Journal articles on the topic 'Spinodal material'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Spinodal material.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Vanegas, Juan M., David Peterson, Taras I. Lakoba, and Valeri N. Kotov. "Spinodal de-wetting of light liquids on graphene." Journal of Physics: Condensed Matter 34, no. 17 (2022): 175001. http://dx.doi.org/10.1088/1361-648x/ac4f7e.
Full textAhmad, Owais, Rakesh Maurya, Rajdip Mukherjee, and Somnath Bhowmick. "Integrated Phase Field and Machine Learning Study of Microstructure Evolution during Interface-Controlled Spinodal Decomposition." Solid State Phenomena 357 (June 11, 2024): 101–6. http://dx.doi.org/10.4028/p-6w4ixl.
Full textMoskvin, Pavel, Sergii Skurativskyi, Wojciech Sadowski, Barbara Koscielska, Petro Melnychuk та Oleksandr Prylypko. "Resonance of mixing energy and energy of elastic deformations during spinodal decomposition and the composition modulation effect in ZnхCd1-ХTe solid solutions". Metallurgical and Materials Engineering 27, № 3 (2021): 385–96. http://dx.doi.org/10.30544/614.
Full textHanna, James A., Ian Baker, Markus W. Wittmann, and Paul R. Munroe. "A new high-strength spinodal alloy." Journal of Materials Research 20, no. 4 (2005): 791–95. http://dx.doi.org/10.1557/jmr.2005.0136.
Full textKuznetsov, V. V., P. P. Moskvin, and S. I. Skurativskyi. "Composition modulation in the GaxIni-xPyAs1-y - InP heterostructure during spinodal decomposition under the conditions of internal energy resonance." Journal of Physics: Conference Series 2103, no. 1 (2021): 012117. http://dx.doi.org/10.1088/1742-6596/2103/1/012117.
Full textSakakibara, Keita, Hideki Kagata, Norio Ishizuka, Takaya Sato, and Yoshinobu Tsujii. "Fabrication of surface skinless membranes of epoxy resin-based mesoporous monoliths toward advanced separators for lithium ion batteries." Journal of Materials Chemistry A 5, no. 15 (2017): 6866–73. http://dx.doi.org/10.1039/c6ta09005b.
Full textRadune, Maya, Michael Zinigrad, David Fuks, S. Hayun, and Nachum Frage. "Thermal Decomposition of Supersaturated Ti1-xAlxN Solid Solution Synthesized by High-Energy Milling." Diffusion Foundations 9 (October 2016): 82–89. http://dx.doi.org/10.4028/www.scientific.net/df.9.82.
Full textTakezawa, Kazuhiro, Shigeharu Ukai, and Shigenari Hayashi. "Microstructure Control of Co-Base ODS Alloys." Advanced Materials Research 239-242 (May 2011): 864–67. http://dx.doi.org/10.4028/www.scientific.net/amr.239-242.864.
Full textAkbar, S., Z. Ahmad, M. S. Awan, M. N. Sarwar, and M. Farooque. "Single Step Heat Treatment Cycle for Development of Isotropic Fe-Cr-Co Magnets." Key Engineering Materials 510-511 (May 2012): 315–20. http://dx.doi.org/10.4028/www.scientific.net/kem.510-511.315.
Full textMinati, L., Giorgio Speranza, Yoann Jestin, et al. "Structural and Spectroscopic Assessment of Er3+-Activated SiO2-HfO2 Glass Ceramics Planar Waveguides." Advances in Science and Technology 55 (September 2008): 56–61. http://dx.doi.org/10.4028/www.scientific.net/ast.55.56.
Full textMarques, Ana C., and Mário Vale. "Macroporosity Control by Phase Separation in Sol-Gel Derived Monoliths and Microspheres." Materials 14, no. 15 (2021): 4247. http://dx.doi.org/10.3390/ma14154247.
Full textTeter, D. F., R. D. Field, and D. J. Thoma. "Hydrogen-Induced Phase Separation of Palladium-Rhodium Alloys Using an Environmental Cell TEM." Microscopy and Microanalysis 3, S2 (1997): 591–92. http://dx.doi.org/10.1017/s1431927600009843.
