To see the other types of publications on this topic, follow the link: Spline theory. Differential equations.

Books on the topic 'Spline theory. Differential equations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 books for your research on the topic 'Spline theory. Differential equations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Frank, Schneider. Inverse problems in satellite geodesy and their approximate solution by splines and wavelets. Aachen: Shaker, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schiesser, William E. Spline Collocation Methods for Partial Differential Equations. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119301066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Multivalued differential equations. Berlin: W. de Gruyter, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

1889-1950, Stepanov V. V., ed. Qualitative theory of differential equations. New York: Dover Publications, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ordinary differential equations: Qualitative theory. Providence, R.I: American Mathematical Society, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dan, Port, ed. Differential equations: Theory and applications. Boston: Jones and Bartlett Publishers, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bellman, Richard Ernest. Stability theory of differential equations. Mineola, N.Y: Dover Publications, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Differential equations: Theory and applications. 2nd ed. New York: Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Taylor, Michael Eugene. Partial differential equations: Basic theory. New York: Springer, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lakshmikantham, V. Theory of integro-differential equations. Lausanne, Switzerland: Gordon and Breach Science Publishers, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Betounes, David. Differential equations: Theory and applications. 2nd ed. New York: Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lakshmikantham, V. Theory of causal differential equations. Paris: Atlantis Press/World Scientific, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

Betounes, David. Differential Equations: Theory and Applications. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-4971-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kelley, Walter G., and Allan C. Peterson. The Theory of Differential Equations. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5783-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Betounes, David. Differential Equations: Theory and Applications. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-1163-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

MacCallum, Malcolm A. H., and Alexander V. Mikhailov, eds. Algebraic Theory of Differential Equations. Cambridge: Cambridge University Press, 2008. http://dx.doi.org/10.1017/cbo9780511721564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Betounes, David. Differential equations: Theory and applications. 2nd ed. New York: Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
18

Lakshmikantham, V. Theory of causal differential equations. Paris: Atlantis Press/World Scientific, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
19

Lakshmikantham, V. Theory of impulsive differential equations. Singapore: World Scientific, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lakshmikantham, V., S. Leela, Zahia Drici, and F. A. McRae. Theory of Causal Differential Equations. Paris: Atlantis Press, 2010. http://dx.doi.org/10.2991/978-94-91216-25-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kusraev, Anatoly G., and Zhanna D. Totieva, eds. Operator Theory and Differential Equations. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-49763-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Pommaret, J. F. Partial differential control theory. Dordrecht: Kluwer Academic, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
23

service), SpringerLink (Online, ed. Stochastic Differential Equations. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
24

Zeleni͡ak, T. I. Qualitative theory of parabolic equations. Utrecht: VSP, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
25

Zeleni︠a︡k, Tadeĭ Ivanovich. Qualitative theory of parabolic equations. Utrecht: VSP, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
26

The theory of composites. Cambridge: Cambridge University Press, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
27

Bouchut, François. Kinetic equations and asymptotic theory. Paris: Gauthier-Villars, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
28

Arendt, Wolfgang, Joseph A. Ball, Jussi Behrndt, Karl-Heinz Förster, Volker Mehrmann, and Carsten Trunk, eds. Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0297-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

1946-, Kong Qingkai, and Zhang B. G. 1934-, eds. Oscillation theory for functional differential equations. New York: Marcel Dekker, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kolmanovskii, V. Applied Theory of Functional Differential Equations. Dordrecht: Springer Netherlands, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
31

Cronin, Jane. Differential equations: Introduction and qualitative theory. 2nd ed. New York: M. Dekker, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
32

Arnold, L. Stochastic differential equations: Theory and applications. Malabar, Fla: Krieger, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kolmanovskiĭ, V. B. Applied theory of functional differential equations. Dordrecht: London, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lakshmikantham, V. Theory of differential equations in cones. Cambridge: Cambridge Scientific Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
35

Bainov, D. Oscillation theory of impulsive differential equations. Orlando, Fla: International Publications, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kolmanovskiĭ, Vladimir Borisovich. Applied theory of functional differential equations. Dordrecht: Kluwer Academic Publishers, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
37

Oscillation theory of partial differential equations. Singapore: World Scientific, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
38

Arnold, L. Stochastic differential equations: Theory and applications. Mineola, New York: Dover Publications, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
39

Krantz, Steven G. Differential equations: Theory, technique, and practice. Boca Raton: CRC Press, Taylor & Francis Group, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
40

Oleg, Imanuvilov, ed. Control theory of partial differential equations. Boca Raton: Chapman & Hall/CRC, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
41

1965-, Braselton James P., ed. Modern differential equations: Theory, applications, technology. Fort Worth: Saunders College Pub., 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
42

E, Pearson Carl, ed. Partial differential equations: Theory and technique. 2nd ed. Boston: Academic Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
43

P, Mishev D., ed. Oscillation theory of operator-differential equations. Singapore: World Scientific, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
44

Floquet theory for partial differential equations. Basel: Birkhäuser Verlag, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
45

Nevanlinna theory and complex differential equations. Berlin: W. de Gruyter, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
46

1946-, Kong Qingkai, and Zhang B. G. 1934-, eds. Oscillation theory for functional differential equations. New York: M. Dekker, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kolmanovskii, V., and A. Myshkis. Applied Theory of Functional Differential Equations. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8084-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Schiesser, William E. Spline Collocation Methods for Partial Differential Equations: With Applications in R. Wiley & Sons, Incorporated, John, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
49

Schiesser, William E. Spline Collocation Methods for Partial Differential Equations: With Applications in R. Wiley & Sons, Incorporated, John, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
50

Multivariate Polysplines: Applications to Numerical and Wavelet Analysis. Academic Press, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography