Academic literature on the topic 'Solar fuel production'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solar fuel production.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Solar fuel production"

1

Han, Hongxian, and Can Li. "Photocatalysis in solar fuel production." National Science Review 2, no. 2 (April 20, 2015): 145–47. http://dx.doi.org/10.1093/nsr/nwv016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Davenport, Timothy C., Chih-Kai Yang, Christopher J. Kucharczyk, Michael J. Ignatowich, and Sossina M. Haile. "Maximizing fuel production rates in isothermal solar thermochemical fuel production." Applied Energy 183 (December 2016): 1098–111. http://dx.doi.org/10.1016/j.apenergy.2016.09.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Randhir, Kelvin, Nathan R. Rhodes, Like Li, Nicholas AuYeung, David W. Hahn, Renwei Mei, and James F. Klausner. "Magnesioferrites for solar thermochemical fuel production." Solar Energy 163 (March 2018): 1–15. http://dx.doi.org/10.1016/j.solener.2017.12.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sun, Ke, Shaohua Shen, Yongqi Liang, Paul E. Burrows, Samuel S. Mao, and Deli Wang. "Enabling Silicon for Solar-Fuel Production." Chemical Reviews 114, no. 17 (August 2014): 8662–719. http://dx.doi.org/10.1021/cr300459q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ma, Dongling. "(Invited) Towards Broadband Solar Fuel Production." ECS Meeting Abstracts MA2022-02, no. 48 (October 9, 2022): 1804. http://dx.doi.org/10.1149/ma2022-02481804mtgabs.

Full text
Abstract:
Combining nanomaterials of different properties into nanohybrids can potentially lead to improved properties/performance or multiple functions. In particular, forming nanomaterials junctions and using plasmons represent two important, promising strategies for realizing broadband photocalysis in strategically important applications such as solar fuels and photocatalytic degradation of pollutants in our environments. In this talk, I will present some of our recent work on the rational design and realization of nanohybrid materials as well as their applications in solar fuel and photocatalysis. For instance, the construction of homojunctions of nanoplates made of metal–organic frameworks (MOF) led to broadened light absorption and increased photoactivity. The well-defined MOF homojunction was prepared by a facile one-pot synthesis route directed by hollow transition metal nanoparticles. The homojunction is enabled by two concentric stacked nanoplates with slightly different crystal phases. The enhanced charge separation in the homojunction was visualized by in-situ surface photovoltage microscopy. The as-prepared nanostacks displayed a visible-light-driven carbon dioxide reduction with very high carbon monooxide selectivity, and excellent stability. Another example is about the in situ synthesis of plasmonic Ag nanoparticles (AgNPs) and Ag-MOM (metal organic matrix) using one-step facile approach. The intimate and stable interface between the AgNPs and Ag-MOM and hot electron transfer from the plasmonic AgNPs to MOM led to highly efficient visible-light photocatalytic H2 generation in aqueous solution, which surpasses most of reported MOF-based photocatalytic systems. This work sheds light on effective electronic and energy bridging between plasmonic NPs and metal organic matrix. Related References: [1] Nature communications, 12, Article number: 1231 (2021); [2] Nature communications, 2022, under revision; [3] Chemistry of Materials, 2021, 33, 695-705; [4] Adv. Funct. Mater. 2019, 1902486.
APA, Harvard, Vancouver, ISO, and other styles
6

Falter, Christoph, Niklas Scharfenberg, and Antoine Habersetzer. "Geographical Potential of Solar Thermochemical Jet Fuel Production." Energies 13, no. 4 (February 12, 2020): 802. http://dx.doi.org/10.3390/en13040802.

Full text
Abstract:
The solar thermochemical fuel pathway offers the possibility to defossilize the transportation sector by producing renewable fuels that emit significantly less greenhouse gases than conventional fuels over the whole life cycle. Especially for the aviation sector, the availability of renewable liquid hydrocarbon fuels enables climate impact goals to be reached. In this paper, both the geographical potential and life-cycle fuel production costs are analyzed. The assessment of the geographical potential of solar thermochemical fuels excludes areas based on sustainability criteria such as competing land use, protected areas, slope, or shifting sands. On the remaining suitable areas, the production potential surpasses the current global jet fuel demand by a factor of more than fifty, enabling all but one country to cover its own demand. In many cases, a single country can even supply the world demand for jet fuel. A dedicated economic model expresses the life-cycle fuel production costs as a function of the location, taking into account local financial conditions by estimating the national costs of capital. It is found that the lowest production costs are to be expected in Israel, Chile, Spain, and the USA, through a combination of high solar irradiation and low-level capital costs. The thermochemical energy conversion efficiency also has a strong influence on the costs, scaling the size of the solar concentrator. Increasing the efficiency from 15% to 25%, the production costs are reduced by about 20%. In the baseline case, the global jet fuel demand could be covered at costs between 1.58 and 1.83 €/L with production locations in South America, the United States, and the Mediterranean region. The flat progression of the cost-supply curves indicates that production costs remain relatively constant even at very high production volumes.
APA, Harvard, Vancouver, ISO, and other styles
7

Khusnutdinova, D., A. M. Beiler, B. L. Wadsworth, S. I. Jacob, and G. F. Moore. "Metalloporphyrin-modified semiconductors for solar fuel production." Chemical Science 8, no. 1 (2017): 253–59. http://dx.doi.org/10.1039/c6sc02664h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yoon, Ji‐Won, Jae‐Hyeok Kim, Changyeon Kim, Ho Won Jang, and Jong‐Heun Lee. "MOF‐Based Hybrids for Solar Fuel Production." Advanced Energy Materials 11, no. 27 (January 15, 2021): 2003052. http://dx.doi.org/10.1002/aenm.202003052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bassi, Prince Saurabh, Gurudayal, Lydia Helena Wong, and James Barber. "Iron based photoanodes for solar fuel production." Physical Chemistry Chemical Physics 16, no. 24 (2014): 11834. http://dx.doi.org/10.1039/c3cp55174a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Amao, Yutaka, Naho Shuto, Kana Furuno, Asami Obata, Yoshiko Fuchino, Keiko Uemura, Tsutomu Kajino, et al. "Artificial leaf device for solar fuel production." Faraday Discuss. 155 (2012): 289–96. http://dx.doi.org/10.1039/c1fd00097g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Solar fuel production"

1

Cárdenas, Morcoso Drialys. "Advanced semiconductors for photo-electrocatalytic solar fuel production." Doctoral thesis, Universitat Jaume I, 2020. http://dx.doi.org/10.6035/14104.2020.679916.

Full text
Abstract:
Uno de los retos actuales de la ciencia y la tecnología es el desarrollo y utilización de fuentes de energías limpias, sostenibles y seguras, con el fin de sustituir el uso de combustibles fósiles. La energía solar, única alternativa viable, puede convertirse y almacenarse en forma de enlaces moleculares, mimetizando el proceso de fotosíntesis de las plantas, para la obtención de combustibles u otros productos de valor añadido. Para ello se requieren materiales semiconductores que puedan absorber y transformar la energía solar en energía química de manera eficiente. En la presente tesis doctoral se abordó el estudio de materiales semiconductores empleados en la obtención fotoelectrocatalítica de combustibles solares. Dicha investigación se realizó desde diferentes enfoques, que inlcuyen: la modificación de fotoelectrodos con recubrimientos catalíticos obtenidos a partir de marcos metal-orgánicos; la implementación de un nuevo método para la comprensión de los mecanismos de operación de fotoelectrodos; la integración de dispositivos electrocatalíticos y fotovoltaicos; y la evaluación y establecimiento de nuevos sistemas con potencial aplicación en procesos foto-electrocatalíticos.
The development and use of clean, sustainable and safe energy sources, in order to substitute the use of fossil fuels, is a current challenge of science and technology. Solar energy, the only viable alternative, can be converted and stored in the form of molecular bonds, mimicking the photosynthesis process in green plants, to obtain fuels or other added-value products. This process requires semiconductor materials that can efficiently harvest and transform solar into chemical energy. In the present doctoral thesis, the study of semiconductor materials for photo-electrocatalytic applications was addressed from different approaches. That includes: the modification of photoelectrodes with catalytic coatings, obtained from a metal-organic framework; the implementation of a new method for the understanding of the photoelectrodes operating mechanisms; the integration of electrocatalytic and photovoltaic devices from Earth-abundant materials; and, finally, the investigation of new systems with potential application in photo-electrocatalytic processes. (Signatura
Programa de Doctorat en Ciències
APA, Harvard, Vancouver, ISO, and other styles
2

Ghamgosar, Pedram. "Advanced Metal Oxide Semiconductors for Solar Energy Harvesting and Solar Fuel Production." Licentiate thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64922.

Full text
Abstract:
Increasing energy consumption and its environmental impacts make it necessary to look for alternative energy sources. Solar energy as huge energy source which is able to cover the terms sustainability is considered as a favorable alternative. Solar cells and solar fuels are two kinds of technologies, which make us able to harness solar energy and convert it to electricity and/or store it chemically. Metal oxide semiconductors (MOSs) have a major role in these devices and optimization of their properties (composition, morphology, dimensions, crystal structure) makes it possible to increase the performance of the devices. The light absorption, charge carriers mobility, the time scale between charge injection, regeneration and recombination processes are some of the properties critical to exploitation of MOSs in solar cells and solar fuel technology. In this thesis, we explore two different systems. The first one is a NiO mesoporous semiconductor photocathode sensitized with a biomimetic Fe-Fe catalyst and a coumarin C343 dye, which was tested in a solar fuel device to produce hydrogen. This system is the first solar fuel device based on a biomimetic Fe-Fe catalyst and it shows a Faradic efficiency of 50% in hydrogen production. Cobalt catalysts have higher Faradic efficiency but their performance due to hydrolysis in low pH condition is limited. The second one is a photoanode based on the nanostructured hematite/magnetite film, which was tested in a photoelectrochemical cell. This hybrid electrode improved the photoactivity of the photoelectrochemical cell for water splitting. The main mechanism for the improvement of the functional properties relies with the role of the magnetite phase, which improves the charge carrier mobility of the composite system, compared to pure hematite, which acts as good light absorber semiconductor. By optimizing the charge separation and mobility of charge carriers of MOSs, they can be a promising active material in solar cells and solar fuel devices due to their abundance, stability, non-toxicity, and low-cost. The future work will be focused on the use of nanostructured MOSs in all-oxide solar cell devices. We have already obtained some preliminary results on 1-dimensional heterojunctions, which we report in Chapter 3.3. While they are not conclusive, they give an idea about the future direction of the present research.
APA, Harvard, Vancouver, ISO, and other styles
3

Uddin, Azhar. "Solar fuels via two-step thermochemical redox cycles for power and fuel production." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/671139.

Full text
Abstract:
With the issue of the rise of anthropogenic CO2, global warming and rise of the primary energy demand, strong measures for the energy transition and the diversification with renewables and existing fossil-based infrastructure are required. Also, carbon capture and utilization of CO2 would also be needed. In that sense, thermochemical redox cycles gain particular interest to produce synthetic fuels, which can be used for energy generation and production of chemicals. In a two-step redox cycles, metal oxides acts as oxygen carriers and undergo looping between two reactors. In the reduction reactor, metal oxide is reduced with release of oxygen (solar-thermal) or produces syngas (for fuel reduction) whereas, in oxidation, CO2/H2O splits for form syngas when in contact with the metal oxide. Ceria being readily available at large scale and due to its nature of undergoing reduction non-stoichiometrically at low temperature makes it a good candidate. In the present thesis, a detailed investigation of thermochemical dissociation of CO2 and H2O considering solar thermal and fuel reduction with a focus on non-structured reactors is carried out. For the solar-driven cycle, an assessment of counter-current flow moving bed reactors for reduction and oxidation is performed and a chemical looping (CL) unit is added to a 100 MW power plant. With an operating temperature of 1600oC and 10-7 bar pressure, a maximum power output of 12.9 MW with solar to electricity efficiency of 25.4% is calculated. This additional power would bring down the efficiency loss due to carbon capture from 11.3 to 6%. Even though a considerable efficiency is obtained on very optimistic operating conditions, it still requires a huge solar field. Economics revealed that with a carbon tax of $40/tone of CO2 the levelized cost of electricity (LCOE) achieved is 17.8 times higher than the existing market price (without carbon capture). If a higher carbon tax of 80$/MWh is considered that it would still be 6.28 times higher for a plant with a carbon tax. As an alternative, methane-driven CL unit is integrated into a power plant to access the overall system efficiency and amount of efficiency regain after carbon capture. Since there exists no solid-state kinetic model in the literature for methane driven CO2/H2O splitting cycle, an experimental investigation was performed which revealed that an Avrami-Erofe’ev (AE3) model fit best to both oxidation and reduction, with activation energies of 283 kJ/mol and 59.7 kJ/mol, respectively. A comparative assessment was performed to investigate the influence of kinetics. A CL unit based on thermodynamics and kinetics (with moving bed reactors) were tested in a power plant. A drop of 20% in the efficiency of the CL unit was observed when the kinetic-based CL unit is considered. However, due to thermal balance within the system, a similar thermal efficiency of the overall plant was achieved as 50.9%. However, when the thermodynamic-based CL unit layout is considered there exists an excess heat which predicts the possibility of improving the efficiency. An economic assessment revealed a specific overnight capital cost of 2455$/kW, a levelized cost of CO2 savings of 96.25 $/tonneCO2, and a LCOE of 128.01 $/MWh. However, with a carbon tax of 6 $/tonneCO2, the LCOE would drop below 50 $/MWh. The methane-driven CL unit is later integrated as an add-on unit to a polygeneration plant that produces electricity and dimethyl ether. The results showed that the plant can produce 103 MWe and 2.15 kg/s of DME with energy and exergy efficiency of 50% and 44%, respectively. The capital investment required for the plantis about $534 million. With the carbon tax of $40/tonne of CO2, a current DME price of $18/GJ and an electricity price of $50/MWh would be achieved. Overall, the integration of the CL unit as an add-on unit to the power plant is more suitable than polygeneration with respect to the existing market price.
El aumento del CO2 antropogénico y el calentamiento global y el aumento de la demanda de energía primaria hace que se requieran medidas para la transición energética y la diversificación con energías renovables e infraestructuras existentes basadas en combustibles fósiles. Además de implementar medidas para la captura y el secuestro de carbono, también se necesita desarrollar métodos para la utilización de CO2. En ese sentido, los ciclos redox termoquímicos son particularmente interesantes para producir combustible sintético que, a su vez, pueden utilizarse para la producción de otras substancias químicas. La rotura de CO2 / H2O (CL) mediante una vía termoquímica de dos pasos está compuesta por dos reacciones redox con un óxido metálico. El primer paso es la reducción de los óxidos metálicos al perder oxígeno y crear vacantes en la red a una temperatura más alta y convertirse en óxido de metal de valencia más baja. Durante la etapa de oxidación, los gases reactivos CO2 / H2O reaccionan con el óxido metálico reducido formando CO y H2. Se ha investigado el uso de diferentes óxidos metálicos en función de su capacidad de transporte de oxígeno y sus propiedades para realizar ciclos redox continuos a distintos valores de temperatura y presión. Después de un examen cuidadoso, se ha seleccionado a la ceria para la división de CO2 / H2O a gran escala. En el presente trabajo, se investigan las divisiones termoquímicas de CO2 / H2O impulsadas por energía solar y la reducción de metano para la producción de gas de síntesis, con especial atención a su aplicación en reactores no estructurados. Se evalúa el uso de reactores de lecho móvil basado en flujo contracorriente y reactores de lecho fluidizado que funcionan en diferentes regímenes de fluidización. Es un reactor de lecho móvil tanto para la etapa de reducción como para la etapa de oxidación se obtienen altas selectividades de CO y H2 con volúmenes óptimos del reactor, mientras que en un reactor de lecho fluidizado el volumen requerido es mucho más alto, lo que lo hace inviable. Los modelos de reactor se han desarrollado en Aspen plus y se validan a partir de la literatura. Un análisis de sensibilidad ha revelado que la unidad CL depende en gran medida de la temperatura y la presión. El análisis se ha ampliado integrando la unidad desarrollada de CL como una unidad adicional a una central eléctrica de 100 MW con captura de carbono. La eficiencia de la planta se ha investigado considerando sólo la división de CO2, sólo la del H2O y la mezcla de CO2 y H2O como alimentación al reactor de oxidación de la unidad CL. El resultado es de una potencia máxima de 12.9 MW con una eficiencia de energía solar a eléctrica de 25.4%. Esta potencia adicional reduciría la pérdida de eficiencia debido a la captura de carbono de 11.3 a 6%. Para lograr esto, el reactor de reducción de la unidad CL debe funcionar a 1600 ° C y 10-7 bar de presión. Estas condiciones necesitarían un enorme campo solar y la operación, en ausencia de almacenamiento térmico, se limitaría a unas pocas horas durante el día. El análisis técnico-económico ha revelado que el coste nivelado de la electricidad es de 1321 $/MWh sin incluir incentivos ni impuestos sobre el carbono. Posteriormente, se ha considerado la reducción del metano como una alternativa a la reducción térmica. Al principio, se realizaron análisis termodinámicos de la unidad de CL impulsada por metano. A partir del análisis, se ha demostrado que la temperatura mínima requerida es de 900°C con 50% de exceso de metano para la reducción, lo que supone una eficiencia de la unidad CL de 62% con un rendimiento óptimo de CO y H2. La división de CO2/H2O en el reactor de oxidación a una mayor temperatura de salida beneficiaría considerablemente la eficiencia energética del ciclo redox CL completo. La variación de la relación H2/CO en la salida con respecto a los parámetros de entrada variables que incluyen la composición del gas al reactor de oxidación se ha estudiado con el fin de especificar las condiciones operativas idóneas. Posteriormente, la unidad CL impulsada por metano se ha integrado como una unidad adicional a una central eléctrica de 500 MW alimentada por oxígeno. Se ha investigado el rendimiento de un sistema con un ciclo combinado de gas natural convencional con o sin captura de carbono. Se ha obtenido una eficiencia de sistema y eficiencia energética de 50.7 y 47.4%, respectivamente. La eficiencia del sistema podría mejorarse a 61.5%, sujeto a la optimización del sistema. La evaluación tecno-económica ha revelado un coste de capital durante la noche de 2455 $/kW con un coste de ahorro de CO2 de 96.25 $/tonelada CO2 y un LCOE de 128.01 $/MWh. Sin embargo, con créditos de carbono de 6 $/tonelada CO2, el LCOE caería por debajo de 50 $/MWh.
