To see the other types of publications on this topic, follow the link: Spin qubits.

Dissertations / Theses on the topic 'Spin qubits'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Spin qubits.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Laird, E. A. "Electrical control of quantum dot spin qubits." Thesis, Lancaster University, 2009. http://eprints.lancs.ac.uk/124373/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Medford, James Redding. "Spin Qubits in Double and Triple Quantum Dots." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:10766.

Full text
Abstract:
This thesis presents research on the initialization, control, and readout of electron spin states in gate defined GaAs quantum dots. The first three experiments were performed with Singlet-Triplet spin qubits in double quantum dots, while the remaining two experiments were performed with an Exchange-Only spin qubit in a triple quantum dot.<br>Physics
APA, Harvard, Vancouver, ISO, and other styles
3

Brooks, Matthew [Verfasser]. "Spin Qubits in Two-Dimensional Semiconductors / Matthew Brooks." Konstanz : KOPS Universität Konstanz, 2019. http://d-nb.info/1204829217/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bourdet, Léo. "Modeling of electrical manipulation in silicon spin qubits." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAY058/document.

Full text
Abstract:
Dans la course à l’ordinateur quantique, le silicium est devenu ces dernières années un matériau de choix pour l'implémentation des qubits de spin. De tels dispositifs sont fabriqués au CEA en utilisant les technologies CMOS, afin de faciliter leur intégration à grande échelle. Cette thèse porte sur la modélisation de ces qubits, et en particulier sur la manipulation de l’état de spin par un champ électrique. Pour cela nous utilisons un ensemble de techniques numériques avancées pour calculer le potentiel et la structure électronique des qubits (notamment les méthodes de liaisons fortes et k.p), afin d’être le plus proche possible des dispositifs expérimentaux. Ces simulations nous ont permis d’étudier deux résultats expérimentaux d’importance : l’observation de la manipulation par champ électrique du spin d’un électron d’une part, et la caractérisation de l’anisotropie de la fréquence de Rabi d’un qubit de trou d’autre part. Le premier résultat était plutôt inattendu, étant donné; le très faible couplage spin-orbite dans la bande de conduction du silicium. Nous développons un modèle, validé par les simulations et certains résultats expérimentaux, qui met en évidence le rôle essentiel du couplage spin-orbite inter-vallée, exacerbé par la faible symétrie du système. Nous utilisons ces résultats pour proposer et tester numériquement un schéma de manipulation électrique consistant à passer réversiblement d’un qubit de spin à un qubit de vallée. Concernant les qubits de trous, le couplage spin-orbite relativement élevé autorise la manipulation du spin par champ électrique, toutefois les mesures expérimentales d’anisotropie donnent à voir une physique complexe, insuffisamment bien décrite par les modèles actuels. Nous développons donc un formalisme permettant de caractériser simplement la fréquence de Rabi en fonction du champ magnétique, et qui peut s’appliquer à d’autre type de qubit spin-orbite. Les simulations permettent de reproduire les résultats expérimentaux, et de souligner le rôle important de la contrainte<br>In the race for quantum computing, these last years silicon has become a material of choice for the implementation of spin qubits. Such devices are fabricated in CEA using CMOS technologies, in order to facilitate their large-scale integration. This thesis covers the modeling of these qubits andin particular the manipulation of the spin state with an electric field. To that end, we use a set numerical tools to compute the potential and electronic structure in the qubits (in particular tightbinding and k.p methods), in order to be as close as possible to the experimental devices. These simulations allowed us to study two important experimental results: on one hand the observation of the electrical manipulation of an electron spin, and on the other hand the characterization of the anisotropy of the Rabi frequency of a hole spin qubit. The first one was rather unexpected, since the spin-orbit coupling is very low in the silicon conduction band. We develop a model, confirmed by thesimulations and some experimental results, that highlights the essential role of the intervalley spinorbit coupling, enhanced by the low symmetry of the system. We use these results to propose and test numerically a scheme for electrical manipulation which consists in switching reversibly betweena spin qubit and a valley qubit. Concerning the hole qubits, the relatively large spin-orbit coupling allows for electrical spin manipulation. However the experimental measurements of Rabi frequency anisotropy show a complex physics, insufficiently described by the usual models. Therefore we developa formalism which allows to characterize simply the Rabi frequency as a function of the magnetic field, and that can be applied to other types of spin-orbit qubits. The simulations reproduce the experimental features, underline the important role of strain
APA, Harvard, Vancouver, ISO, and other styles
5

Conway, Lamb Ian. "Cryogenic Control Beyond 100 Qubits." Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/17046.

Full text
Abstract:
Quantum computation has been a major focus of research in the past two decades, with recent experiments demonstrating basic algorithms on small numbers of qubits. A large-scale universal quantum computer would have a profound impact on science and technology, providing a solution to several problems intractable for classical computers. To realise such a machine, today's small experiments must be scaled up, and a system must be built which provides control and measurement of many hundreds of qubits. A device of this scale is challenging: qubits are highly sensitive to their environment, and sophisticated isolation techniques are required to preserve the qubits' fragile states. Solid-state qubits require deep-cryogenic cooling to suppress thermal excitations. Yet current state-of-the-art experiments use room-temperature electronics which are electrically connected to the qubits. This thesis investigates various scalable technologies and techniques which can be used to control quantum systems. With the requirements for semiconductor spin-qubits in mind, several custom electronic systems, to provide quantum control from deep cryogenic temperatures, are designed and measured. A system architecture is proposed for quantum control, providing a scalable approach to executing quantum algorithms on a large number of qubits. Control of a gallium arsenide qubit is demonstrated using a cryogenically operated FPGA driving custom gallium arsenide switches. The cryogenic performance of a commercial FPGA is measured, as the main logic processor in a cryogenic quantum control system, and digital-to-analog converters are analysed during cryogenic operation. Recent work towards a 100-qubit cryogenic control system is shown, including the design of interconnect solutions and multiplexing circuitry. With qubit fidelity over the fault-tolerant threshold for certain error correcting codes, accompanying control platforms will play a key role in the development of a scalable quantum machine.
APA, Harvard, Vancouver, ISO, and other styles
6

Stano, Peter. "Controlling electron quantum dot qubits by spin-orbit interactions." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=983802254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Witzel, Wayne Martin. "Decoherence and dynamical decoupling in solid-state spin qubits." College Park, Md. : University of Maryland, 2007. http://hdl.handle.net/1903/6889.

Full text
Abstract:
Thesis (PhD) -- University of Maryland, College Park, 2007.<br>Thesis research directed by: Physics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
APA, Harvard, Vancouver, ISO, and other styles
8

Lo, Nardo Roberto. "Charge state manipulation of silicon-based donor spin qubits." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:29a0f336-82ce-4794-82fe-d7db2802ffc1.

Full text
Abstract:
Spin properties of donor impurities in silicon have been investigated by electron spin resonance (ESR) techniques for more than sixty years. These studies gave us a contribution towards understanding some of the physics of doped semiconductor materials in general, which is the platform for much of our current technology. Despite the fact that donor electron and nuclear spins have been researched for so long, ESR studies of their properties are still giving us interesting insights. With the introduction of the concept of quantum information in the 1980s, some properties of donor spins in silicon, that were known from the fifties (such as long relaxations), have been reinterpreted for their potential application in this field. Since then, incredible experimental results have been achieved with magnetic resonance control, including manipulation and read-out of individual spins. However, some open questions are still to be answered before the realisation of a spin-based silicon quantum architecture will be achieved. Currently, ESR studies still contribute to help answering some of those questions. In this thesis, we demonstrate electrical and optical methods for donor charge state manipulation measured by ESR. Recent experiments have demonstrated that coherence time of nuclear spins may be enhanced by manipulating the state of donors from neutral to singly charged. We investigate electric field ionisation/neutralisation of arsenic donors in a silicon SOI device measured by ESR. Below ionisation threshold, we also measure the hyperfine Stark shift of arsenic donors spins in silicon. These results have, for instance, implications on how fast individual addressability of donor spins may be achieved in certain quantum computer architectures. Here, we also study optical-driven charge state manipulation of selenium impurities in silicon. Selenium has two additional electrons when it replaces an atom in the silicon crystal (i.e. double donor). The electronic properties of singly-ionised selenium make it potentially advantageous as spin qubit, compared to the more commonly studied group-V donors. For instance, we find here that the electron spin relaxation and coherence times of selenium are up to two orders of magnitude longer than phosphorus at the same temperature. Finally, we demonstrate that it is possible to bring selenium impurity in singly-charged state and subsequently re-neutralise them leaving a potential long-lived <sup>77</sup>Se nuclear spin.
APA, Harvard, Vancouver, ISO, and other styles
9

Balian, S. J. "Quantum-bath decoherence of hybrid electron-nuclear spin qubits." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1470543/.

Full text
Abstract:
A major problem facing the realisation of scalable solid-state quantum computing is that of overcoming decoherence - the process whereby phase information encoded in a quantum bit ('qubit') is lost as the qubit interacts with its environment. Due to the vast number of environmental degrees of freedom, it is challenging to accurately calculate decoherence times T2, especially when the qubit and environment are highly correlated. Hybrid or mixed electron-nuclear spin qubits, such as donors in silicon, are amenable to fast quantum control with pulsed magnetic resonance. They also possess 'optimal working points' (OWPs) which are sweet-spots for reduced decoherence in magnetic fields. Analysis of sharp variations of T2 near OWPs was previously based on insensitivity to classical noise, even though hybrid qubits are situated in highly correlated quantum environments, such as the nuclear spin bath environment of 29Si impurities. This presented limited understanding of the underlying decoherence mechanism and gave unreliable predictions for T2. In this thesis, I present quantum many-body calculations of the qubit-bath dynamics, which (i) yield T2 for hybrid qubits in excellent agreement with experiments in multiple regimes, (ii) elucidate the many-body nature of the nuclear spin bath and (iii) expose significant differences between quantum-bath and classical-field decoherence. To achieve these results, the cluster correlation expansion was adapted to include electron-nuclear state mixing. In addition, an analysis supported by experiment was carried out to characterise the nuclear spin bath for a bismuth donor as the hybrid qubit, a simple analytical formula for T2 was derived with predictions in agreement with experiment, and the established method of dynamical decoupling was combined with operating near OWPs in order to maximise T2. Finally, the decoherence of a 29Si spin in proximity to the hybrid qubit was studied, in order to establish the feasibility for its use as a quantum register.
APA, Harvard, Vancouver, ISO, and other styles
10

Grezes, Cécile. "Towards a spin ensemble quantum memory for superconducting qubits." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066635.

Full text
Abstract:
Cette thèse porte sur la réalisation d'un processeur quantique hybride, dans lequel les degrés de liberté collectifs d'un ensemble de spins sont utilisés comme une mémoire quantique multimode pour les qubits supraconducteurs. Nous concevons un protocole capable de stocker et de récupérer à la demande les états d'un grand nombre de qubits dans un ensemble de spin et nous démontrons les briques de bases des opérations mémoires avec des centres NV dans le diamant. Le protocole repose sur le couplage des spins à un résonateur à fréquence et facteur de qualité accordable. Les états quantiques sont écrits par absorption résonante d'un photon micro-ondes dans l'ensemble de spins, et lus par application d'une séquence d'impulsions aux spins. L'étape d'écriture du protocole est démontrée dans une première expérience dans laquelle sont intégrés sur la même puce un qubit supraconducteur, un résonateur à fréquence accordable, et l'ensemble de spins. Les états du qubit sont stockés dans les spins via le résonateur. Après le stockage, l'état quantique collectif qui en résulte est rapidement déphasé en raison de l'élargissement inhomogène de l'ensemble et une séquence de refocalisation doit être appliquée sur les spins pour déclencher la réémission collective comme un écho de l'état quantique initialement absorbé. Dans une seconde expérience, nous démontrons une brique de base importante de cette opération de lecture, qui consiste à récupérer de multiples impulsions micro-ondes classiques au niveau du photon unique en utilisant des techniques d’écho de Hahn. Enfin, le repompage optique des spins est implémenté afin de réinitialiser la mémoire entre deux séquences successives<br>This thesis work discusses the development of a hybrid quantum processor, in which collective degrees of freedom of an ensemble of spins are used as a multimode quantum memory for superconducting qubits. We design a memory protocol able to store and retrieve on demand the state of a large number of qubits in a spin ensemble and we demonstrate building blocks of its operations with NV centers in diamond. The protocol relies on the coupling of the NV ensemble to a resonator with tunable frequency and quality factor. Incoming quantum states are written by resonant absorption of a microwave photon in the spin ensemble, and then read out of the memory by applying a sequence of control pulses to the spins and to the resonator. The write step of the protocol is demonstrated in a first experiment by integrating on the same chip a superconducting qubit, a resonator with tunable frequency, and the NV ensemble. Arbitrary qubit states are stored into the spin ensemble via the resonator. After storage, the resulting collective quantum state is rapidly dephased due to inhomogeneous broadening of the ensemble and a refocusing sequence must be applied on the spins to bring them to return in phase and to re-emit collectively the quantum state initially absorbed as an echo. In a second experiment, we demonstrate an important building block of this read-out operation, which consists in retrieving multiple classical microwave pulses down to the single photon level using Hahn echo refocusing techniques. Finally, optical repumping of the spin ensemble is implemented in order to reset the memory in-between two successive sequences
APA, Harvard, Vancouver, ISO, and other styles
11

El, Homsy Victor. "Apprivoiser le bruit pour les qubits de spin d'électrons en CMOS." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALY007.

Full text
Abstract:
Alors qu’âgée d’à peine plus d’un siècle, la physique quantique est devenue technologique. Son représentant le plus omniprésent est le transistor, en tant que brique élémentaire des appareils électroniques. Les progrès en fabrication à l’échelle nanométrique ont engendré une croissance exponentielle de sa densité dans les circuits microélectroniques. Une fois au nanomètre, des effets quantiques inévitables empêchent de miniaturiser davantage. Des modèles alternatifs sont étudiés pour contourner cet obstacle, dont la plateforme « complementary metal-oxide semiconductor fully depleted silicon-on-insulator” (CMOS FD-SOI).En parallèle de ces développements, la physique quantique a donné naissance à une nouvelle génération d’innovation technologique, grâce à la capacité de contrôler la matière à l’échelle de la particule unique. Isoler une particule dans un environnement suffisamment calme donne accès à ses propriétés de superposition et d’intrication. Exploiter ces phénomènes pour le traitement de l’information conduirait au changement de paradigme du calcul quantique, qui promet de résoudre des problèmes classiquement intractables. Plusieurs acteurs concourent à la meilleure implémentation d’un bit quantique (ou « qubit ») et tous se heurtent au défi de passer de quelques qubits académiques à un processeur industriel. Parmi eux, les électrons piégés dans des structures silicium sont prometteurs du fait de leur exposition réduite aux noyaux magnétiques et au couplage spin-orbite, et de la possibilité de les purifier des noyaux de spin non nul. De plus, leur compatibilité avec le savoir-faire microélectronique donne l’espoir du passage à l’échelle. Dans cette thèse, nous étudions des électrons uniques piégés dans des boites quantiques définies dans des transistors CMOS FD-SOI. Nous nous intéressons en particulier aux aspects de « bruit » dans leur contrôle et leur lecture.Tout d’abord, nous démontrons la manipulation cohérente d’un spin d’électron CMOS par résonance magnétique médiée électriquement. Un microaimant déposé sur la puce CMOS génère un champ magnétique inhomogène. Exciter le déplacement de l’électron dans ce gradient par les tensions de grille lui fait sentir un champ magnétique oscillant, permettant des rotations du spin avec une fréquence Rabi de 1MHz et un temps de déphasage de 500ns. Nous attribuons ces performances limitées à un nombre fini de fluctuateurs à deux niveaux et aux dimensions réduites des boites quantiques en CMOS. L’enveloppe Rabi et le déphasage rapide sont caractéristiques de l’interaction avec les spins nucléaires. Cependant, découpler dynamiquement l’électron de cette gamme de fréquence offre des temps de cohérence à l’état de l’art, limités par le bruit de charge, en accord avec de simples mesures électriques à basse fréquence. Ces résultats suggèrent la pertinence de la purification isotopique pour s’affranchir du bruit hyperfin.Ensuite, nous nous intéressons au bruit de lecture de ces électrons. L’objectif était d’évaluer la pertinence d’un amplificateur paramétrique à ondes progressives (TWPA) dans la chaine de lecture radiofréquence des dispositifs. Fabriquer des résonateurs sur la puce CMOS a permis de réduire leur capacité parasite et de réaliser des mesures par réflectométrie dans la gamme 3-4GHz, plus près du régime habituel du TWPA. Même pompé loin de son gap, le TWPA montre des figures de mérite nominales, et une résilience à un champ magnétique typique des expériences de qubits de spin. Son haut point de compression à -100dBm, sa bande passante large (2GHz) et réglable et son bruit ajouté proche de la limite quantique permettent plus de 10dB d’amélioration du rapport signal-sur-bruit dans la lecture de transitions de charge interdot, et une lecture multiplexée dans un dispositif à six grilles. Cette compatibilité entre un amplificateur supraconducteur à large bande et des dispositifs CMOS FD-SOI multi-grilles est encourageante en vue d’expériences à plus grande échelle<br>While being a bit more than a century old, quantum physics have become technological. The most ubiquitous instance of the use of quantum physics is the transistor, as the building block of modern computing devices. Progress in nanoscale fabrication has fostered an exponential increase of transistor density In microelectronics circuits. Once in the nanometer range, unavoidable quantum effects tamper further miniaturization. Alternative transistor designs are being developed to mitigate this showstopper. The complementary metal-oxide-semiconductor (CMOS) fully-depleted silicon-on-insulator (FD-SOI) platform is one of them.In parallel to these developments, quantum physics spawned a new generation of technological innovation, thanks to the ability to control matter at the single particle level. Isolating elementary particles in a quiet environment gives access to their superposition and entanglement properties. Using these to process information would realize the quantum computing paradigm shift, where classically intractable problems are promised to come at reach. Many candidates are racing for the best implementation of a quantum bit (or “qubit”) and all of them are facing the challenge to up-scale their architecture from a few lab qubits to an industrial processor. Among them, electrons trapped in silicon structures offer promising prospects thanks to their reduced exposure to magnetic nuclei and spin-orbit interaction, and to the possibility to purify away non-zero nuclear spins. Moreover, the expected compatibility of silicon structures with microelectronics know-how gives hopes for scalability. In this thesis, we study single electrons trapped in gate-defined quantum dots formed in CMOS FD-SOI transistors. We investigate on how to improve their use as qubits, focusing on experimental noise aspects.First, we demonstrate coherent manipulation of a single CMOS electron spin with electrically driven spin resonance. A micromagnet is patterned directly on top of the CMOS chip, creating an inhomogeneous magnetic field. Driving the electron motion inside this gradient with the available electric gates makes it feel an effective oscillating magnetic field, and enables single qubit operations, with a relatively low 1 MHz Rabi frequency and short 500 ns dephasing time. This limited performance is attributed to a finite number of two-level fluctuators and smaller quantum dot sizes compared to other silicon architectures. The shape of the Rabi decay and the sub-µs dephasing time are characteristic of hyperfine interaction with spinful nuclei. However, dynamically decoupling the electron spin from this frequency range showed state-of-the-art coherence times and performance limited by charge noise, in accordance with simple charge sensor measurements at low frequencies. These results point towards the relevance of isotopic purification to avoid hyperfine-induced dephasing in CMOS FD-SOI devices.After focusing on qubit control, a second part of this thesis deals with readout noise. The objective was to demonstrate the use of a traveling-wave parametric amplifier (TWPA) in the amplification chain of radio-frequency readout of CMOS devices. Patterning inductors on the CMOS chip reduced the parasitic capacitance of our resonators and enabled to perform lumped-element reflectometry in the 3-4 GHz range, closer to usual TWPA operating regimes. Even when being pumped far from its gap, the TWPA shows nominal figures of merit, and a resilience to magnetic fields typical for spin qubit experiments. Its high -100dBm compression point, wide and tunable 2 GHz bandwidth and quantum-limited added noise enabled to get more than 10dB signal-to-noise ratio improvement on interdot charge transitions in our devices, and to multiplex interdot readout in a 6-gate device. This compatibility between a large bandwidth superconducting amplifier and multi-gate CMOS FD-SOI quantum devices is promising towards CMOS electron spin qubit experiments at larger scale
APA, Harvard, Vancouver, ISO, and other styles
12

Smith, Thomas Benjamin. "Entanglement and measurement of solid-state qubits." Thesis, The University of Sydney, 2020. https://hdl.handle.net/2123/24894.

Full text
Abstract:
A full-scale quantum computer requires physical qubits that can be controlled with high precision and accuracy. Unfortunately, few state-of-the-art qubits can perform all their elementary operations (preparation, measurement, single-qubit gates and two-qubit gates) with sufficient fidelity. In this thesis, we investigate alternative schemes for such operations in solid-state qubits. Specifically, two-qubit gates and measurements, which are often the noisiest of the four. We first provide a preliminary introduction to quantum computing, and describe how quantum information can be encoded and manipulated in quantum systems. We include background information for the three different solid-state qubit architectures that feature in this thesis: spin qubits, superconducting qubits and Majorana qubits. Following this, we investigate a scheme for mediating a two-qubit interaction between spin qubits via a multielectron quantum dot. We study a multielectron dot in detail, and characterise its exchange interaction with a single spin. With the aid of a theoretical model, we show that the multielectron dot possesses an irregular triplet-preferring ground state, analogous to Hund's rule from atomic physics. Using these findings, we then demonstrate that the multielectron dot can be used to mediate a fast, long-range exchange interaction between two spin qubits. Subsequently, we examine two resonator-based measurement schemes for Majorana qubits. We first propose a readout technique based on a longitudinal qubit-resonator interaction. This leads to a measurement that is fast, high-fidelity and quantum non-demolition (QND). We then investigate a more conventional dispersive readout scheme. Not only does this yield a high quality measurement, but it can also offers a more protected readout mechanism in comparison to the dispersive readout of conventional superconducting qubits.
APA, Harvard, Vancouver, ISO, and other styles
13

Mehl, Sebastian Johannes [Verfasser]. "Achieving quantum computation with quantum dot spin qubits / Sebastian Johannes Mehl." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2014. http://d-nb.info/1065974485/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Fraval, Elliot, and elliot fraval@gmail com. "Minimising the Decoherence of Rare Earth Ion Solid State Spin Qubits." The Australian National University. Research School of Physical Sciences and Engineering, 2006. http://thesis.anu.edu.au./public/adt-ANU20061010.124211.

