Journal articles on the topic 'Rings (Algebra) Noether's theorem'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Rings (Algebra) Noether's theorem.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Osterburg, James, and Declan Quinn. "A Noether Skolem theorem for group-graded rings." Journal of Algebra 113, no. 2 (1988): 483–90. http://dx.doi.org/10.1016/0021-8693(88)90174-3.
Full textLee†, Tsiu-Kwen, and Kun-Shan Liu. "The Skolem–Noether Theorem for Semiprime Rings Satisfying a Strict Identity." Communications in Algebra 35, no. 6 (2007): 1949–55. http://dx.doi.org/10.1080/00927870701247062.
Full textOsterburg, James, and Declan Quinn. "An addendum to a Noether Skolem theorem for group-graded rings." Journal of Algebra 120, no. 2 (1989): 414–15. http://dx.doi.org/10.1016/0021-8693(89)90205-6.
Full textFONTANA, M., P. JARA, and E. SANTOS. "PRÜFER ⋆-MULTIPLICATION DOMAINS AND SEMISTAR OPERATIONS." Journal of Algebra and Its Applications 02, no. 01 (2003): 21–50. http://dx.doi.org/10.1142/s0219498803000349.
Full textAnderson, Ian M., and Juha Pohjanpelto. "Symmetries, conservation laws and variational principles for vector field theories†." Mathematical Proceedings of the Cambridge Philosophical Society 120, no. 2 (1996): 369–84. http://dx.doi.org/10.1017/s0305004100074922.
Full textContiero, André, Lia Feital, and Renato Vidal Martins. "Max Noether's Theorem for integral curves." Journal of Algebra 494 (January 2018): 111–36. http://dx.doi.org/10.1016/j.jalgebra.2017.10.009.
Full textBrivio, Sonia, and Gian Pietro Pirola. "A Nonlinear Version of Noether's Type Theorem." Communications in Algebra 32, no. 7 (2004): 2723–32. http://dx.doi.org/10.1081/agb-120037412.
Full textSaworotnow, Parfeny P. "Gelfand theorem implies Stone representation theorem of Boolean rings." International Journal of Mathematics and Mathematical Sciences 18, no. 4 (1995): 701–4. http://dx.doi.org/10.1155/s0161171295000895.
Full textFAITH, CARL. "FACTOR RINGS OF PSEUDO-FROBENIUS RINGS." Journal of Algebra and Its Applications 05, no. 06 (2006): 847–54. http://dx.doi.org/10.1142/s0219498806001831.
Full textAlmeida, Marcela, Manuela Blaum, Lisi D'Alfonso, and Pablo Solernó. "Computing bases of complete intersection rings in Noether position." Journal of Pure and Applied Algebra 162, no. 2-3 (2001): 127–70. http://dx.doi.org/10.1016/s0022-4049(00)00135-3.
Full textXu, Jinzhong. "A theorem on artinian rings." Communications in Algebra 22, no. 3 (1994): 905–14. http://dx.doi.org/10.1080/00927879408824884.
Full textNikolopoulos, Christos, and Panagiotis Nikolopoulos. "Generalizations of the primitive element theorem." International Journal of Mathematics and Mathematical Sciences 14, no. 3 (1991): 463–70. http://dx.doi.org/10.1155/s0161171291000637.
Full textQuang Dinh, Hai, and Dinh Van Huynh. "A decomposition theorem for ℘∗-semisimple rings." Journal of Pure and Applied Algebra 186, no. 2 (2004): 139–49. http://dx.doi.org/10.1016/s0022-4049(03)00127-0.
Full textLarson, Suzanne. "THE INTERMEDIATE VALUE THEOREM INf-RINGS." Communications in Algebra 30, no. 5 (2002): 2469–504. http://dx.doi.org/10.1081/agb-120003479.
Full textFrederico, Gastão, and Delfim Torres. "Noether's symmetry Theorem for variational and optimal control problems with time delay." Numerical Algebra, Control and Optimization 2, no. 3 (2012): 619–30. http://dx.doi.org/10.3934/naco.2012.2.619.
Full textUPADHYAY, SUDHAKER, and BHABANI PRASAD MANDAL. "NONCOMMUTATIVE GAUGE THEORIES: MODEL FOR HODGE THEORY." International Journal of Modern Physics A 28, no. 25 (2013): 1350122. http://dx.doi.org/10.1142/s0217751x13501224.
Full textTang, Gaohua, and Yiqiang Zhou. "An embedding theorem on triangular matrix rings." Linear and Multilinear Algebra 65, no. 5 (2016): 882–90. http://dx.doi.org/10.1080/03081087.2016.1211083.
Full textTan, Yi-Jia. "Fillmore's theorem for matrices over factorial rings." Linear and Multilinear Algebra 68, no. 3 (2018): 563–67. http://dx.doi.org/10.1080/03081087.2018.1509045.
Full textBarioli, Francesco, Alberto Facchini, Francisco Raggi, and José Ríos. "KRULL-SCHMIDT THEOREM AND HOMOGENEOUS SEMILOCAL RINGS." Communications in Algebra 29, no. 4 (2001): 1649–58. http://dx.doi.org/10.1081/agb-100002124.
Full textDer Kallen, Wilberd Van. "Vaserstein's pre-stabilization theorem over commutative rings." Communications in Algebra 15, no. 3 (1987): 657–63. http://dx.doi.org/10.1080/00927878708823435.
Full textOda, Fumihito, and Tomoyuki Yoshida. "Crossed Burnside Rings I. The Fundamental Theorem." Journal of Algebra 236, no. 1 (2001): 29–79. http://dx.doi.org/10.1006/jabr.2000.8341.
Full textRadjabalipour, M., P. Rosenthal, and B. R. Yahaghi. "Burnside's theorem for matrix rings over division rings." Linear Algebra and its Applications 383 (May 2004): 29–44. http://dx.doi.org/10.1016/j.laa.2003.08.011.
Full textLashkhi, A., and T. Kvirikashvili. "On the Fundamental Theorem of Geometric Algebra Over SF-Rings." Communications in Algebra 36, no. 9 (2008): 3564–73. http://dx.doi.org/10.1080/00927870701776557.
Full textGamanda, Maroua, Henri Lombardi, Stefan Neuwirth, and Ihsen Yengui. "The syzygy theorem for Bézout rings." Mathematics of Computation 89, no. 322 (2019): 941–64. http://dx.doi.org/10.1090/mcom/3466.
Full textDugas, Manfred, and Rüdiger Göbel. "An extension of Zassenhaus' theorem on endomorphism rings." Fundamenta Mathematicae 194, no. 3 (2007): 239–51. http://dx.doi.org/10.4064/fm194-3-2.
Full textShimomoto, Kazuma, and Wenliang Zhang. "On the localization theorem for F-pure rings." Journal of Pure and Applied Algebra 213, no. 6 (2009): 1133–39. http://dx.doi.org/10.1016/j.jpaa.2008.11.047.
Full textFaith, Carl. "Dedekind Finite Rings and a Theorem of Kaplansky." Communications in Algebra 31, no. 9 (2003): 4175–78. http://dx.doi.org/10.1081/agb-120022785.
Full textBanaschewski, B. "The prime ideal theorem and representation ofF-rings." Algebra Universalis 25, no. 1 (1988): 384–87. http://dx.doi.org/10.1007/bf01229983.
Full textNicholson, W. K., and E. Sánchez Campos. "Rings with the dual of the isomorphism theorem." Journal of Algebra 271, no. 1 (2004): 391–406. http://dx.doi.org/10.1016/j.jalgebra.2002.10.001.
Full textKleinert, Ernst. "A theorem on units of integral group rings." Journal of Pure and Applied Algebra 49, no. 1-2 (1987): 161–71. http://dx.doi.org/10.1016/0022-4049(87)90126-5.
Full textBorceux, F., and R. Cruciani. "A Generic Representation Theorem for Non-commutative Rings." Journal of Algebra 167, no. 2 (1994): 291–308. http://dx.doi.org/10.1006/jabr.1994.1186.
Full textLiu, Gongxiang, and Fang Li. "On Strongly Groupoid Graded Rings and the Corresponding Clifford Theorem." Algebra Colloquium 13, no. 02 (2006): 181–96. http://dx.doi.org/10.1142/s1005386706000198.
Full textGouvei, Paulo D. F., and Delfim F. M. Torres. "Automatic Computation of Conservation Laws in the Calculus of Variations and Optimal Control." Computational Methods in Applied Mathematics 5, no. 4 (2005): 387–409. http://dx.doi.org/10.2478/cmam-2005-0018.
