full textSalieva, A. R., N. A. Verzun, and M. O. Kolbanev. "Strategy Optimization in Reinforcement Learning Algorithms in Logistic Decision-Making Systems." LETI Transactions on Electrical Engineering & Computer Science 18, no. 3 (2025): 65–77. https://doi.org/10.32603/2071-8985-2025-18-3-65-77.
Full textHuang, Honglan, and Henry V. Burton. "A database of test results from steel and reinforced concrete infilled frame experiments." Earthquake Spectra 36, no. 3 (2020): 1525–48. http://dx.doi.org/10.1177/8755293019899950.
Full textGopikrishna Maddali. "Enhancing Database Architectures with Artificial Intelligence (AI)." International Journal of Scientific Research in Science and Technology 12, no. 3 (2025): 296–308. https://doi.org/10.32628/ijsrst2512331.
Full textYan, Yu, Shun Yao, Hongzhi Wang, and Meng Gao. "Index selection for NoSQL database with deep reinforcement learning." Information Sciences 561 (June 2021): 20–30. http://dx.doi.org/10.1016/j.ins.2021.01.003.
Full textWee, Chee Keong, and Richi Nayak. "Adaptive load forecasting using reinforcement learning with database technology." Journal of Information and Telecommunication 3, no. 3 (2019): 381–99. http://dx.doi.org/10.1080/24751839.2019.1596470.
Full textPaludo Licks, Gabriel, Julia Colleoni Couto, Priscilla de Fátima Miehe, Renata de Paris, Duncan Dubugras Ruiz, and Felipe Meneguzzi. "SmartIX: A database indexing agent based on reinforcement learning." Applied Intelligence 50, no. 8 (2020): 2575–88. http://dx.doi.org/10.1007/s10489-020-01674-8.
Full textBai, Ruxue, Rongshang Chen, Xiao Lei, and Keshou Wu. "A Test Report Optimization Method Fusing Reinforcement Learning and Genetic Algorithms." Electronics 13, no. 21 (2024): 4281. http://dx.doi.org/10.3390/electronics13214281.
Full textKovalov, Serhii, Viktor Aulin, Andriy Grynkiv, and Yuriy Kovalov. "Modeling the Stochastic State Matrix of a Production Line for Optimize its Operational Reliability Using Reinforcement Learning." Central Ukrainian Scientific Bulletin. Technical Sciences 2, no. 11(42) (2025): 195–203. https://doi.org/10.32515/2664-262x.2025.11(42).2.195-203.
Full textZurita Álava, Susana Patricia. "El refuerzo académico una praxis docente: aportes para una propuesta a partir de la evaluación del aprendizaje: una revisión bibliográfica." KIRIA: Revista Científica Multidisciplinaria 3, no. 5 (2025): 111–28. https://doi.org/10.53877/p7stst02.
Full textMr. Godly C Mathew Zachariah, Mr. Sachu Santhosh, Mr. Anandhrosh S, Mr. Shibin Thomas, and Cina Mathew. "Database and Modern Database Technology." International Research Journal on Advanced Engineering and Management (IRJAEM) 2, no. 12 (2024): 3680–86. https://doi.org/10.47392/irjaem.2024.0546.
Full textAger Meldgaard, Søren, Jonas Köhler, Henrik Lund Mortensen, Mads-Peter V. Christiansen, Frank Noé, and Bjørk Hammer. "Generating stable molecules using imitation and reinforcement learning." Machine Learning: Science and Technology 3, no. 1 (2021): 015008. http://dx.doi.org/10.1088/2632-2153/ac3eb4.
Full textMartins, Miguel S. E., João M. C. Sousa, and Susana Vieira. "A Systematic Review on Reinforcement Learning for Industrial Combinatorial Optimization Problems." Applied Sciences 15, no. 3 (2025): 1211. https://doi.org/10.3390/app15031211.
Full textAribisala, Adetoye Ayokunle, Usama Ali Salahuddin Ghori, and Cristiano A. V. Cavalcante. "The Application of Reinforcement Learning to Pumps—A Systematic Literature Review." Machines 13, no. 6 (2025): 480. https://doi.org/10.3390/machines13060480.
Full textAl-Nawashi, Malek M., Obaida M. Al-hazaimeh, Tahat M. Nedal, Nasr Gharaibeh, Waleed A. Abu-Ain, and Tarik Abu-Ain. "Deep Reinforcement Learning-Based Framework for Enhancing Cybersecurity." International Journal of Interactive Mobile Technologies (iJIM) 19, no. 03 (2025): 170–90. https://doi.org/10.3991/ijim.v19i03.50727.