Con l'aumento delle emissioni di CO2 antropogenica che contribuiscono al riscaldamento globale e l'incremento della domanda mondiale di energia primaria, sono richieste significative misure per favorire la diversificazione delle fonti e la transizione energetica tramite fonti rinnovabili a partire dalle infrastrutture esistenti basate su combustibili fossili. Prima ancora degli interventi per la cattura e il sequestro dell’anidride carbonica, anche l’utilizzo della CO2 rappresenta una misura necessaria al raggiungimento degli obiettivi di decarbonizzazione. In questo senso, i cicli redox termochimici hanno acquisito particolare interesse per la produzione di combustibile sintetico da utilizzare come intermedio nella produzione di altri prodotti chimici. La separazione chimica di CO2/H2O attraverso un ciclo termochimico – chemical looping splitting (CL) – in due fasi è composta da due reazioni redox con un ossido di metallo. La prima fase del ciclo avviene alla temperatura più elevata e consiste nella riduzione dell’ossido di metallo, che cede ossigeno creando vacanze nel reticolo e diventando ossido di metallo a bassa valenza. Durante la fase di ossidazione, i gas reagenti CO2/H2O reagiscono con l'ossido di metallo ridotto che forma CO e H2. Una mappatura dettagliata dei diversi ossidi di metallo è stata effettuata in base alla loro capacità di trasporto dell’ossigeno e alle proprietà nei cicli di ossido-riduzione a funzionamento continuo in condizioni di variazione di temperatura e pressione. Dopo un attento esame, l’ossido di Cerio - ceria - è stato selezionato per l'applicazione che può essere disponibile per la scissione CO2 / H2O su larga scala. In questo lavoro, sia la separazione termochimica di CO2/H2O alimentata tramite energia solare, sia i cicli con riduzione tramite metano, entrambi finalizzati all produzione di syngas sono stati studiati con particolare attenzione ai reattori non strutturati. Per il ciclo termochimico basato su energia solare, è stata effettuata la valutazione dei reattori a letto mobile a flusso in controcorrente e a letto fluido che operano in diversi regimi di fluidizzazione. Il reattore a letto mobile è stato individuato come il più performante sia per la riduzione che l’ossidazione, con elevate selettività verso CO e H2 e volumi ottimali del reattore, mentre una resa analoga con reattori a letto fluidizzato potrebbe essere ottenuta solo con volumi di reattore molto alti, rendendo questa scelta irrealizzabile nella pratica. I modelli di reattore sono stati sviluppati in Aspen plus e sono stati validati dalla letteratura. Un'analisi di sensitività ha rivelato che la performance dell'unità CL è in larga misura dipendente dalla temperatura e dalla pressione di riduzione. L'analisi è stata estesa integrando l'unità CL sviluppata come unità aggiuntiva di una centrale elettrica a ossicombustione da 100 MW con cattura di carbonio. L'efficienza dell'impianto è stata studiata considerando di alimentare il reattore di ossidazione dell'unità CL sia con CO2, sia con H2O, sia con una miscela di CO2 e H2O. I risultati indicano una potenza massima di 12,9 MW con un rendimento da solare a elettricità del 25,4% generabile grazie all’unità di CL. Questa potenza aggiuntiva ridurrebbe la perdita di efficienza dovuta alla cattura di carbonio dall'11,3 al 6%. Per ottenere ciò, il reattore di riduzione dell'unità CL deve operare a 1600 ° C con una pressione di 10-7 bar. Queste condizioni avrebbero bisogno di un enorme campo solare e l'operazione sarebbe limitata a poche ore durante il giorno senza l’integrazione di un accumulo termico. L'analisi tecno-economica ha rivelato che il costo livellato (levelizad cost) dell'elettricità era di 1321 $ / MWh, senza includere incentivi o tassazione sul carbonio. Successivamente, è stata considerata la riduzione della ceria con metano come alternativa alla riduzione termica. Inizialmente, sono state condotte analisi termodinamiche dell'unità CL con riduzione a metano. Dall'analisi è emerso che la temperatura minima richiesta era 900 °C per la riduzione con un eccesso di metano del 50%, che ha prodotto un'efficienza dell'unità CL del 62% con una resa ottimale di CO e H2. In questo caso, la scissione di CO2/H2O nel reattore di ossidazione consisteva nell'ossidazione completa esotermica della ceria, per cui una temperatura di uscita più elevata avrebbe notevolmente migliorato l'efficienza energetica del ciclo CL redox completo. La variazione del rapporto H2 / CO all'uscita rispetto ai vari parametri di input, compresa la composizione del gas inviato al reattore di ossidazione, è stata studiata per specificare le condizioni operative necessarie. Successivamente, l'unità CL a metano è stata integrata come unità aggiuntiva in una centrale elettrica a ossicombustione da 500 MW. Sono state studiate le prestazioni del sistema in una valutazione comparativa con un ciclo combinato convenzionale a gas naturale, un ciclo a ossicombustione con cattura di carbonio e l'impianto proposto. Sono stati ottenuti per l’impianto rispettivamente un rendimento del sistema e un'efficienza energetica del 50,7% e del 47,4%. L'efficienza del sistema potrebbe essere migliorata fino al 61,5% tramite l'ottimizzazione del recupero termico del sistema, valutata attraverso la pinch analysis del sistema. Una dettagliata valutazione tecno-economica ha rivelato un costo specifico del capitale di 2455 $ / kW (overnight cost), un costo livellato delle emissioni di CO2 evitate 96,25 $ / tonnellata di CO2, e un costo dell’elettricità (LCOE) di 128,01 $ / MWh. Tuttavia, considerando un incentivo di 6 $ / tonnellata di CO2 evitata, il LCOE scenderebbe sotto i 50 $ / MWh. L'unità CL a metano viene successivamente integrata come unità aggiuntiva in un impianto di poligenerazione che produce elettricità e dimetil-etere. I risultati hanno mostrato che l'impianto può produrre 103 MWe e 2,15 kg/s di DME con un’efficienza energetica ed exergetica del 50% e del 44% rispettivamente. L'investimento di capitale richiesto per l'impianto ammonta a 534 M$. Con un valoré per la carbon tax di $ 40 / tonnellata di CO2, il DME e l’elettricità raggiungerebbero la parità con gli attuali prezzi di mercato, pari a $18/GJ per il DME e $50/MWh per l’elettricità. I costi risultanti sono dovuti all'unità di separazione dell'aria richiesta per la centrale elettrica a ossicombustione e può essere ridotta sostituendo l'unità di separazione dell'aria con una tecnologia a membrana per la separazione dell'ossigeno. Poiché in letteratura non esiste un modello completo per cinetica dello stato solido che descriva la riduzione con metano della ceria, esso è stato ricavato per via sperimentale. Sono stati condotti esperimenti in un reattore tubolare orizzontale a letto fisso in un intervallo di temperatura di 900-1100 °C. E’ stata studiata la cinetica della scissione della CO2, essendo una reazione più complessa rispetto alla scissione dell'acqua, la cui cinetica è stata invece ottenuta dalla letteratura. In base all’analisi sperimentale condotta, il modello cinetico Avrami-Erofe'ev (AE3) è risultato essere il migliore per entrambe le reazioni, con le rispettive energie di attivazione ottenute rispettivamente come 283 kJ/mol e 59,68 kJ/mol. L'ordine della reazione è stato ricavato come relazione tra temperatura e concertazione dei reagenti. L'analisi è stata effettuata seguendo un approccio termodinamico, ma la reazione eterogenea dell'ossido di metallo e dei gas reagenti limita il raggiungimento dell'equilibrio durante la reazione e dipende sempre dal tipo di reattore scelto per x l'applicazione. Pertanto, un modello di reattore a letto mobile è stato sviluppato considerando la riduzione del metano ottenuta sperimentalmente e la cinetica di splitting della CO2 è stata incorporata per valutare i due impianti proposti: la centrale elettrica e l'impianto di poligenerazione. È stata osservata una riduzione del 20% nell'efficienza dell'unità CL. Tuttavia, grazie all’integrazione termica interna al sistema, l’efficienza termica dell'impianto complessivo è molto simile a quella raggiunta nell’analisi termodinamica, con un valore del 50,9%. Tuttavia, a differenza del layout termodinamico, non è disponibile calore in eccesso per migliorare ulteriormente l'efficienza del sistema. Oltre al riciclo e all'utilizzo della CO2, come criteri di valutazione della sostenibilità per il layout proposto sono stati analizzati anche l’occupazione del suolo terreno e il fabbisogno idrico. Sia il fabbisogno di terra che di acqua aumentano di 2,5 volte rispetto ad una centrale convenzionale a ciclo combinato a gas naturale. Inoltre, anche l’impianto di poligenerazione con produzione di energia elettrica e dimetil etere (DME) è stato studiato considerando un modello dell’unità CL basato sulla cinetica e ha rilevato che la produzione di DME scenderebbe da 2,15 kg/s a 1,48 kg/s e la potenza elettrica prodotta da 103 a 72 MW. Pertanto, la cinetica ha una forte influenza sulla prestazione complessiva del sistema, e considerarla nell’analisi porta a ridurre la produzione di energia e DME di circa il 30% con un aumento di costo del 30%. Complessivamente, l'integrazione dell'unità CL come unità aggiuntiva ad una centrale elettrica a ossicombustione risulta più adatta rispetto alla poligenerazione, considerando il prezzo di mercato attuale per le commodities prodotte.
APA, Harvard, Vancouver, ISO, and other styles
4