Full text
Abstract:
[Mathematical symbols can be only approximated here. For the correct display see the Abstract in the PDF files linked below] This work has demonstrated that hyperfine decoherence times sufficiently long for QIP and quantum optics applications are achievable in rare earth ion centres. Prior to this work there were several QIP proposals using rare earth hyperfine states for long term coherent storage of optical interactions [1, 2, 3]. The very long T_1 (~weeks [4]) observed for rare-earth hyperfine transitions appears promising but hyperfine T_2s were only a few ms, comparable to rare earth optical transitions and therefore the usefulness of such proposals was doubtful. ¶ This work demonstrated an increase in hyperfine T_2 by a factor of 7 × 10^4 compared to the previously reported hyperfine T_2 for Pr^[3+]:Y_2SiO_5 through the application of static and dynamic magnetic field techniques. This increase in T_2 makes previous QIP proposals useful and provides the first solid state optically active Lamda system with very long hyperfine T_2 for quantum optics applications. ¶ The first technique employed the conventional wisdom of applying a small static magnetic field to minimise the superhyperfine interaction [5, 6, 7], as studied in chapter 4. This resulted in hyperfine transition T_2 an order of magnitude larger than the T_2 of optical transitions, ranging fro 5 to 10 ms. The increase in T_2 was not sufficient and consequently other approaches were required. ¶ Development of the critical point technique during this work was crucial to achieving further gains in T_2. The critical point technique is the application of a static magnetic field such that the Zeeman shift of the hyperfine transition of interest has no first order component, thereby nulling decohering magnetic interactions to first order. This technique also represents a global minimum for back action of the Y spin bath due to a change in the Pr spin state, allowing the assumption that the Pr ion is surrounded by a thermal bath. The critical point technique resulted in a dramatic increase of the hyperfine transition T_2 from ~10 ms to 860 ms. ¶ Satisfied that the optimal static magnetic field configuration for increasing T_2 had been achieved, dynamic magnetic field techniques, driving either the system of interest or spin bath were investigated. These techniques are broadly classed as Dynamic Decoherence Control (DDC) in the QIP community. The first DDC technique investigated was driving the Pr ion using a CPMG or Bang Bang decoupling pulse sequence. This significantly extended T_2 from 0.86 s to 70 s. This decoupling strategy has been extensively discussed for correcting phase errors in quantum computers [8, 9, 10, 11, 12, 13, 14, 15], with this work being the first application to solid state systems. ¶ Magic Angle Line Narrowing was used to investigate driving the spin bath to increase T_2. This experiment resulted in T_2 increasing from 0.84 s to 1.12 s. Both dynamic techniques introduce a periodic condition on when QIP operation can be performed without the qubits participating in the operation accumulating phase errors relative to the qubits not involved in the operation. ¶ Without using the critical point technique Dynamic Decoherence Control techniques such as the Bang Bang decoupling sequence and MALN are not useful due to the sensitivity of the Pr ion to magnetic field fluctuations. Critical point and DDC techniques are mutually beneficial since the critical point is most effective at removing high frequency perturbations while DDC techniques remove the low frequency perturbations. A further benefit of using the critical point technique is it allows changing the coupling to the spin bath without changing the spin bath dynamics. This was useful for discerning whether the limits are inherent to the DDC technique or are due to experimental limitations. ¶ Solid state systems exhibiting long T_2 are typically very specialised systems, such as 29Si dopants in an isotopically pure 28Si and therefore spin free host lattice [16]. These systems rely on on the purity of their environment to achieve long T_2. Despite possessing a long T_2, the spin system remain inherently sensitive to magnetic field fluctuations. In contrast, this work has demonstrated that decoherence times, sufficiently long to rival any solid state system [16], are achievable when the spin of interest is surrounded by a concentrated spin bath. Using the critical point technique results in a hyperfine state that is inherently insensitive to small magnetic field perturbations and therefore more robust for QIP applications.
APA, Harvard, Vancouver, ISO, and other styles
15

Camirand, Lemyre Julien. "Nanofabrication de boîtes quantiques latérales pour l'optimisation de qubits de spin." Mémoire, Université de Sherbrooke, 2012. http://hdl.handle.net/11143/5771.

Full text
Abstract:
On présente dans ce travail un nouveau type de qubit de spin dont les performances reposent sur les propriétés d'un seul électron dans une double boîte quantique. Le fort moment dipolaire de la double boîte combiné à une large variation du champ magnétique entre les deux boîtes permettrait de réaliser des opérations logiques plus rapidement que dans une seule boîte quantique. Pour maximiser les variations du champ magnétique, on utilisera un micro-aimant placé le plus près possible d'une des deux boîtes. À cette fin, une hétérostructure de GaAs/A1GaAs sur laquelle sont déposées des grilles d'aluminium a été utilisée pour former une double boîte quantique latérale. L'occupation par un seul électron de la double boîte est confirmée par des mesures de transport électrique à basse température ainsi que par l'observation du blocage de spin. De plus, un procédé d'oxydation des grilles par plasma d'oxygène a été développé. Une étude des propriétés de l'oxyde formé par cette méthode montre qu'il est possible de placer un micro-aimant directement sur la surface de l'hétérostructure sans affecter l'isolation électrique entre les grilles. Cette nouvelle approche permet de produire des champs magnétiques encore plus intenses que dans les expériences antérieures, pour lesquelles le micro-aimant est placé beaucoup plus loin de la surface. L'ensemble du procédé de fabrication, de la photolithographie à l'électrolithographie, a été développé au cours de ce travail dans les salles blanches du département de génie électrique et dans les salles propres du département de physique de l'Université de Sherbrooke. Ce travail est une étape importante dans la réalisation de qubits de spin plus performants dans les boîtes quantiques latérales.
APA, Harvard, Vancouver, ISO, and other styles
16

Gaudreau, Louis. "Manipulation cohérente de qubits de spin dans une boîte quantique triple." Thèse, Université de Sherbrooke, 2011. http://savoirs.usherbrooke.ca/handle/11143/5157.

Full text
Abstract:
Nous présentons dans cette thèse une étude détaillée du moment magnétique intrinsèque de l'électron, i.e. le spin électronique, incluant la manipulation quantique cohérente des états de spin de trois électrons couplés. À cette fin, nous utilisons des boîtes quantiques latérales pour confiner les électrons. Ces nano-structures, d'une grandeur autour de 1 [micro]m, permettent de confiner un nombre précis d'électrons de façon contrôlée, allant jusqu'à zéro électrons [sic]. Les développements technologiques et d'ingéniosité durant la dernière décennie ont permis de coupler trois boîtes quantiques, ainsi l'interaction entre plusieurs électrons confinés peut être contrôlée comme par exemple le couplage quantique tunnel et l'interaction d'échange entre les spins de chacun d'entre eux. À l'aide de boîtes quantiques couplées, il est possible de réaliser des expériences dans plusieurs domaines de la physique moderne : les états up et down du spin des électrons confinés peuvent être utilisés comme états quantiques binaires (qubits) dans le domaine de l'informatique quantique, la non-localité quantique peut être testée en séparant spatialement deux électrons enchevêtrés, il est possible de créer des 'courants de spin enchevêtrés' utiles en spintronique, et bien d'autres. La manipulation cohérente des états de spin du système à trois électrons se fait de façon purement électrique grâce à des pulses à haute fréquence qui permettent d'augmenter le couplage entre les électrons et de faire la mesure de l'état résultant après la manipulation. Nous utilisons l'interaction hyperfine entre les spins des électrons et ceux des noyaux du cristal dans lequel ils résident pour créer les rotations quantiques entre les états, notamment les états [barre verticale]Q[indice inférieur +3/2] [right angle bracket] et [barre verticale]D[indice inférieur +1/2] [right angle bracket]. Les résultats obtenus indiquent un temps de cohérence de l'ordre de 10 ns. Ces expériences démontrent un niveau de contrôle sans précédent de boîtes quantiques triples et pavent la voie vers des nano-structures plus sophistiquées dans lesquelles un plus grand nombre de qubits peuvent être couplés.
APA, Harvard, Vancouver, ISO, and other styles
17

Elman, Samuel. "Long-range entanglement for spin qubits via quantum Hall edge modes." Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/17165.

Full text
Abstract:
We propose and analyse a scheme for performing a long-range entangling gate for qubits encoded in electron spins trapped in semiconductor quantum dots. Our coupling makes use of an electrostatic interaction between the state-dependent charge configurations of a singlet-triplet qubit and the edge modes of a quantum Hall droplet. We show that distant singlet-triplet qubits can be selectively coupled, with gate times that can be much shorter than qubit dephasing times and faster than decoherence due to coupling to the edge modes. Based on parameters from recent experiments we argue that fidelities of $99\%$ could in principle be achieved, for a two-qubit gate taking as little as 20 ns
APA, Harvard, Vancouver, ISO, and other styles
18

Fraval, Elliot. "Minimising the decoherence of rare earth ion solid state spin qubits /." View thesis entry in Australian Digital Theses Program, 2005. http://thesis.anu.edu.au/public/adt-ANU20061010.124211/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Grajales, Julián Andrés Vargas. "Caracterização da evolução adiabática em cadeias de spin." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-05062018-151545/.

Full text
Abstract:
A computação quântica adiabática tem sua pedra angular no teorema adiabático, cuja eficiência está relacionada tradicionalmente à proporção da variação temporal do Hamiltoniano que descreve o sistema e o gap mínimo entre o estado fundamental e o primeiro excitado. Normalmente, esse gap tende a diminuir quando aumenta o número de recursos (bit quântico: qubit) de um processador quântico, exigindo dessa maneira variações lentas do Hamiltoniano para assim garantir uma dinâmica adiabática. Entre os candidatos para a sua implementação física, estão os qubits baseados em circuitos supercondutores os quais têm um grande potencial, por causa de seu alto controle e escalabilidade promissora. No entanto, quando esses qubits são implementados, eles têm uma fonte intrínseca de ruído devido a erros de fabricação, que não podem ser desprezados. Por isso, nesta tese nós estudamos como os efeitos causados pelas flutuações dos parâmetros físicos do qubit afetam o comportamento da fidelidade da computação, realizando com esse propósito a simulação da dinâmica de cadeias de spin pequenas desordenadas. A partir do análise exaustivo desse estúdio foi possível propor uma estratégia que permite aumentar a fidelidade considerando um sistema ruidoso. Por outro lado, motivados pelo interesse de obter critérios suficientes e necessários para satisfazer uma computação quântica adiabática e pelo fato que ainda não existe uma condição de adiabaticidade geral apesar de existir inúmeras propostas, nós apresentamos um novo critério que manifesta suficiência para sistemas mais gerais e finalmente apresentamos evidências de que tal condição seria um quantificador consistente.<br>Adiabatic quantum computation has its cornerstone in the adiabatic theorem, whose efficiency is traditionally related to the ratio of the Hamiltonian temporal variation that describes the system and the minimum gap between the ground state and the first excited state. Usually, this gap tends to decrease when the number of quantum resources (quantum bit: qubit) of a quantum processor increases, thus it requires slow variations of the Hamiltonian to ensure an adiabatic dynamic. Among the candidates for its physical implementation are the qubits superconducting circuit-based which have great potential because of their high control and promising scalability. However, when these qubits are implemented, they have an intrinsic source of noise due to manufacturing errors that can not be despised. Therefore, in this thesis we study how the effects caused by the fluctuations of the physical parameters of the qubit affect the behavior of the fidelity of the computation, accomplishing with this purpose the simulation of the dynamics of small disordered spin chains. From the exhaustive analysis of this studio, it was possible to propose a strategy that allows to increase the fidelity considering a noisy system. On the other hand, motivated by the interest of obtaining sufficient and necessary criteria to satisfy an adiabatic quantum computation and the fact that there is still no general adiabaticity condition despite there being numerous proposals, we present a new criterion that manifests sufficiency for more general systems and we finally presented evidence that such a condition would be a consistent quantifier.
APA, Harvard, Vancouver, ISO, and other styles
20

Schauer, Floyd [Verfasser], and Dominique [Akademischer Betreuer] Bougeard. "Realizing spin qubits in 28Si/SiGe: heterostructure gating, qubit decoherence and asymmetric charge sensing / Floyd Schauer ; Betreuer: Dominique Bougeard." Regensburg : Universitätsbibliothek Regensburg, 2021. http://d-nb.info/1225935849/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Rohling, Niklas [Verfasser]. "Quantum Computing with Spin and Valley Qubits in Quantum Dots / Niklas Rohling." Konstanz : Bibliothek der Universität Konstanz, 2015. http://d-nb.info/1095134507/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Brown, Richard Matthew. "Coherent transfer between electron and nuclear spin qubits and their decoherence properties." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:21e043b7-3b72-44d7-8095-74308a6827dd.

Full text
Abstract:
Conventional computing faces a huge technical challenge as traditional transistors will soon reach their size limitations. This will halt progress in reaching faster processing speeds and to overcome this problem, require an entirely new approach. Quantum computing (QC) is a natural solution offering a route to miniaturisation by, for example, storing information in electron or nuclear spin states, whilst harnessing the power of quantum physics to perform certain calculations exponentially faster than its classical counterpart. However, QCs face many difficulties, such as, protecting the quantum-bit (qubit) from the environment and its irreversible loss through the process of decoherence. Hybrid systems provide a route to harnessing the benefits of multiple degrees of freedom through the coherent transfer of quantum information between them. In this thesis I show coherent qubit transfer between electron and nuclear spin states in a <sup>15</sup>N@C<sub>60</sub> molecular system (comprising a nitrogen atom encapsulated in a carbon cage) and a solid state system, using phosphorous donors in silicon (Si:P). The propagation uses a series of resonant mi- crowave and radiofrequency pulses and is shown with a two-way fidelity of around 90% for an arbitrary qubit state. The transfer allows quantum information to be held in the nuclear spin for up to 3 orders of magnitude longer than in the electron spin, producing a <sup>15</sup>N@C<sub>60</sub> and Si:P ‘quantum memory’ of up to 130 ms and 1.75 s, respectively. I show electron and nuclear spin relaxation (T<sub>1</sub>), in both systems, is dominated by a two-phonon process resonant with an excited state, with a constant electron/nuclear T<sub>1</sub> ratio. The thesis further investigates the decoherence and relaxation properties of metal atoms encapsulated in a carbon cage, termed metallofullerenes, discovering that exceptionally long electron spin decoherence times are possible, such that these can be considered a viable QC candidate.
APA, Harvard, Vancouver, ISO, and other styles
23

Hadden, J. P. "Photonic structures and techniques for enhanced measurement of spin qubits in diamond." Thesis, University of Bristol, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664971.

Full text
Abstract:
The negatively charged nitrogen vacancy centre is a promising candidate for use as a single photon source for linear optical quantum information, and as a solid state spin for solid state quantum information and room temperature magnetometry. However low photon collection efficiency is a problem for each of these applications. We demonstrate how photon losses due to refraction can be eliminated through the use of Solid Immersion Lenses (SILs) nano-fabricated on the surface of diamond. Coherent electron spin manipulation and readout is demonstrated on NV- centres under SILs. We show initial investigations into the effects of FIB fabrication on the NV- centre's coherence time, and demonstrate unitary quantum process discrimination on between two non orthogonal processes. In order to improve collection efficiency further it is necessary to couple NV- centres to optical micro cavities. This requires a higher degree of precision in the measurement of the NV- centres position than is possible using conventional confocal microscopy. We investigate spectral self interferometric microscopy as a method for precision measurement of the depth of an NV- centre. Finally we show coherent manipulation of photons emitted from a near infra-red colour centre in diamond using a single integrated waveguide chip. This is used to verify wave particle duality of the photons.
APA, Harvard, Vancouver, ISO, and other styles
24

Venitucci, Benjamin. "Modélisation de la manipulation électrique des qubits de trou dans le silicium." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALY059.

Full text
Abstract:
Les bits quantiques (qubits) de spin sont des dispositifs dans lesquels l'information est stockée comme une superposition cohérente des deux états de spin d'une particule. Une des perspectives de ces dispositifs est d'exploiter le parallélisme massif permis par une telle superposition de solutions. Le CEA Grenoble étudie notamment des qubits de spin de trou dans le silicium, car leur manipulation électrique est plus facile que les qubits d'électron grâce au couplage spin-orbite fort dans les bandes de valence. Cette thèse porte ainsi sur la modélisation de la manipulation électrique de ces qubits de trou. Tout d'abord, nous introduisons les méthodes k.p décrivant la structure des bandes de valence du silicium, et qui permettent de construire des modèles numériques et analytiques. Puis nous présentons les expériences menées au CEA Grenoble sur ces qubits dérivés des technologies CMOS. Ces expériences mettent en évidence les fortes anisotropies magnétiques des fréquences de Larmor et de Rabi, qui caractérisent respectivement la dynamique et la manipulation du qubit. Nous introduisons un formalisme de matrice gyromagnétique qui décrit complètement ces deux fréquences. De plus, nous montrons comment les symétries impactent la forme de cette matrice, et comment elles expliquent l'anisotropie magnétique des qubits. Ensuite, nous identifions grâce à la simulation numérique, les mécanismes microscopiques à l'œuvre lors de la manipulation électrique du spin, ce qui nous permet de construire un modèle minimal de qubit de trou. Ce modèle démontre que le silicium est un matériau hôte idéal pour un tel qubit grâce à la forte anisotropie de ces bandes de valence. Pour terminer, nous étudions numériquement l'impact des phonons sur le temps de vie des qubits de trou. Nous montrons que le temps de relaxation est suffisamment grand pour effectuer plusieurs dizaines de milliers d'opérations malgré le couplage spin-orbite fort<br>Spin quantum bits (qubits) are devices in which information is stored as a coherent superposition of two spin states of a particle. One of the perspectives of these devices is to exploit a massive parallelism allowed by such a superposition of solutions. The CEA Grenoble is studying in particular hole spin qubits in silicon, because their electrical manipulation is easier than electron qubits thanks to the strong spin-orbit coupling of the valence bands. This thesis thus focuses on the modeling of the electrical manipulation of these hole qubits. First of all, we introduce the k.p methods that describe the valence bands structure of silicon, and which allow to build numerical and analytical models. Then we present the experiments carried out by CEA Grenoble on these qubits derived from CMOS technologies. These experiments reveal the strong magnetic anisotropy of the Larmor and Rabi frequency, which respectively characterise the dynamic and the manipulation of the qubit. We introduce a gyromagnetic matrix formalism that completely describe these two frequencies.In addition, we show how symmetries impact the shape of this matrix, and how they explain the magnetic anisotropy of qubits. Next, we identify through numerical simulation, the microscopic mechanisms underlying the electrical manipulation of spin, which then allow us to build a minimal model for hole qubits. This model demonstrates that silicon is an ideal host material for a such qubit thanks to the strong anisotropy of its valence bands. Finally, we study numerically the impact of phonons on the lifetime of hole qubits. We show that the relaxation time is large enough to perform tens of thousand of operations despite the strong spin-orbit coupling
APA, Harvard, Vancouver, ISO, and other styles
25

Cerfontaine, Pascal [Verfasser], Jörg Hendrik [Akademischer Betreuer] Bluhm, and David P. [Akademischer Betreuer] DiVincenzo. "High-fidelity single- and two-qubit gates for two-electron spin qubits / Pascal Cerfontaine ; Jörg Hendrik Bluhm, David P. DiVincenzo." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1211487806/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Houriez, Thomas. "Circuits électroniques à températures cryogéniques pour la lecture massive de qubits de spin." Electronic Thesis or Diss., Université Grenoble Alpes, 2025. http://www.theses.fr/2025GRALT007.

Full text
Abstract:
Les qubits de spin sur semi-conducteurs constituent une plateforme prometteuse pour le calcul quantique à grande échelle, car ils bénéficient d’une taille réduite et de procédés de fabrication compatibles avec l’industrie des semi-conducteurs. Bien que les qubits de spin fonctionnent à des températures cryogéniques, les circuits électroniques assurant leur contrôle sont généralement placés à température ambiante. Plusieurs milliers de câbles doivent donc traverser le cryostat.Placer l’électronique de contrôle à l’intérieur du cryostat permettrait de limiter les connexions reliant l’étage à température ambiante avec les étages cryogéniques à un petit nombre de câbles portant des signaux basses fréquences. Cette thèse vise à développer des circuits intégrés à températures cryogéniques conçus pour réaliser la lecture par impédancemétrie de qubits de spin et adaptés à une lecture à grande échelle. L’impédancemétrie est une méthode de lecture similaire à la méthode éprouvée de la réflectométrie, mais dans laquelle l’impédance du résonateur connecté au qubit est mesurée directement, ce qui permet d’éviter une optimisation complexe de l’adaptation d’impédance du résonateur. En contrepartie, les circuits de lecture doivent être placés à proximité immédiate des résonateurs.Tout d’abord, nous présentons une étude théorique comparant les performances des lectures par impédancemétrie et par réflectométrie. L'impédancemétrie présente une sensibilité en phase améliorée, étant limitée uniquement par le facteur de qualité interne du résonateur. Cependant, placer le résonateur à une température plus élevée augmente son bruit thermique, limitant le rapport signal sur bruit (SNR). Nous réalisons des simulations montrant que l'impédancemétrie est compatible avec le multiplexage fréquentiel, permettant la lecture de plusieurs qubits par la même chaîne de lecture. Nous concevons ensuite un circuit sur la technologie Fully-Depleted Silicon-On-Insulator (FDSOI) 28nm pour démontrer le principe de lecture. Les tests sont effectués à 4.2K, bien que le circuit soit compatible avec une utilisation à 500mK. Pendant la caractérisation du circuit, un deuxième LNA discret en SiGe est utilisé. Ce LNA a également été conçu au cours de cette thèse pour être utilisé comme second étage d’amplification d’une lecture par impédancemétrie ou réflectométrie. À 4.2K, le circuit intégré consomme 590µW pour une bande passante de 500MHz. Une capacité numérique est utilisée pour émuler le comportement d’un qubit et évaluer la sensibilité de la chaîne de lecture. La sensibilité est de 35 aF.µV/√Hz à 4.2K, limitée par le bruit thermique du résonateur, avec une amélioration d’un facteur 3 prévue à 500mK<br>Semiconductor spin qubits are a promising platform for large-scale quantum computing as they benefit from a small footprint and fabrication processes compatible with the established semiconductor industry. While spin qubits are operated at cryogenic temperatures, the electronic circuits ensuring their operation are usually kept at room temperature. Therefore, more than thousands of signals must be conveyed through the cryostat.Moving the control electronics inside the cryostat would improve the system scalability, reducing the connections between room temperature and cryogenic stages to fewer low-frequency cables. This thesis aims to develop cryogenic integrated circuits designed to perform the impedancemetry readout of spin qubits and adapted to large scale readout. Impedancemetry is a readout method similar to the established method of reflectometry, but in which the impedance of the resonator connected to the qubit is measured directly, avoiding the need for complex impedance matching of the resonator. On the other hand, the readout circuits and resonators must be placed in close proximity.First, we present a theoretical study comparing the performances of impedancemetry and reflectometry readout. Impedancemetry demonstrates an improved phase sensitivity since it is limited only by the internal quality factor of the resonator. However, placing the resonator at a higher temperature stage increases its thermal noise, limiting the Signal-to-Noise Ratio (SNR).We perform simulations showing that impedancemetry is compatible with frequency multiplexing, allowing to read several qubits with a single readout chain. Then, we design a circuit in the industrial Fully-Depleted Silicon-On-Insulator (FDSOI) 28nm technology to demonstrate the readout concept. The tests are performed at 4.2K, although the circuit is compatible with an operation at 500mK. During the circuit characterization, an additional discrete SiGe LNA is used. It was also designed during this Ph.D. to be used as the second amplification stage of an impedancemetry or reflectometry readout. At 4.2K, the integrated circuit consumes 590µW for a bandwidth of 500MHz. A digital capacitance is used to emulate the behavior of a qubit and evaluate the sensitivity of the readout chain. The sensitivity is of 35 aF.µV/√Hz at 4.2K, limited by the resonator thermal noise, with an improvement by a factor 3 predicted at 500mK
APA, Harvard, Vancouver, ISO, and other styles
27

Thalineau, Romain. "Qubits de spin : de la manipulation et déplacement d'un spin électronique unique à son utilisation comme détecteur ultra sensible." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00875970.

Full text
Abstract:
Cette thèse décrit une série de travaux réalisés dans le contexte des qubits de spins, allant de l'utilisation de ces qubits pour stocker de l'information à leur utilisation comme détecteurs ultra-sensibles. Nous utilisons des hétérostructures semi-conductrices d'arséniure de gallium dans lesquelles un électron unique peut être isolé au sein d'un piège électrostatique, une boîte quantique. Le spin de cet électron peut être utilisé pour encoder de l'information, et la boîte quantique contenant ce spin unique est alors vue comme un qubit (quantum bit). Au cours de cette thèse nous démontrons la réalisation expérimentale du transport d'un électron unique le long d'un circuit fermé au sein d'un système composé de quatre boîtes quantiques couplées. En considérant l'interaction spin-orbite, cette expérience ouvre la voie vers des manipulations cohérentes de spins utilisant des effets topologiques. Dans le contexte de l'ordinateur quantique et des qubits de spins, nous étudions les portes logiques à deux qubits. Dans le cadre de deux boîtes quantiques couplées par une barrière tunnel, nous démontrons qu'en contrôlant localement le champ magnétique, la porte logique à deux qubits évoluent de la porte SWAP à la porte C-phase. Nous démontrons ainsi la faisabilité d'une porte C-phase. Finalement nous montrons l'utilisation d'un qubit de spin comme un détecteur de charge ultrasensible. Un singlet-triplet qubit est un système quantique qui peut être réglé de manière à être extrêmement sensible à l'environnement électrostatique. Nous démontrons la faisabilité d'un tel détecteur, et nous montrons qu'il peut être utilisé pour détecter un électron unique.
APA, Harvard, Vancouver, ISO, and other styles
28

Walsh, Michael P. Ph D. Massachusetts Institute of Technology. "Microwave and optical control of sub-diffraction spin qubits in diamond at cryogenic temperatures." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101591.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (pages 87-91).<br>Efficient entanglement of negative nitrogen vacancy (NV) centers in diamond will bring us significantly closer to realizing a large scale quantum network, including the design and development of quantum computers. A central requirement for generating large-scale entanglement is a system that can be entangled at a rate faster than it decoheres. There are a variety of proposed protocols to implement entanglement, however, thus far implementation of a system that performs efficiently enough in practice to overcome decoherence has been unsuccessful. In this thesis, I laid the ground work to entangle two NVs using a dipole coupling protocol, a protocol that has the advantageous property of not requiring use of identical photons, making this experimental approach highly feasible. The actual experiment will be done at cryogenic temperatures, a condition that provides an advantage over room temperature realizations of the protocol by extending coherence time and improving readout speed and fidelity. The ultimate goal of this work is to determine if this is achievable in a scalable architecture that will establish a foundation for future experiments in this research and development area.<br>by Michael P. Walsh.<br>S.M.
APA, Harvard, Vancouver, ISO, and other styles
29

Tiwari, Rakesh P. "Topics in the theory of excitations in granular matter." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1259970038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Russ, Maximilian [Verfasser]. "Quantum information processing in semiconductor quantum dots using single and multi-spin qubits / Maximilian Russ." Konstanz : KOPS Universität Konstanz, 2019. http://d-nb.info/1191693406/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Michaud, François. "Fabrication de résonateurs en niobium pour le traitement de l'information quantique avec des qubits de spin." Mémoire, Université de Sherbrooke, 2013. http://hdl.handle.net/11143/6639.

Full text
Abstract:
Ce Mémoire traite des aspects expérimentaux de la réalisation de résonateurs supraconducteurs pour le transport de l’information quantique. Les avancées technologiques des dix dernières années et le développement de l’électrodynamique quantique en circuit ont permis de démontrer que les bits quantiques (qubits) supraconducteurs couplés à des résonateurs supraconducteurs sont capables d'effectuer des opérations quantiques très rapidement. Il y a maintenant un intérêt pour l’intégration de qubits de spin aux résonateurs afin de combiner leurs avantages avec ceux des qubits supraconducteurs. Dans ce contexte, il est nécessaire de fabriquer des résonateurs avec un champ magnétique critique élevé. Des couches minces de niobium ont été déposées par pulvérisation cathodique DC. On présente la caractérisation de la température critique et du champ magnétique critique à l’aide de mesures de résistivité et de susceptibilité magnétique. Une corrélation entre la résistivité, la température critique et le facteur de qualité des résonateurs fabriqués a été observée. Une analyse par spectroscopie de photoélectrons X d’un des échantillons a confirmé une quantité élevée d'impuretés dans le niobium. Des résonateurs en niobium avec des facteurs de qualité de 200 à ~4400 ont été fabriqués sur silicium et GaAs. À partir de la dépendance en température de la résonance, l’impédance de surface est décrite par le modèle Mattis-Bardeen et le modèle deux fluides. Les pertes observées à basse température sont attribuées à la résistance de surface résiduelle du niobium causée par la présence d’impuretés. On caractérise également la variation du facteur de qualité des résonateurs en fonction de l’intensité du champ magnétique et la puissance d'excitation. Les pertes et l’hystérésis observées sont décrites par la dynamique des vortex de flux magnétique dans le niobium. On détermine un champ magnétique critique pour le fonctionnement des résonateurs se trouvant entre 0.2 T et 0.6 T. Ces résultats montrent que les résonateurs fabriqués sont adéquats pour l’intégration de qubits de spins.
APA, Harvard, Vancouver, ISO, and other styles
32

Abutaleb, Mohamed Osama. "RF instrumentation and system design for coherent control of anisotropic hyperfine-coupled electron/nuclear spin qubits." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/57778.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (p. 81-85).<br>Coherent control is a fundamental challenge in quantum information processing (QIP). Our system of interest employs a local, isolated electron spin to coherently control nuclear spins. Coupled electron/nuclear spins are a promising candidate for QIP: nuclear spins are used for information storage and computation due to their long coherence times, while the electron is used as a spin actuator for initialization, information transfer, control, and readout. This is the first implementation of a local processor using the central qubit architecture. In this work, a robust integrated system for coherent control of these spins is proposed. The system includes a mechanical and cryogenic system for sample handling, cooling, and suspension; computer software for experimental control and optimal control pulse determination; and a custom-designed pulsed electron spin resonance (ESR) spectrometer with digital signal acquisition and processing. The spectrometer enhances and expands past contributions of J. S. Hodges and J. C. Yang, who built a first generation device capable of amplitude modulated control pulses. The new device features improved noise properties, higher power, better carrier and sideband rejection, and a more customizable analysis via digital signal processing. It also implements both amplitude and phase modulation of control pulses. Further, it introduces the ability to address different resonances in the spin system by switching intermediate frequencies while maintaining phase coherence. Our work concludes with a signal-to-noise ratio (SNR) analysis that demonstrates improvement of more than a factor of 15 compared to the earlier device.<br>by Mohamed Osama Abutaleb.<br>S.M.
APA, Harvard, Vancouver, ISO, and other styles
33

Poulin-Lamarre, Gabriel. "La boîte quantique triple : nouvelles oscillations et incorporation de microaimants." Mémoire, Université de Sherbrooke, 2014. http://hdl.handle.net/11143/5989.

Full text
Abstract:
Les qubits de spin sont des candidats prometteurs pour le traitement de l’information quantique en raison de leurs longs temps de cohérence. Les deux principaux qubits présents dans un système à trois spins ont été démontré au cours des dernières années dans la boîte quantique latérale triple. Le diagramme des niveaux d’énergie de quelques électrons dans la boîte quantique triple est beaucoup plus complexe que son homologue à deux ou à une boîte. Il en résulte des possibilités de fuites hors des qubits ciblés. Dans ce mémoire, nous présenterons une nouvelles technologie pour améliorer le contrôle des états de spin et augmenter le temps de cohérence des qubits. Nous avons effectué des mesures préliminaires sur des échantillons sur lesquels a été incorporé un microaimant. Ce microaimant crée un champ magnétique non-uniforme au niveau des boîtes quantiques qui sera utilisé pour effectuer une rotation de spin et pour améliorer certains types d’oscillations. Nous avons optimisé la forme des géométries afin de créer des gradients de champ magnétique optimaux spécifiquement pour la boîte quantique triple. Différents problèmes ont été encourus et la stratégie que nous avons adoptée pour les régler sera présentée. De plus, nous avons analysé les phénomènes de fuites entre les états quantiques en étudiant la réponse d’un système à trois spins en fonction de différentes impulsions électriques. Nous présentons deux processus d’interférence jamais répertoriés entre les qubits de la boîte quantique triple. Afin d’identifier l’origine de ces interférences, nous avons utilisé leur dépendance en champ magnétique.
APA, Harvard, Vancouver, ISO, and other styles
34

Rancic, Marko [Verfasser]. "Electrical control and coherence of spin qubits in indium gallium arsenide and silicon quantum dots / Marko Rancic." Konstanz : Bibliothek der Universität Konstanz, 2016. http://d-nb.info/1124780394/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Polad, Serkan. "Quantum Mechanical Treatment Of Fullerene-based Systems Doped With Various Metal And Non-metal Elements As Prospective Spin-qubits." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612173/index.pdf.