Full textBacha, Anis Mahmoud, Razika Boushaki Zamoum, and Fadhila Lachekhab. "Machine Learning Paradigms for UAV Path Planning: Review and Challenges." Journal of Robotics and Control (JRC) 6, no. 1 (2025): 215–33. https://doi.org/10.18196/jrc.v6i1.24097.
Full textKim, Hak Gu, Minho Park, Sangmin Lee, Seongyeop Kim, and Yong Man Ro. "Visual Comfort Aware-Reinforcement Learning for Depth Adjustment of Stereoscopic 3D Images." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 2 (2021): 1762–70. http://dx.doi.org/10.1609/aaai.v35i2.16270.
Full textLi, Zhongliang, Yaofeng Tu, and Zongmin Ma. "A Sample-Aware Database Tuning System With Deep Reinforcement Learning." Journal of Database Management 35, no. 1 (2023): 1–25. http://dx.doi.org/10.4018/jdm.333519.
Full textTanwir, Ahmad, Ashraf Adnan, Truscan Dragos, Domi Andi, and Porres Ivan. "Using Deep Reinforcement Learning for Exploratory Performance Testing of Software Systems With Multi-Dimensional Input Spaces." IEEEE Access 8 (October 26, 2020): 195000–195020. https://doi.org/10.1109/ACCESS.2020.3033888.
Full textWang, Sixuan, Cailong Ma, Wenhu Wang, et al. "Prediction of Failure Modes and Minimum Characteristic Value of Transverse Reinforcement of RC Beams Based on Interpretable Machine Learning." Buildings 13, no. 2 (2023): 469. http://dx.doi.org/10.3390/buildings13020469.
Full textN.Vanitha*1, &. Dr T. Bhuvaneswari2. "SEMANTIC DATA ANONYMIZATION USING REINFORCEMENT LEARNING FOR CLOAKING GRAPH PERCOLATION OF SENSITIVE DATA." GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES 5, no. 12 (2018): 46–54. https://doi.org/10.5281/zenodo.2156480.
Full textMontilla, Carlos, Renaud Ansart, Anass Majji, et al. "On Using CFD and Experimental Data to Train an Artificial Neural Network to Reconstruct ECVT Images: Application for Fluidized Bed Reactors." Processes 12, no. 2 (2024): 386. http://dx.doi.org/10.3390/pr12020386.
Full textZhou, Xuanhe, Lianyuan Jin, Ji Sun, et al. "DBMind." Proceedings of the VLDB Endowment 14, no. 12 (2021): 2743–46. http://dx.doi.org/10.14778/3476311.3476334.
Full textXiao, Congzhen, Baojuan Qiao, Jianhui Li, Zhiyong Yang, and Jiannan Ding. "Prediction of Transverse Reinforcement of RC Columns Using Machine Learning Techniques." Advances in Civil Engineering 2022 (November 22, 2022): 1–15. http://dx.doi.org/10.1155/2022/2923069.
Full textMuthukumar, Yogita, and Topalli Krishnakumar. "Innovative Face Anti-Spoofing: A DRL Strategy for Enhanced Security." Journal of Research in Science and Engineering 6, no. 7 (2024): 59–62. http://dx.doi.org/10.53469/jrse.2024.06(07).10.
Full textEt.al, Susmita Goswami. "A Survey on Human Detection using Reinforcement Learning." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 6 (2021): 123–26. http://dx.doi.org/10.17762/turcomat.v12i6.1276.
Full textYousra, Dahdouh, Anouar Boudhir Abdelhakim, and Ben Ahmed Mohamed. "A New Approach using Deep Learning and Reinforcement Learning in HealthCare." International journal of electrical and computer engineering systems 14, no. 5 (2023): 557–64. http://dx.doi.org/10.32985/ijeces.14.5.7.
Full textZhu, Xintong, Zongpu Jia, Xiaoyan Pang, and Shan Zhao. "Joint Optimization of Task Caching and Computation Offloading for Multiuser Multitasking in Mobile Edge Computing." Electronics 13, no. 2 (2024): 389. http://dx.doi.org/10.3390/electronics13020389.
Full textRafi, Aisha, Ambreen Ansar, and Muneeza Amir Sami. "The Implication of Positive Reinforcement Strategy in dealing with Disruptive Behaviour in the Classroom: A Scoping Review." Journal of Rawalpindi Medical College 24, no. 2 (2020): 173–79. http://dx.doi.org/10.37939/jrmc.v24i2.1190.
Full text