Full textKelly, Shane, and Matthew Morrow. "K-theory of valuation rings." Compositio Mathematica 157, no. 6 (2021): 1121–42. http://dx.doi.org/10.1112/s0010437x21007119.
Full textFernandez Lopez,, A., E. Garcia Rus, and E. Sanchez Campos. "Structure theorem for prime rings satisfying a generalized identity." Communications in Algebra 22, no. 5 (1994): 1729–40. http://dx.doi.org/10.1080/00927879408824932.
Full textChuang #, Chen-Lian, and Cheng-Kai Liu. "Extended Jacobson Density Theorem for Rings With Skew Derivations." Communications in Algebra 35, no. 4 (2007): 1391–413. http://dx.doi.org/10.1080/00927870601142207.
Full textMulcahy, Colm. "A representation theorem for higher level reduced Witt rings." Journal of Algebra 119, no. 1 (1988): 105–22. http://dx.doi.org/10.1016/0021-8693(88)90078-6.
Full textGeneralov, A. I., and I. M. Zilberbord. "Generalized “stacked bases” theorem for modules over semiperfect rings." Communications in Algebra 49, no. 6 (2021): 2597–605. http://dx.doi.org/10.1080/00927872.2021.1879105.
Full textde Seguins Pazzis, Clément. "The Flanders theorem over division rings." Linear Algebra and its Applications 493 (March 2016): 313–22. http://dx.doi.org/10.1016/j.laa.2015.11.022.
Full textWang, Zhou, and Jianlong Chen. "A Note on Clean Rings." Algebra Colloquium 14, no. 03 (2007): 537–40. http://dx.doi.org/10.1142/s1005386707000491.
Full textGeorge, Seleena M., Roy L. McCasland, and Patrick F. Smith. "A principal ideal theorem analogue for modules over commutative rings." Communications in Algebra 22, no. 6 (1994): 2083–99. http://dx.doi.org/10.1080/00927879408824957.
Full textHindman, Peter, Lee Klingler, and Charles J. Odenthal. "On the krull-schmidt-azumaya theorem for integral group rings." Communications in Algebra 26, no. 11 (1998): 3743–58. http://dx.doi.org/10.1080/00927879808826371.
Full textOsmanagic, E. "On an approximation theorem for krull rings with zero divisors." Communications in Algebra 27, no. 8 (1999): 3647–57. http://dx.doi.org/10.1080/00927879908826653.
Full textChen, Cao-yu, and Warren D. Nichols. "A duality theorem for hope module algebras over dedekind rings." Communications in Algebra 18, no. 10 (1990): 3209–21. http://dx.doi.org/10.1080/00927879008824070.
Full textBarhoumi, Sami, and Henri Lombardi. "An algorithm for the Traverso–Swan theorem on seminormal rings." Journal of Algebra 320, no. 4 (2008): 1531–42. http://dx.doi.org/10.1016/j.jalgebra.2008.05.013.
Full textGarcı́a, J. L., and L. Marı́n. "An Extension of a Theorem on Endomorphism Rings and Equivalences." Journal of Algebra 181, no. 3 (1996): 962–66. http://dx.doi.org/10.1006/jabr.1996.0156.
Full textLee, Tsiu-Kwen. "Ad-nilpotent Elements of Semiprime Rings with Involution." Canadian Mathematical Bulletin 61, no. 2 (2018): 318–27. http://dx.doi.org/10.4153/cmb-2017-005-3.
Full textFernando, José F. "ON THE SUBSTITUTION THEOREM FOR RINGS OF SEMIALGEBRAIC FUNCTIONS." Journal of the Institute of Mathematics of Jussieu 14, no. 4 (2014): 857–94. http://dx.doi.org/10.1017/s1474748014000206.
Full textWang, Fanggui, and Lei Qiao. "Two applications of Nagata rings and modules." Journal of Algebra and Its Applications 19, no. 06 (2019): 2050115. http://dx.doi.org/10.1142/s0219498820501157.
Full textÁnh, P. N., and L. Márki. "Orders in primitive rings with non-zero socle and posner's theorem." Communications in Algebra 24, no. 1 (1996): 289–94. http://dx.doi.org/10.1080/00927879608825567.
Full text