Full textPacheco Rocha Lima, Emmanuel, Ricardo Artur Sanguinetti Ferreira, Ney Freitas de Quadros, and Yogendra Prasad Yadava. "Estudo dos aspectos cinéticos e morfológicos durante recristalizaçao da liga de alumínio AA 8011." Revista Iberoamericana de Ingeniería Mecánica 10, no. 1 (2006): 131–37. https://doi.org/10.5944/ribim.10.1.43081.
Full textGuo, W. H., L. F. Chua, C. C. Leung, and H. W. Kui. "Formation of Bulk Nanostructured Materials by Rapid Solidification." Journal of Materials Research 15, no. 7 (2000): 1605–11. http://dx.doi.org/10.1557/jmr.2000.0230.
Full textHerny, Emilie, Eric Andrieu, Jacques Lacaze, Frédéric Danoix, and Nicolas Lecoq. "Study by Differential Thermal Analysis of Reverse Spinodal Transformation in 15-5 PH Alloy." Solid State Phenomena 172-174 (June 2011): 338–43. http://dx.doi.org/10.4028/www.scientific.net/ssp.172-174.338.
Full textShepilov, Michael, Olga Dymshits, Valerii V. Golubkov, and Alexander A. Zhilin. "Anomalously Low Light Scattering in the Na2O-Nb2O5-SiO2 Glass-Ceramics." Advanced Materials Research 39-40 (April 2008): 273–76. http://dx.doi.org/10.4028/www.scientific.net/amr.39-40.273.
Full textSpooner, S., L. L. Horton, and M. K. Miller. "Characterizatiom of spinodally decomposed Fe-30.1% Cr-9.9% Co: Part 2." Proceedings, annual meeting, Electron Microscopy Society of America 44 (August 1986): 582–83. http://dx.doi.org/10.1017/s0424820100144383.
Full textHan, Yongming, Xinyuan Cao, Yonghao Lu, and Tetsuo Shoji. "Deformation Properties of Thermally Aged E308L Stainless Steel During Tensile Test with Carbide Effects." Materials 17, no. 24 (2024): 6070. https://doi.org/10.3390/ma17246070.
Full textBöhme, Thomas, and Wolfgang H. Müller. "On the simulation of the spinodal decomposition process and phase growth in a leadfree brazing material." Computational Materials Science 39, no. 1 (2007): 166–71. http://dx.doi.org/10.1016/j.commatsci.2006.01.027.
Full textLin, Le-Chi, Sheng-Jer Chen, and Hsiu-Yu Yu. "Connecting Structural Characteristics and Material Properties in Phase-Separating Polymer Solutions: Phase-Field Modeling and Physics-Informed Neural Networks." Polymers 15, no. 24 (2023): 4711. http://dx.doi.org/10.3390/polym15244711.
Full textXu, Si Yang, Ying Long Li, Mu Xin Zhang, Yi Fu Jiang, and Hua Ding. "Effect of Heat Treatment Conditions on Microstructures and Mechanical Properties of Cu-9Ni-6Sn-0.22Nb Alloy." Key Engineering Materials 904 (November 22, 2021): 124–30. http://dx.doi.org/10.4028/www.scientific.net/kem.904.124.
Full textSilva, Rodrigo, Carlos Alberto della Rovere, and Sebastião Elias Kuri. "Effect of Thermal Aging at Low Temperature on the Mechanical Properties and Corrosion Resistance of LDX 2404 Duplex Stainless Steel." Materials Science Forum 869 (August 2016): 705–10. http://dx.doi.org/10.4028/www.scientific.net/msf.869.705.
Full textHan, Bing Q. "Cracking Mechanism of High-Strength Cu-15Ni-8Sn C72900 Alloy." Materials Performance 60, no. 8 (2021): 38–41. https://doi.org/10.5006/mp2021_60_8-38.
Full textEder, Alexander, Rudolf Königshofer, and Walter Lengauer. "Nitrogen-Induced Formation of Nano-Structured Precipitations in the Ti-W-C-N System." Defect and Diffusion Forum 237-240 (April 2005): 1121–28. http://dx.doi.org/10.4028/www.scientific.net/ddf.237-240.1121.