Full text
Abstract:
In this thesis, We have calculated the optimized geometries, electronic structures and spin distributions of metal and non-metal elements Li, Na, N and P doped C60 fullerene dimers and trimers with different spin multiplicities using hybrid density functional theory (DFT) at the B3LYP/6-31G level of theory. Natural population analysis and Mulliken population analysis show that non-metal elements (N, P) inside the C60 fullerene dimers and trimers are well isolated and preserve their electronic structures while charge transfer processes occur between metal elements(Li, Na) and C60 structures. Energy calculations showed that both doped and undoped linear C60 structures are energetically lower than triangular C60 structures. Calculated spin density distributions make non-metal doped C60 structures advantageous over metal doped C60 cages as spin cluster qubits.
APA, Harvard, Vancouver, ISO, and other styles
36

Dong, Wenzheng. "Quantum Information Processing with Color Center Qubits: Theory of Initialization and Robust Control." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103438.

Full text
Abstract:
Quantum information technologies include secure quantum communications and ultra precise quantum sensing that are significantly more efficient than their classical counterparts. To enable such technologies, we need a scalable quantum platform in which qubits are con trollable. Color centers provide controllable optically-active spin qubits within the coherence time limit. Moreover, the nearby nuclear spins have long coherence times suitable for quantum memories. In this thesis, I present a theoretical understanding of and control protocols for various color centers. Using group theory, I explore the wave functions and laser pumping-induced dynamics of VSi color centers in silicon carbide. I also provide dynamical decoupling-based high-fidelity control of nuclear spins around the color center. I also present a control technique that combines holonomic control and dynamically corrected control to tolerate simultaneous errors from various sources. The work described here includes a theoretical understanding and control techniques of color center spin qubits and nuclear spin quantum memories, as well as a new platform-independent control formalism towards robust qubit control.<br>Doctor of Philosophy<br>Quantum information technologies promise to offer efficient computations of certain algorithms and secure communications beyond the reach of their classical counterparts. To achieve such technologies, we must find a suitable quantum platform to manipulate the quantum information units (qubits). Color centers host spin qubits that can enable such technologies. However, it is challenging due to our incomplete understanding of their physical properties and, more importantly, the controllability and scalability of such spin qubits. In this thesis, I present a theoretical understanding of and control protocols for various color centers. By using group theory that describes the symmetry of color centers, I give a phenomenological model of spin qubit dynamics under optical control of VSi color centers in silicon carbide. I also provide an improved technique for controlling nuclear spin qubits with higher precision. Moreover, I propose a new qubit control technique that combines two methods - holonomic control and dynamical corrected control - to provide further robust qubit control in the presence of multiple noise sources. The works in this thesis provide knowledge of color center spin qubits and concrete control methods towards quantum information technologies with color center spin qubits.
APA, Harvard, Vancouver, ISO, and other styles
37

Bureau-Oxton, Chloé. "Fabrication de nanoaimants pour le contrôle rapide d'un spin électronique dans une boîte quantique double." Mémoire, Université de Sherbrooke, 2014. http://savoirs.usherbrooke.ca/handle/11143/5298.

Full text
Abstract:
Un ordinateur quantique est un ordinateur formé de bits quantiques (qubits) qui tire profit des propriétés quantiques de la matière. Un grand intérêt est porté au développement d’un tel ordinateur depuis qu’il a été montré que le calcul quantique permettrait d’effectuer certains types de calculs exponentiellement plus rapidement qu’avec les meilleurs algorithmes connus sur un ordinateur classique. D’ailleurs, plusieurs algorithmes ont déjà été suggérés pour résoudre efficacement des problèmes tels que la factorisation de grands nombres premiers et la recherche dans des listes désordonnées. Avant d’en arriver à un ordinateur quantique fonctionnel, certains grands défis doivent être surmontés. Un de ces défis consiste à fabriquer des qubits ayant un temps d’opération nettement inférieur au temps de cohérence (temps durant lequel l’état du qubit est conservé). Cette condition est nécessaire pour parvenir à un calcul quantique fiable. Pour atteindre cet objectif, de nombreuses recherches visent à augmenter le temps de cohérence en choisissant judicieusement les matériaux utilisés dans la fabrication des qubits en plus d’imaginer de nouvelles méthodes d’utiliser ces dispositifs pour diminuer la durée des opérations. Une manière simple d’implémenter un qubit est de piéger quelques électrons dans l’espace et d’utiliser l’état de spin de cet ensemble d’électrons pour encoder les états du qubit. Ce type de dispositif porte le nom de qubit de spin. Les boîtes quantiques (BQs) latérales fabriquées sur des substrats de GaAs/AlGaAs sont un exemple de qubit de spin et sont les dispositifs étudiés dans ce mémoire. En 2007, Pioro-Ladrière et al. ont suggéré de placer un microaimant à proximité d’une BQ pour créer un gradient de champ magnétique non-uniforme et permettre d’effectuer des rotations de spin à l’aide d’impulsions électriques rapides. Ce mémoire présente comment modifier la géométrie de ces microaimants pour obtenir un plus grand gradient de champ magnétique dans la BQ. Une nouvelle technique de contrôle de spin menant à des rotations de spin et de phase plus rapides sera aussi détaillée. Enfin, il sera montré que le département de physique de l’Université de Sherbrooke possède tous les outils nécessaires pour implémenter cette méthode.
APA, Harvard, Vancouver, ISO, and other styles
38

Botzem, Tim [Verfasser], Jörg Hendrik [Akademischer Betreuer] Bluhm, and Ferdinand [Akademischer Betreuer] Kuemmeth. "Coherence and high fidelity control of two-electron spin qubits in GaAs quantum dots / Tim Botzem ; Jörg Hendrik Bluhm, Ferdinand Kuemmeth." Aachen : Universitätsbibliothek der RWTH Aachen, 2017. http://d-nb.info/1162498404/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Deng, Kuangyin. "Exchange and superexchange interactions in quantum dot systems." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/102342.

Full text
Abstract:
Semiconductor quantum dot systems offer a promising platform for quantum computation. And these quantum computation candidates are normally based on spin or charge properties of electrons. In these systems, we focus on quantum computation based on electron spins since these systems has good scalability, long coherence times, and rapid gate operations. And this thesis focuses on building a theoretical description of quantum dot systems and the link between theory and experiments. In many quantum dot systems, exchange interactions are the primary mechanism used to control spins and generate entanglement. And exchange energies are normally positive, which limits control flexibility. However, recent experiments show that negative exchange interactions can arise in a linear three-dot system when a two-electron double quantum dot is exchange coupled to a larger quantum dot containing on the order of one hundred electrons. The origin of this negative exchange can be traced to the larger quantum dot exhibiting a spin triplet-like rather than singlet-like ground state. Here we show using a microscopic model based on the configuration interaction (CI) method that both triplet-like and singlet-like ground states are realized depending on the number of electrons. In the case of only four electrons, a full CI calculation reveals that triplet-like ground states occur for sufficiently large dots. These results hold for symmetric and asymmetric quantum dots in both Si and GaAs, showing that negative exchange interactions are robust in few-electron double quantum dots and do not require large numbers of electrons. Recent experiments also show the potential to utilize large quantum dots to mediate superexchange interaction and generate entanglement between distant spins. This opens up a possible mechanism for selectively coupling pairs of remote spins in a larger network of quantum dots. Taking advantage of this opportunity requires a deeper understanding of how to control superexchange interactions in these systems. Here, we consider a triple-dot system arranged in linear and triangular geometries. We use CI calculations to investigate the interplay of superexchange and nearest-neighbor exchange interactions as the location, detuning, and electron number of the mediating dot are varied. We show that superexchange processes strongly enhance and increase the range of the net spin-spin exchange as the dots approach a linear configuration. Furthermore, we show that the strength of the exchange interaction depends sensitively on the number of electrons in the mediator. Our results can be used as a guide to assist further experimental efforts towards scaling up to larger, two-dimensional quantum dot arrays.<br>Doctor of Philosophy<br>Semiconductor quantum dot systems offer a promising platform for quantum computation. And these quantum computation candidates are normally based on spin or charge properties of electrons. In these systems, we focus on quantum computation based on electron spins since these systems has good scalability, long coherence times, and rapid gate operations. And this thesis focuses on building a theoretical description of quantum dot systems and the link between theory and experiments. A key requirement for quantum computation is the ability to control individual qubits and couple them together to create entanglement. In quantum dot spin qubit systems, the exchange interaction is the primary mechanism used to accomplish these tasks. This thesis is about attaining a better understanding of exchange interactions in quantum dot spin qubit systems and how they can be manipulated by changing the configuration of the system and the number of electrons. In this thesis, we show negative exchange energy can arise in large size quantum dots. This result holds for symmetric and asymmetric shape of the large dots. And we also provide a quantitative analysis of how large quantum dots can be used to create long-distance spin-spin interactions. This capability would greatly increase the flexibility in designing quantum processors built by quantum dot spins. The interplay of these systems with different geometry can serve as a guide to assist further experiments and may hopefully be the basis to build two-dimensional quantum dot arrays.
APA, Harvard, Vancouver, ISO, and other styles
40

Benzid, Khalif. "Etude de l'effet de l'anisotropie magnétique sur la phase dynamique et sur la phase géométrique des bits quantiques de spins électroniques d'ions de métaux de transition Mn2+, Co2+, Fe3+ isolés et des complexes d'ions Fe3+ dans l'oxyde de zinc monocristallin." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAE009/document.

Full text
Abstract:
Nous avons étudié, par RPE impulsionnelle, la cohérence quantique et des spins électroniques des ions de transition Mn2+, Co2+, Fe3+, et des complexes Fe3+/Cs+ et Fe3+/Na+, tous présents dans le ZnO monocristallin. Nous avons trouvé que l’anisotropie magnétique peut altérer la cohérence de la phase dynamique des qubits des spins électroniques. Nous avons mesuré une faible décohérence pour les spins d’ions Mn2+et Fe3+ dans ZnO, qui ont tous deux une faible anisotropie magnétique uniaxiale, tandis que les ions Co2+ isolés avec une très forte anisotropie magnétique uniaxiale, une décohérence rapide a été mis en évidence. Nous avons trouvé que les spins électroniques des complexes de type Fe3+/Cs+, ayant un tenseur d’anisotropie magnétique plus complexe que la simple anisotropie uniaxiale des ions Fe3+ isolés, possèdent presque le même temps de décohérence. Par la méthode des perturbations, nous avons mis en évidence théoriquement un terme supplémentaire à la phase habituelle de Berry, dû à l’anisotropie magnétique et qui existe dans tout système ayant un spin S&gt;1/2<br>We studied by pulsed EPR (p-EPR), the quantum coherence of electronic spins qubits of isolated transition metal ions of Mn2+, Co2+, Fe3+ and Fe3+/Cs+ as well as Fe3+/Na+ complexes, all found as traces in mono-crystalline ZnO. Indeed, we experimentally demonstrated that the magnetic anisotropy can alter the coherence of the dynamic phase of electronic spins qubits. We found a small decoherence for Mn2+ and Fe3+, spins having a small uniaxial magnetic anisotropy, and on the contrary, we found a very strong decoherence for Co2+ spins having a very strong uniaxial magnetic anisotropy. We found that the electronic spins of the Fe3+/Cs+ complex, having a more complex tensor magnetic anisotropy compared to the simplest uniaxial one of isolated Fe3+ spins in ZnO, have almost the same coherence time. By the perturbation method, we have found theoretically an additional term to the usual geometric Berry phase, due to the magnetic anisotropy which exists in any system having a spin S&gt;1/2
APA, Harvard, Vancouver, ISO, and other styles
41

Hsieh, Chang-Yu. "Quantum Circuit Based on Electron Spins in Semiconductor Quantum Dots." Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/20738.