Pridmore, Natalie Estelle. "Nickel based nanoalloys as reduction electrocatalysts for solar fuel production." Thesis, University of York, 2015. http://etheses.whiterose.ac.uk/11976/.

Full text
Abstract:
In order to optimise the efficiency of solar fuel devices, development of cheap, active and stable reduction electrocatalysts for solar fuel production is crucial. To this end, ligand stabilised nickel nanoalloys of around 10 nm with relatively small size distributions, have been synthesised for a variety of compositions utilising first row transition metals (Cr, Fe, Co and Cu). Bi- and trimetallic nanoalloys have been synthesised and good control over composition was demonstrated. Synthesised nanoalloys were electrochemically tested to assess their proton and CO2 reduction activities. All nanoalloys showed higher hydrogen evolution reaction (HER) activity than pure nickel. For bimetallic nanoalloys, in pH 1, a general increase in HER activity with increased electron negativity was observed. The Ni0.5Cu0.3Co0.2 nanoalloy showed the highest HER activity at pH 1, whereas the Ni0.5Co0.3Fe0.2 nanoalloy was most active for HER in pH 13. Little difference between the activities for all nanoalloys was observed at pH 7. The nanoalloys showed differing selectivity’s for CO2 reduction products. Solution based CO2 reduction products were detected at low overpotentials (below -0.789 V vs RHE, pH 6.8), although low faradaic efficiencies (< 1%) were observed. High resolution scanning electron microscopy (HR-SEM) was used to attempt to analyse the nanoalloys after deposition onto the electrodes and after electrochemical testing. The results indicated the presence of sub-monolayer coverage, therefore increasing the nanoalloy coverage without large amounts of agglomeration occurring could result in the observation of higher current densities at lower overpotentials. The stability of the nanoalloy electrodes was also investigated and no decrease in HER activity was observed over 12 hours at -0.5 V vs RHE. Moreover, repeated cycling resulted in an increase in activity being observed. This may be due to leaching of elements overtime. A procedure has been developed using a range of techniques to analyse nanoalloy composition, test proton and CO2 reduction activities and assess stability. This has not only allowed for direct comparison between different materials studied, it also provides a framework for future investigations of nanoalloys for (photo)electrochemical proton and CO2 reduction.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Lulu. "Advanced Redox Materials for Solar Fuel Production via Two-step Thermochemical Cycles." Thesis, Griffith University, 2017. http://hdl.handle.net/10072/366698.

Full text
Abstract:
The transition of primary energy supply from fossil fuels to renewable and clean energy sources has become critical in the wake of concerns over ever increasing global energy demand and the urgent need to reduce carbon dioxide emissions. One promising and effective way of minimising carbon emissions is to convert abundant solar energy into storable and transportable fuels, e.g. solar fuels. In this context, solar-driven thermochemical water splitting represents an alternative clean and sustainable route to produce hydrogen (H2) from water. In a typical thermochemical solar energy conversion process, thermal reduction and water dissociation take place in separate steps. A metal oxide based catalyst is used to decrease the required high processing temperature and prevent mixing of the O2 and H2 produced by the process. The overall performance and energy conversion efficiency of a thermochemical water splitting cell is largely dependent on the inherent catalytic characteristics of the catalysts.
Thesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Environment
Science, Environment, Engineering and Technology
Full Text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Wei. "Understanding and Controlling Photoelectrode Surface for Solar Fuel Production and Beyond." Thesis, Boston College, 2018. http://hdl.handle.net/2345/bc-ir:108121.

Full text
Abstract:
Thesis advisor: Udayan Mohanty
Among the existing strategies to direct solar energy harvesting and storage, solar fuel production by photoelectrocatalysis promises a comparatively simple, low-cost route. The science behind this process is straightforward: stable semiconductors absorb sunlight and use the energy to excite charges, which then drive redox reactions at the surface. Careful studies of the photoelectrode surface provide important considerations in building a high-performance photoelectrode. Specifically, I focused on controlling the surface band alignment of Cu2O photocathode|water for hydrogen evolution reaction. A ZnS buried heterojunction is formed to improve the photovoltage. Then I focused on understanding the influence of chemical species on surface kinetics and energetics for water oxidation reaction. Two hematite photoanodes with preferably exposed {001} and {012} facets were examined. Further, I systematically studied three different types of surfaces, bare hematite, hematite with a heterogenized Ir water oxidation catalyst (WOC), and a heterogeneous IrOx WOC. While both WOCs improve the performance of hematite by a large margin, their working mechanisms are found to be fundamentally different. I also focused on utilizing surface photoexcited species to control product selectivity. Selective CO production by photoelectrochemical methane oxidation is successfully demonstrated. Detailed experimental investigations revealed that a synergistic effect by adjacent Ti3+ sites is the key to CO formation
Thesis (PhD) — Boston College, 2018
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
APA, Harvard, Vancouver, ISO, and other styles
7

Lui, Wan-yin, and 呂韻{21394e}. "A study on the performance of proton-exchange-membrane fuel cells and solar electrolysis for hydrogen production." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B26662425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bonk, Alexander [Verfasser], Ulrich F. [Akademischer Betreuer] Vogt, and Arne [Akademischer Betreuer] Cröll. "Synthesis, Modification and Characterization of Ceria based Ceramics for Solar Thermochemical Fuel Production." Freiburg : Universität, 2016. http://d-nb.info/1119900085/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sjölander, Johan. "Production and harvesting of volatile jet fuel precursors from Synechocystis sp. PCC 6803." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-397851.

Full text
Abstract:
The world is currently faced with the enormous challenge of slowing down human triggered global warming. As the global energy demand increases, there is an urgent need for renewable and carbon-neutral fuel-sources. Isoprene and isobutene are crude-oil derived, short, volatile and reactive hydrocarbons that can be polymerised into longer chains to be used as jet fuel. Isoprene has previously been produced from the cyanobacterial strain Synechocystis sp. PCC 6803 but there has been no reported isobutene synthesis from any photosynthetic organism. This work aimed to synthesise isobutene in Synechocystis using a cytochrome P450 from Cystobasidium minutum with reported isobutene production capability. Substrate availability was to be provided through the insertion of two heterologous enzymes, IpdC from Salmonella typhimurium and PadA from Escherichia coli. Both IpdC and PadA were successfully expressed in Synechocystis but the functional activities of IpdC, PadA and the cytochrome P450 in Synechocystis remains undetermined. This project also had the aim to design and construct a photo-bioreactor and gas collection system capable of producing and harvesting isoprene directly from an engineered Synechocystis strain. Herein lies a description of a closed system photobioreactor connected to a cold-trap that was able to concentrate isoprene produced from Synechocystis to measurable amounts.
APA, Harvard, Vancouver, ISO, and other styles
10

Rickard, Bradley James. "Solar and fuel oil heating in fingerling production, issues in growth modelling and financial feasibility." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ33263.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Solar fuel production"

1

Giménez, Sixto, and Juan Bisquert, eds. Photoelectrochemical Solar Fuel Production. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29641-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Viswanathan, B., and Ravi Subramanian. Materials and processes for solar fuel production. New York: Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Viswanathan, Balasubramanian, Vaidyanathan Subramanian, and Jae Sung Lee, eds. Materials and Processes for Solar Fuel Production. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1628-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Figueroa, Isaac Pilatowsky. Cogeneration fuel cell-sorption air conditioning systems. London: Springer-Verlag, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dunn, Seth. Micropower: The next electrical era. Washington, DC: Worldwatch Institute, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ottone, Carminna, Simelys Hernández, Marco Armandi, and Barbara Bonelli. Testing Novel Water Oxidation Catalysts for Solar Fuels Production. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12712-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Office, General Accounting. Electricity supply: Efforts under way to develop solar and wind energy : report to the Chairman, Subcommittee on Investigations and Oversight, Committee on Science, Space, and Technology, House of Representatives. Washington, D.C: The Office, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Office, General Accounting. Electricity supply: Consideration of environmental costs in selecting fuel sources : report to the Ranking Minority Member, Committee on Science, House of Representatives. Washington, D.C: U.S. General Accounting Office, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Office, General Accounting. Electricity supply: Efforts under way to improve federal electrical disruption preparedness : report to the Chairman, Subcommittee on Oversight and Investigations, Committee on Energy and Commerce. Washington, D.C: The Office, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Office, General Accounting. Electricity supply: Utility demand-side management programs can reduce electricity use : report to the chairman, Environment, Energy, and Natural Resources Subcommittee, Committee on Government Operations, House of Representatives. Washington, D.C: GAO, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Solar fuel production"