Full textPortela, Carlos M., A. Vidyasagar, Sebastian Krödel, et al. "Extreme mechanical resilience of self-assembled nanolabyrinthine materials." Proceedings of the National Academy of Sciences 117, no. 11 (2020): 5686–93. http://dx.doi.org/10.1073/pnas.1916817117.
Full textKudryavtsev, P. G. "Main routes of the porous composite materials creation." Nanotechnologies in Construction A Scientific Internet-Journal 12, no. 5 (2020): 256–69. http://dx.doi.org/10.15828/2075-8545-2020-12-5-256-269.
Full textZhu, Gang, Shao Xia Sun, Jia Lin Chen, Ming Xie, and Jie Qiong Hu. "Enhanced Mechanical Properties of Ti(C,B)-Based Cermets with Multi-Component AlCoCrFeNi High-Entropy Alloys Binder." Key Engineering Materials 727 (January 2017): 149–53. http://dx.doi.org/10.4028/www.scientific.net/kem.727.149.
Full textHerny, E., P. Lours, E. Andrieu, J. M. Cloué, and P. Lagain. "Evolution of microstructure and impact-strength energy in thermally and thermomechanically aged 15-5 PH." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 222, no. 4 (2008): 299–304. http://dx.doi.org/10.1243/14644207jmda190.
Full textDeibuk, V. G. "Phase stability of thermoelectric ZnSb-SnTe thin films." Journal of Thermoelectricity, no. 1 (March 25, 2023): 14–23. https://doi.org/10.63527/1607-8829-2023-1-14-23.
Full textCordoba, Antoine, Marion Chandesris, and Mathis Plapp. "Intercalation Pathway in Graphite Particles Analyzed with a Multi-Layer Phase Field Model." ECS Meeting Abstracts MA2023-02, no. 5 (2023): 889. http://dx.doi.org/10.1149/ma2023-025889mtgabs.
Full textKorneva, A., M. Bieda-Niemiec, G. Korznikova, A. Korznikov, and Krzystof Sztwiertnia. "Gradient Microstructure of FeCr30Co8 Hard Magnetic Alloy Subjected to Plastic Deformation by Complex Loading." Materials Science Forum 702-703 (December 2011): 344–47. http://dx.doi.org/10.4028/www.scientific.net/msf.702-703.344.
Full textYan, Fuyao, Jiawei Yao, Baofeng Chen, et al. "A Novel Decarburizing-Nitriding Treatment of Carburized/through-Hardened Bearing Steel towards Enhanced Nitriding Kinetics and Microstructure Refinement." Coatings 11, no. 2 (2021): 112. http://dx.doi.org/10.3390/coatings11020112.
Full textYuan, Xiaobo, Ping Zhang, Jianxiang Wang, Biaobiao Yang, and Yunping Li. "Influences of Fe Content and Cold Drawing Strain on the Microstructure and Properties of Powder Metallurgy Cu-Fe Alloy Wire." Materials 16, no. 14 (2023): 5180. http://dx.doi.org/10.3390/ma16145180.
Full textMohri, Tetsuo. "First-principles Calculation for Spinodal Ordering." Materia Japan 53, no. 9 (2014): 394–99. http://dx.doi.org/10.2320/materia.53.394.
Full textTANAKA, HAJIME. "Spinodal decomposition of high polymer mixtures." Materia Japan 33, no. 4 (1994): 417–19. http://dx.doi.org/10.2320/materia.33.417.
Full textSu, Shen. "Prediction of the Miscibility of PBAT/PLA Blends." Polymers 13, no. 14 (2021): 2339. http://dx.doi.org/10.3390/polym13142339.
Full textRenbaum-Wolff, L., M. Song, C. Marcolli та ін. "Observations and implications of liquid–liquid phase separation at high relative humidities in secondary organic material produced by α-pinene ozonolysis without inorganic salts". Atmospheric Chemistry and Physics Discussions 15, № 22 (2015): 33379–405. http://dx.doi.org/10.5194/acpd-15-33379-2015.
Full textSoriano Vargas, Orlando, Erika O. Avila Davila, Victor M. Lopez-Hirata, and Maribel L. Saucedo-Muñoz. "Spinodal Decomposition in Fe-Cr Alloys." Solid State Phenomena 172-174 (June 2011): 443–48. http://dx.doi.org/10.4028/www.scientific.net/ssp.172-174.443.
Full textMohsan, Aziz Ul Hassan, Mina Zhang, Menggang Zhai, et al. "Effect of Dilution on Microstructure and Phase Transformation of AlCrFeMnNi High-Entropy Alloy by Resonant Ultrasonic Vibration-Assisted Laser Cladding." Materials 18, no. 3 (2025): 695. https://doi.org/10.3390/ma18030695.
Full textNguyen, Thao A., and Linn W. Hobbs. "Studies of phase transformation of Fe1-xS by in Situ TEM." Proceedings, annual meeting, Electron Microscopy Society of America 47 (August 6, 1989): 648–49. http://dx.doi.org/10.1017/s0424820100155219.
Full textLee, K. L., and H. W. Kui. "Crystallization of undercooled liquid spinodals: Part II." Journal of Materials Research 14, no. 9 (1999): 3663–67. http://dx.doi.org/10.1557/jmr.1999.0494.
Full textFiantok, Tomáš, Viktor Šroba, Nikola Koutná, et al. "Structure evolution and mechanical properties of co-sputtered Zr-Al-B2 thin films." Journal of Vacuum Science & Technology A 40, no. 3 (2022): 033414. http://dx.doi.org/10.1116/6.0001802.
Full textSAKUMA, Taketo. "Spinodal Decomposition in Ceramic Materials." Tetsu-to-Hagane 73, no. 11 (1987): 1453–60. http://dx.doi.org/10.2355/tetsutohagane1955.73.11_1453.
Full textLabisz, Krzysztof. "Comparison of Long-Term Ageing Duration of Binary Ag-Cu Alloys." Advanced Materials Research 1036 (October 2014): 128–33. http://dx.doi.org/10.4028/www.scientific.net/amr.1036.128.
Full textRenbaum-Wolff, Lindsay, Mijung Song, Claudia Marcolli та ін. "Observations and implications of liquid–liquid phase separation at high relative humidities in secondary organic material produced by <i>α</i>-pinene ozonolysis without inorganic salts". Atmospheric Chemistry and Physics 16, № 12 (2016): 7969–79. http://dx.doi.org/10.5194/acp-16-7969-2016.
Full textTen Bosch, A. "Spinodal decomposition in liquid crystalline materials." Journal de Physique II 1, no. 8 (1991): 949–58. http://dx.doi.org/10.1051/jp2:1991119.
Full textRamanarayan, H., and T. A. Abinandanan. "Spinodal decomposition in fine grained materials." Bulletin of Materials Science 26, no. 1 (2003): 189–92. http://dx.doi.org/10.1007/bf02712811.
Full textSuzuki, Masanori, and Toshihiro Tanaka. "Thermodynamic Prediction of Spinodal Decomposition in Multi-component Silicate Glass for Design of Functional Porous Glass Materials." High Temperature Materials and Processes 31, no. 4-5 (2012): 323–28. http://dx.doi.org/10.1515/htmp-2012-0086.
Full textLi, Yuanfei, Jianchao Peng, Jian Yin, et al. "Effect of proton irradiation dose rate and implanted hydrogen ions on spinodal decomposition in thermally aged EQ308L stainless steel weld metal." Journal of Physics: Conference Series 2783, no. 1 (2024): 012053. http://dx.doi.org/10.1088/1742-6596/2783/1/012053.
Full textGuo, Can, Yu-Ping Zhao, Ying-Yuan Deng, Zhong-Ming Zhang, and Chun-Jie Xu. "A phase-field study on interaction process of moving grain boundary and spinodal decomposition." Acta Physica Sinica 71, no. 7 (2022): 078101. http://dx.doi.org/10.7498/aps.71.20211973.
Full text