Full text
Abstract:
In this thesis, I present a microscopic theory of quantum circuits based on interacting electron spins in quantum dot molecules. We use the Linear Combination of Harmonic Orbitals-Configuration Interaction (LCHO-CI) formalism for microscopic calculations. We then derive effective Hubbard, t-J, and Heisenberg models. These models are used to predict the electronic, spin and transport properties of a triple quantum dot molecule (TQDM) as a function of topology, gate configuration, bias and magnetic field. With these theoretical tools and fully characterized TQDMs, we propose the following applications: 1. Voltage tunable qubit encoded in the chiral states of a half-filled TQDM. We show how to perform single qubit operations by pulsing voltages. We propose the "chirality-to-charge" conversion as the measurement scheme and demonstrate the robustness of the chirality-encoded qubit due to charge fluctuations. We derive an effective qubit-qubit Hamiltonian and demonstrate the two-qubit gate. This provides all the necessary operations for a quantum computer built with chirality-encoded qubits. 2. Berry's phase. We explore the prospect of geometric quantum computing with chirality-encoded qubit. We construct a Herzberg circuit in the voltage space and show the accumulation of Berry's phase. 3. Macroscopic quantum states on a semiconductor chip. We consider a linear chain of TQDMs, each with 4 electrons, obtained by nanostructuring a metallic gate in a field effect transistor. We theoretically show that the low energy spectrum of the chain maps onto that of a spin-1 chain. Hence, we show that macroscopic quantum states, protected by a Haldane gap from the continuum, emerge. In order to minimize decoherence of electron spin qubits, we consider using electron spins in the p orbitals of the valence band (valence holes) as qubits. We develop a theory of valence hole qubit within the 4-band k.p model. We show that static magnetic fields can be used to perform single qubit operations. We also show that the qubit-qubit interactions are sensitive to the geometry of a quantum dot network. For vertical qubit arrays, we predict that there exists an optimal qubit separation suitable for the voltage control of qubit-qubit interactions.
APA, Harvard, Vancouver, ISO, and other styles
42

Churchill, Hugh Olen Hill. "Quantum Dots in Gated Nanowires and Nanotubes." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10412.

Full text
Abstract:
This thesis describes experiments on quantum dots made by locally gating one-dimensional quantum wires. The first experiment studies a double quantum dot device formed in a Ge/Si core/shell nanowire. In addition to measuring transport through the double dot, we detect changes in the charge occupancy of the double dot by capacitively coupling it to a third quantum dot on a separate nanowire using a floating gate. We demonstrate tunable tunnel coupling of the double dot and quantify the strength of the tunneling using the charge sensor. The second set of experiments concerns carbon nanotube double quantum dots. In the first nanotube experiment, spin-dependent transport through the double dot is compared in two sets of devices. The first set is made with carbon containing the natural abundance of \(^{12}C\) (99%) and \(^{13}C\) (1%), the second set with the 99% \(^{13}C\) and 1% \(^{12}C\). In the devices with predominantly \(^{13}C\), we find evidence in spin-dependent transport of the interaction between the electron spins and the \(^{13}C\) nuclear spins that was much stronger than expected and not present in the \(^{12}C\) devices. In the second nanotube experiment, pulsed gate experiments are used to measure the timescales of spin relaxation and dephasing in a two-electron double quantum dot. The relaxation time is longest at zero magnetic field and goes through a minimum at higher field, consistent with the spin-orbit-modified electronic spectrum of carbon nanotubes. We measure a short dephasing time consistent with the anomalously strong electron-nuclear interaction inferred from the first nanotube experiment.<br>Physics
APA, Harvard, Vancouver, ISO, and other styles
43

De, Chiara Gabriele. "Quantum information, entanglement and critical phenomena." Doctoral thesis, Scuola Normale Superiore, 2006. http://hdl.handle.net/11384/85888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Wernz, Johannes. "Dekohärenz gekoppelter Spin- und Qubit-Systeme." [S.l. : s.n.], 2003. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10761312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Morton, John J. L. "Electron spins in fullerenes as prospective qubits." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Santos, Marcelo Meireles dos. "Soluções exatas e medidas de emaranhamento em sistemas de spins." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-23032018-210425/.

Full text
Abstract:
Recentemente, uma implementação de um conjunto universal de portas lógicas de um e dois qubits para computação quântica usando estados de spin de pontos quânticos de um único elétron foi proposta. Estes resultados nos motivaram a desenvolver um estudo teórico formal do correspondente modelo de dois spins colocados em um campo magnético externo e acoplados por uma interação mútua de Heisenberg dependente do tempo. Nós então consideramos a assim chamada equação de dois spins, a qual descreve sistemas quânticos de quatro níveis de energia. Uma útil propriedade dessa equação é que o correspondente problema para o caso de campos magnéticos externos paralelos pode ser reduzido ao problema de um único spin em um campo externo efetivo. Isso nos permite gerar uma série de soluções exatas para a equação de dois spins a partir de soluções exatas já conhecidas da equação de um spin. Com base neste fato, nós construímos e apresentamos neste estudo uma lista de novas soluções exatas para a equação de dois spins para diferentes configurações de campos externos e de interação entre as partículas. Utilizando algumas destas soluções obtidas, estudamos a dinâmica da entropia de emaranhamento dos respectivos sistemas considerando diferentes estados de spins inicialmente separáveis.<br>Recently, an implementation of a universal set of one- and two-qubit logic gates for quantum computing using spin states of single-electron quantum dots was proposed. These results motivated us to develop a formal theoretical study of the corresponding model of two spins placed in an external magnetic field and coupled by a time-dependent mutual interaction of Heisenberg. We then consider the so-called two-spin equation, which describes four-level quantum systems. A useful property of this equation is that the corresponding problem for the case of parallel external magnetic fields can be reduced to the problem of a single spin in an effective external field. This allows us to generate a series of exact solutions for the two-spin equation from the already known exact solutions of the one-spin equation. Based on this fact, we construct and present in this study a list of new exact solutions for the two-spin equation for different configurations of external fields and interaction between particles. Using some of these solutions obtained, we study the dynamics of the entropy of entanglement of the respective systems considering different initially separable spins states.
APA, Harvard, Vancouver, ISO, and other styles
47

Jadot, Baptiste. "Coherent long-range transport of entangled electron spins." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALY007.

Full text
Abstract:
L’informatique quantique est un domaine d’intérêt croissant, notamment à Grenoble avec une concentration exceptionnelle de chercheurs et groupes industriels impliqués dans ce domaine. L’objectif global est de développer un nouveau type de nano-processeur, basé sur des propriétés quantiques. Son bloc élémentaire est un système quantique à deux niveaux (le qubit), dans notre cas le spin d'électrons piégés dans une boîte quantique.Dans la quête d’une architecture à large échelle, un ordinateur quantique en réseau offre un chemin naturel vers l’évolutivité. En effet, séparer le calcul dans des cœurs quantiques interconnectés par des médiateurs quantiques cohérents simplifierai grandement les contraintes d’adressabilité. Ces liens quantiques devraient offrir une connexion rapide et cohérente entre des cœurs arbitraires, permettant de créer un état intriqué utilisant tout le circuit quantique. Dans les circuits quantiques à base de semiconducteurs, l’intrication entre plus proches voisins a déjà été démontrée, et plusieurs méthodes ont été proposées pour réaliser un couplage à distance. Parmi elles, une implémentation possible de ce médiateur quantique consiste à préparer un état intriqué et transférer individuellement des spins électroniques à travers la structure, à condition que ce transfert préserve l’intrication.Dans cette thèse, nous démontrons le transfert rapide et cohérent de qubits de spin électronique à travers un long canal de 6.5 μm, dans une hétérostructure GaAs/AlGaAs. En utilisant le potentiel se propageant avec par une onde acoustique de surface, nous transférons séquentiellement deux spins électroniques formant initialement un état singulet. Durant le déplacement, chaque spin subit une rotation cohérente due à l’interaction spin-orbite, sur une durée plus courte que tout processus de décohérence. En variant le temps de séparation des électrons et le champ magnétique appliqué, nous observons des interférences quantiques qui prouvent la nature cohérente de l’état initial et de la procédure de transfert.Nous montrons que cette expérience est analogue à une mesure de Bell, et nous permet de quantifier l’intrication entre les deux spins électroniques lorsqu’ils sont séparés, démontrant que ce déplacement rapide et à longue portée est une procédure efficace pour propager une intrication quantique au sein des futures structures à large échelle<br>Quantum computing is a field of growing interest, especially in Grenoble with an exceptional concentration of both research and industrials groups implicated in this field. The global aim is to develop a new kind of nano-processors, based on quantum properties. Its building brick is a two-level quantum system, in our case the spin of electrons trapped in a quantum dot.In this quest for a large-scale architecture, networked quantum computers offer a natural path towards scalability. Indeed, separating the computational task among quantum core units interconnected via a coherent quantum mediator would greatly simplify the addressability challenges. These quantum links should be able to coherently couple arbitrary nodes on fast timescales, in order to share entanglement across the whole quantum circuit. In semiconductor quantum circuits, nearest neighbor entanglement has already been demonstrated, and several schemes exist to realize long-range coupling. Among them, a possible implementation of this quantum mediator would be to prepare an entangled state and shuttle individual electron spins across the structure, provided that this transport preserves the entanglement.In this work, we demonstrate the fast and coherent transport of electron spin qubits across a 6.5 μm long channel, in a GaAs/AlGaAs laterally defined nanostructure. Using the moving potential induced by a propagating surface acoustic wave, we send sequentially two electron spins initially prepared in a spin singlet state. During its displacement, each spin experiences a coherent rotation due to spin-orbit interaction, over timescales shorter than any decoherence process. By varying the electron separation time and the external magnetic field, we observe quantum interferences which prove the coherent nature of both the initial spin state and the transfer procedure.We show that this experiment is analogous to a Bell measurement, allowing us to quantify the entanglement between the two electron spins when they are separated, and proving this fast and long-range qubit displacement is an efficient procedure to share entanglement across future large-scale structures
APA, Harvard, Vancouver, ISO, and other styles
48

Busolo, Filippo. "Endofullerene d'azoto N@C60 come componente molecolare per computer quantistici." Doctoral thesis, Università degli studi di Padova, 2009. http://hdl.handle.net/11577/3426139.