1

Yadav, Asheesh Kumar, Sanak Ray, Pratiksha Srivastava, and Naresh Kumar. "6 Solar Bio-Hydrogen Production: An Overview." In Solar Fuel Generation, 121–40. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315370538-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Peter, Laurence M. "Semiconductor Electrochemistry." In Photoelectrochemical Solar Fuel Production, 3–40. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29641-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Skorupska, Katarzyna, and Bruce A. Parkinson. "Combinatorial Synthesis and Screening of Oxide Materials for Photoelectrochemical Energy Conversion." In Photoelectrochemical Solar Fuel Production, 427–62. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29641-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Thorne, James E., Yumin He, and Dunwei Wang. "Nanostructured Materials." In Photoelectrochemical Solar Fuel Production, 463–92. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29641-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sivula, Kevin. "Advanced Device Architectures and Tandem Devices." In Photoelectrochemical Solar Fuel Production, 493–512. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29641-8_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Coggins, Michael K., and Thomas J. Meyer. "Dye Sensitized Photoelectrosynthesis Cells for Making Solar Fuels: From Basic Science to Prototype Devices." In Photoelectrochemical Solar Fuel Production, 513–48. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29641-8_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Doyle, Richard L., and Michael E. G. Lyons. "The Oxygen Evolution Reaction: Mechanistic Concepts and Catalyst Design." In Photoelectrochemical Solar Fuel Production, 41–104. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29641-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sudhagar, Pitchaimuthu, Nitish Roy, Raman Vedarajan, Anitha Devadoss, Chiaki Terashima, Kazuya Nakata, and Akira Fujishima. "Hydrogen and CO2 Reduction Reactions: Mechanisms and Catalysts." In Photoelectrochemical Solar Fuel Production, 105–60. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29641-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Smith, Wilson A. "Photoelectrochemical Cell Design, Efficiency, Definitions, Standards, and Protocols." In Photoelectrochemical Solar Fuel Production, 163–97. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29641-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jaegermann, Wolfram, Bernhard Kaiser, Jürgen Ziegler, and Joachim Klett. "Interface Engineering of Semiconductor Electrodes for Photoelectrochemical Water Splitting: Application of Surface Characterization with Photoelectron Spectroscopy." In Photoelectrochemical Solar Fuel Production, 199–280. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29641-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Solar fuel production"

1

Sattler, Christian, Hans Mu¨ller-Steinhagen, Martin Roeb, Dennis Thomey, and Martina Neises. "Examples of Solar Thermal Fuel Production." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44581.

Full text
Abstract:
The conversion of renewable energy especially solar energy into versatile fuels is a key technology for an innovative and sustainable energy economy. To finally benefit from solar fuels they have to be produced with high efficiencies and low to no greenhouse gas emissions in large quantities. The final goal will most probably be the carbon free fuel hydrogen. But the main challenge is its market introduction. Therefore a strategy incorporating transition steps has to be developed. Solar thermal processes have the potential to be amongst the most efficient alternatives for large scale solar fuel production in the future. Therefore high temperature solar technologies are under development for the different development steps up to the final goal of carbon free hydrogen. This paper discusses the strategy based on the efficiencies of the chosen solar processes incorporating carbonaceous materials for a fast market introduction and processes based on water splitting for long term solar hydrogen generation. A comparison with the most common industrial processes shall demonstrate which endeavors have to be done to establish solar fuels.
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Jae Sung. "Solar Fuel Production with Oxide Semiconductor Photoelectrodes." In The 7th International Multidisciplinary Conference on Optofluidics 2017. Basel, Switzerland: MDPI, 2017. http://dx.doi.org/10.3390/optofluidics2017-04292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dähler, Fabian, Michael Wild, Remo Schäppi, Philipp Haueter, Thomas Cooper, Philipp Furler, and Aldo Steinfeld. "A High-Flux Solar Parabolic Dish System for Continuous Thermochemical Fuel Production." In Optics for Solar Energy. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/ose.2017.rm2c.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Steier, Ludmilla. "Insights into material design for solar fuel production." In International Conference on Frontiers in Electrocatalytic Transformations. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.interect.2021.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

v. Zedtwitz, P., D. Hirsch, and A. Steinfeld. "Hydrogen Production Via the Solar Thermal Decarbonization of Fossil Fuels." In ASME 2003 International Solar Energy Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/isec2003-44031.

Full text
Abstract:
Two hybrid solar/fossil-fuel endothermic processes, in which fossil fuels are used exclusively as the chemical source for H2 production, and solar energy as the source of high temperature process heat, are considered: 1) the solar thermal decomposition; and 2) the solar steam gasification/reforming. These processes offer viable and efficient routes for fossil fuel decarbonization and CO2 avoidance. The advantages of the solar-driven process are three-folded: a) the discharge of pollutants is avoided; b) the gaseous products are not contaminated; and c) the calorific value of the fuel is upgraded.
APA, Harvard, Vancouver, ISO, and other styles
6

Sivula, Kevin. "Engineering semiconductor materials for robust photoelectrochemical solar fuel production." In 10th International Conference on Hybrid and Organic Photovoltaics. Valencia: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.hopv.2018.163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bilal, Abderezzak, Khelidj Benyoucef, Tahar Abbes Miloud, and Kellaci Ahmed. "Solar hydrogen production for fuel cell use: Experimental approach." In 2012 2nd International Symposium on Environment-Friendly Energies and Applications (EFEA). IEEE, 2012. http://dx.doi.org/10.1109/efea.2012.6294032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Goswami, D. Yogi, Samantha T. Mirabal, Nitin Goel, and H. A. Ingley. "A Review of Hydrogen Production Technologies." In ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2003. http://dx.doi.org/10.1115/fuelcell2003-1701.