Full text
Abstract:
The project presented in this thesis is deal with the study of paramagnetic molecular structures for Quantum Information Processing (QIP), whose aim is the development of devices based on the principles of quantum mechanics. The aim of this work is the evaluation of the prospect of using spins in endohedral fullerenes N@C60 (made of a single nitrogen atom inside a fullerene) as basic units of quantum information (qubits). N@C60 is produced by ion implantation yielding a mixture of N@C60/C60 in a ratio of 1/10000. Extensive purification through HPLC is required to isolate the N@C60 from the empty C60. In order to purify N@C60, a collaboration was started with the group of Prof. F. Gasparrini from Università  "La Sapienza" di Roma. A new HPLC equipment known as High Performance Liquid Magneto-Chromatography (HPLMC) was developed as a result of this collaboration. The ground state of the nitrogen atom inside the cage is a quartet (S=3/2) and a paramagnetic behavior of N@C60. A very narrow EPR linewidth, due to the long electron spin relaxation times, is the distinctive feature of N@C60. The electronic spin relaxation times, tens or hundreds of microseconds at ambient temperature, are much longer than those of most paramagnetic molecules that, usually, are in the nanoseconds to few microseconds range. This remarkable property makes N@C60 particularly interesting for the realization of devices for QIP. The relaxation time for electronic spins corresponds to the coherence time. Long coherence time is a necessary condition for a quantum system to be useful as a qubit in order to execute a large number of logical operations for a given algorithm. Several papers have appeared in the literature in recent years on the relaxation properties of the electron spin in N@C60 in solution. While these solution studies have helped to understand the relaxation mechanisms of the electron spin in N@C60, solid state materials would be better suited to the realization of devices and their integration with current technologies. Deepening the understanding of relaxation mechanisms in the solid state is, therefore, crucial. In this work, the electron spin relaxation properties of a series of N@C60 derivatives (from an unpurified mixture of N@C60 and C60) were studied in order to identify the processes responsible for decoherence in the solid state and assess the suitability of N@C60 as a qubit in a solid matrix. To this aim, several molecular structures were synthesized in which N@C60 was chemically modified or included in a supramolecular architecture. Despite the many processes causing a decrease of the coherence time of N@C60 derivatives, the relaxation times measured in this work show that N@C60 is a promising building block for the realization of solid state systems that are suitable for the implementation of quantum algorithms. The derivatives presented in this work were chosen because of their suitability for the realization of ordered systems of endohedral fullerene on solid substrates such as silicon. As a consequence, a relevant part of this thesis was concerned with the study of the non-covalent immobilization of C60 on silicon surfaces with a monolayer of a calix[8]arene derivative. The long-term goal of this work is the immobilization of N@C60 onto silicon surfaces in order to develop molecular structures suitable for the manipulation of individual qubits and their interactions. I report herein the use of the non-covalent interactions between calix[8]arene receptors and fullerenes to immobilize C60 on silicon surfaces. Calix[8]arene molecules with double bond terminated alkyl chains were grafted on H-terminated Si(100) surfaces via thermal hydrosilylation of the double bonds. Pure and mixed monolayers were obtained from either pure calix[8]arene or a calix[8]arene/1-octene mixture. X-ray photoelectron spectroscopy been was used as the main tool for the monolayer characterization while atomic force microscopy was used to evaluate the supramolecular immobilization of C60. Grafting of pure calix[8]arene leads to poorly packed layers in which a small quantity of silicon oxide was found. In this system, clusters of [60]fullerene on surface were detected. By contrast, monolayers obtained from a calix[8]arene/1-octene mixture consist of densely packed layers which prevent silicon oxidation and fullerene clustering at the same time. This observation suggests that the calix[8]arene/1-octene layer was immobilized C60 on silicon surfaces through host-guestinteractions. The low quantity of N@C60 available, has prevented the EPR investigation on the paramagnetic layer made of calix[8]arene/N@C60 on silicon surfaces. Thus, in the last part of this thesis, I report on the self-assembly of a functionalized nitroxide radical onto a porous silicon surface through a hydrosilylation route. IR and XPS methods were used to confirm the composition of the nitroxide layers, whereas EPR lineshape analysis was used to extract some relevant parameters related to the layers dynamics, such as rotational diffusion tensors. Finally, a novel [70]fulleropyrrolidine functionalized with a nitroxide radical was synthesized.<br>Il progetto sviluppato durante il triennio di Tesi ha riguardato lo studio di strutture molecolari paramagnetiche per applicazioni nella Quantum Information Processing (QIP), un ambito di ricerca molto attivo nell'ultimo ventennio, il cui obiettivo è la realizzazione di dispositivi per l'elaborazione delle informazioni utilizzando i principi della meccanica quantistica. In particolare, questo lavoro ha avuto come obiettivo lo studio delle potenzialità dell'endofullerene d'azoto (una molecola di C60 all'interno della quale è presente un atomo di azoto) e del suo spin elettronico come unità  base per l'informazione quantistica (qubit). Normalmente, l'endofullerene d'azoto (N@C60) viene prodotto per impiantazione ionica. Questa modalità  di produzione non fornisce l'endofullerene in forma pura, ma come una miscela di N@C60/C60 non superiore a 1/10000. Per ottenere un materiale arricchito in N@C60 è necessario procedere con dispendiose procedure di purificazione via HPLC. Per mettere a punto un metodo di arricchimento più conveniente rispetto ai sistemi HPLC standard, è stata avviata una collaborazione con il gruppo del Prof. F. Gasparrini dell'Università  "La Sapienza" di Roma, finalizzata allo sviluppo di una nuova tecnica cromatografica di purificazione che utilizza un'apparecchiatura magneto-cromatografica. L'endofullerene d'azoto è una molecola paramagnetica poiché l'atomo di azoto centrale possiede lo stato elettronico fondamentale di quartetto (S=3/2). La tecnica più adatta per lo studio di questo tipo di sistema è dunque la Spettroscopia di Risonanza Elettronica (EPR). La caratteristica notevole di N@C60 è la sua larghezza di riga EPR estremamente ridotta a causa dei lunghi tempi di rilassamento di spin elettronico (alcune decine o centinaia di microsecondi a temperatura ambiente) rispetto a molecole paramagnetiche ordinarie, per le quali i tempi di rilassamento possono variare da nanosecondi a qualche microsecondo. Questa proprietà  è quella che rende N@C60 particolarmente interessante per la costruzione di dispositivi adatti alla QIP. Nel caso degli spin elettronici il tempo di rilassamento di spin corrisponde al tempo di coerenza, e tempi di coerenza sufficientemente lunghi sono una condizione necessaria perché un sistema quantistico sia utile come qubit. Questo requisito deriva dalla necessità  che il tempo di mantenimento della coerenza degli stati quantistici sia più lungo di quello richiesto per eseguire il numero di operazioni logiche che compongono un dato algoritmo. In letteratura sono apparsi negli ultimi anni alcuni studi sulle proprietà  di N@C60 in soluzione che hanno permesso di elucidare alcuni aspetti dei meccanismi di rilassamento di spin elettronico. In generale, tuttavia, è preferibile poter disporre di materiali in stato solido, sia per realizzare dispositivi in grado di effettuare calcoli quantistici, sia per facilitare un'eventuale integrazione con le tecnologie odierne. E' quindi fondamentale approfondire la conoscenza dei meccanismi di rilassamento anche allo stato solido. In questo lavoro sono state studiate le proprietà  di rilassamento di spin elettronico di una serie di derivati di N@C60 (contenuto in una miscela non purificata di N@C60/C60) al fine di identificare i principali processi che causano la decoerenza di spin allo stato solido e valutare l'idoneità  di N@C60 come possibile qubit in matrice solida. A tale scopo sono state prodotte strutture molecolari nelle quali N@C60 è soggetto a diverse modificazioni chimiche o interazioni con l'ambiente circostante. Nonostante i molteplici processi che concorrono a far diminuire il tempo di coerenza di N@C60 nei derivati, i valori dei tempi di rilassamento misurati in questo lavoro di tesi hanno dimostrato come N@C60 sia potenzialmente applicabile in sistemi allo stato solido adatti all'implementazione di algoritmi quantistici. I derivati studiati in questo lavoro sono stati scelti proprio perché offrono la possibilità di essere impiegati per realizzare sistemi ordinati di endofullerene su matrici solide, come ad esempio superfici di silicio. Una parte significativa di questo lavoro di tesi ha riguardato perciò lo studio dell'immobilizzazione del C60 su di una superficie di silicio, attraverso la formazione di complessi host-guest con un derivato del calix[8]arene preventivamente legato alla stessa superficie. L'obiettivo a lunga scadenza di tale studio è la formazione di strati di N@C60 nelle medesime condizioni messe a punto per il C60, una volta che l'endofullerene d'azoto sia disponibile in forma pura o perlomeno sotto forma di una miscela più arricchita rispetto a quella attualmente disponibile. E' stata studiata quindi la possibilità di immobilizzare un derivato del calix[8]arene recante terminazioni alcheniliche su superficie di silicio attraverso la reazione di idrosililazione termica dei doppi legami. In particolare, sono stati ottenuti dei monolayer in cui il calixarene è stato immobilizzato in forma pura oppure diluito con 1-ottene. E' stata impiegata la spettroscopia fotoelettronica a raggi X (XPS) come metodo principale per la caratterizzazione della superficie, mentre l'immobilizzazione non covalente del C60 su silicio è stata confermata attraverso l'uso della microscopia a forza atomica (AFM). La superficie di calixarene puro è risultata essere costituita da un layer non ben impaccato di molecole calixareniche e dalla presenza di una certa quantità di ossido. Questa situazione morfologica favorisce la formazione di cluster fullerenici in superficie. Dall'altro lato, il monolayer ottenuto dalla miscela calixarene/1-ottene presenta un elevato grado di impaccamento che previene sia la formazione di ossido in superficie sia la formazione di cluster fullerenici, rendendo quindi possibile la realizzazione del complesso di inclusione 60/calix[8]arene su silicio. La bassa quantità  di endofullerene nella miscela N@C60/C60 non ha permesso però la registrazione di spettri EPR con la strumentazione in nostro possesso, per cui una parte del progetto di dottorato ha riguardato lo studio EPR di un sistema modello in cui un radicale organico è stato immobilizzato su superficie di silicio, anche di tipo poroso, al fine di trovare le condizioni ottimali per registrare spettri significativi. Lo studio è stato realizzato impiegando strati di radicali nitrossilici ancorati su superfici di silicio tramite una reazione di idrosililazione termica. Attraverso l'uso di tecniche IR, XPS e di risonanza paramagnetica elettronica è stato possibile determinare il grado di ricopertura della superficie di silicio. Questo sistema allo stato solido ha permesso non solo di validare il metodo di caratterizzazione EPR per studiare superfici silicee contenenti layer di molecole paramagnetiche, ma anche di ottenere informazioni sulla dinamica dei nitrossidi legati alla superficie stessa. Durante la tesi si è inoltre conclusa una ricerca che ha riguardato la sintesi di derivati nitrossilici del fullerene C70.
APA, Harvard, Vancouver, ISO, and other styles
49

Ge, Ling. "Theory and Modelling of Spin-qubit Interactions in Nanotubes and Fullerenes." Thesis, University of Oxford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.504351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Perez, Barraza Julia Isabel. "Ultrasmall silicon quantum dots for the realization of a spin qubit." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!