Full text
Abstract:
This paper describes an overview of the present status of the conventional hydrogen production technologies and some of the recent developments in the production of hydrogen using solar energy resources. It was found that conversion of fossil fuels and biomass, electrolysis of water using solar and wind energy, and direct solar conversion by thermochemical means are some of the most significant methods of H2 production. The technological status and economic analysis for commercial and near commercial technologies using renewable energy sources such as electrolysis using PV and solar thermal power, photochemical and photoelectrochemical hydrogen production, direct thermal decomposition of water, thermochemical cycles, and biological hydrogen production are outlined. Although fossil fuels are currently the least expensive and most widely used sources of hydrogen production, it is argued from an economic analysis that renewable sources of hydrogen are the most promising options for the future. Further, solar hydrogen becomes a storable fuel that is produced from this non-storable and intermittent source of energy.
APA, Harvard, Vancouver, ISO, and other styles
9

Patankar, Aniket S., Xiao-Yu Wu, Wonjae Choi, Harry L. Tuller, and Ahmed F. Ghoniem. "A Reactor Train System for Efficient Solar Thermochemical Fuel Production." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-69716.

Full text
Abstract:
Abstract Thermochemical redox cycles are a promising route for the production of solar fuels. In this paper we present a novel Reactor Train system for efficient conversion of solar thermal energy to hydrogen. This system is capable of recovering thermal energy from redox materials, which is necessary for achieving high efficiency, but has been difficult to realize in practice. The Reactor Train System overcomes technical challenges of high temperature thermochemical reactors like solid conveying and sealing, while enabling continuous, round-the-clock fuel production and incorporating efficient gas transfer processes and thermal energy storage. The Reactor Train is comprised of several identical reactors arranged in a closed loop and cycling between reduction and oxidation steps. In between these steps, the reactors undergo solid heat recovery in a radiative counterflow heat exchanger. We report a heat recovery effectiveness of 75–82% with a train consisting of 56 reactors and a cycle time of 84 minutes. With ceria as the redox material, 23% of the high temperature thermal energy input is converted to hydrogen, while 49% is recovered as intermediate-temperature heat at 750 °C.
APA, Harvard, Vancouver, ISO, and other styles
10

Kra¨upl, Stefan, and Aldo Steinfeld. "Operational Performance of a 5 kW Solar Chemical Reactor for the Co-Production of Zinc and Syngas." In ASME Solar 2002: International Solar Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/sed2002-1060.

Full text
Abstract:
We report on the improved operational performance and energy conversion efficiency of a 5 kW solar chemical reactor for the combined ZnO-reduction and CH4-reforming “SynMet” process. The reactor features a pulsed vortex flow of CH4 laden with ZnO particles, which is confined to a cavity-receiver and directly exposed to solar power fluxes exceeding 2000 kW/m2. Reactants were continuously fed at ambient temperature, heated by direct irradiation to above 1350 K, and converted to Zn(g) and syngas during mean residence times of 10 seconds. Typical chemical conversion attained was 100% to Zn and up to 96% to syngas. The thermal efficiency was in the 15–22% range; the exergy efficiency reached up to 7.7% and may be increased by recovering the sensible and latent heat of the products. The Synmet process avoids emissions of greenhouse-gases and other pollutant derived from the traditional fossil-fuel-based production of zinc and syngas, and further converts solar energy into storable and transportable chemical fuels.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Solar fuel production"

1

Miller, James Edward, Mark D. Allendorf, Andrea Ambrosini, Eric Nicholas Coker, Richard B. ,. Jr Diver, Ivan Ermanoski, Lindsey R. Evans, Roy E. ,. Jr Hogan, and Anthony H. McDaniel. Development and assessment of solar-thermal-activated fuel production. Phase 1, summary. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1055617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hahn, David W. Solar Thermochemical Fuel Production via a Novel Low Pressure, Magnetically Stabilized, Non-volatile Iron Oxide Looping Process (University of Florida). Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1430698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Reiter, Patrick, Hannes Poier, Christian Holter, Sabine Putz, Werner Doll, Maria Moser, Bernhard Gerardts, and Anna Provasnek. Business Models of Solar Thermal and Hybrid Technologies. IEA SHC Task 55, February 2019. http://dx.doi.org/10.18777/ieashc-task55-2019-0002.

Full text
Abstract:
District Heating required annually 600 TWh in the European Union and represents more than 10% of the EUs heat demand. Fossil fuels are the major source for heat production. Approximately 5000 district heating grids in the EU are operated by burning fossil fuels valued at € 18 billion (600 TWh) and emitting more than 150 million tons of CO2 emissions every year.
APA, Harvard, Vancouver, ISO, and other styles
4

Author, Not Given. Solar fuels and chemicals system design study - production and regeneration of activated carbon: Final report: Volume 3, Appendices. Office of Scientific and Technical Information (OSTI), March 1987. http://dx.doi.org/10.2172/6465564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Author, Not Given. Solar fuels and chemicals system design study (ammonia/nitric acid production process). Volume 2. Conceptual design. Final report. Office of Scientific and Technical Information (OSTI), June 1986. http://dx.doi.org/10.2172/5365422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Author, Not Given. Solar fuels and chemicals system design study - Production and regeneration of activated carbon: Final report: Volume 2, Conceptual design. Office of Scientific and Technical Information (OSTI), March 1987. http://dx.doi.org/10.2172/6545976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Author, Not Given. Solar fuels and chemicals system design study - Production and regeneration of activated carbon: Final report: Volume 1, Executive summary. Office of Scientific and Technical Information (OSTI), March 1987. http://dx.doi.org/10.2172/6545982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Solar fuels and chemicals system design study (ammonia/nitric acid production process). Volume 3. Appendices. Final report. Office of Scientific and Technical Information (OSTI), March 1986. http://dx.doi.org/10.2172/5468297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Solar Fuels and Chemicals System Design Study (Ammonia/nitric acid production process). Volume 1. Executive summary. Final report. Office of Scientific and Technical Information (OSTI), March 1986. http://dx.doi.org/10.2172/5666278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography