Dissertations / Theses on the topic 'Spline theory. Differential equations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Spline theory. Differential equations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Tarang, Mare. "Stability of the spline collocation method for Volterra integro-differential equations." Online version, 2004. http://dspace.utlib.ee/dspace/bitstream/10062/793/5/Tarang.pdf.
Full textKadhum, Nashat Ibrahim. "The spline approach to the numerical solution of parabolic partial differential equations." Thesis, Loughborough University, 1988. https://dspace.lboro.ac.uk/2134/6725.
Full textRoeser, Markus Karl. "The ASD equations in split signature and hypersymplectic geometry." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:7d46ffc8-6d12-4fec-9450-13d2c726885c.
Full textCastro, Douglas Azevedo 1982. "Esquemas de aproximação em multinível e aplicações." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306587.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-19T12:39:30Z (GMT). No. of bitstreams: 1 Castro_DouglasAzevedo_D.pdf: 8872633 bytes, checksum: a17b2761789c6a831631ac143fdf5ca7 (MD5) Previous issue date: 2011
Resumo: O objetivo desta tese é desenvolver algoritmos baseados em malhas e bases funcionais inovadoras usando técnicas de multiescala para aproximação de funções e resolução de problemas de equações diferenciais. Para certas classes de problemas, é possível incrementar a eficiência dos algoritmos de multiescala usando bases adaptativas, associadas a malhas construídas de forma a se ajustarem com o fenômeno a ser modelado. Nesta abordagem, em cada nível da hierarquia, os detalhes entre a aproximação desse nível e a aproximação definida no próximo nível menos refinado pode ser usada como indicador de regiões que necessitam de mais ou menos refinamento. Desta forma, em regiões onde a solução é suave, basta utilizar os elementos dos níveis menos refinados da hierarquia, enquanto que o maior refinamento é feito apenas onde a solução tiver variações bruscas. Consideramos dois tipos de formulações para representações multiescala, dependendo das bases adotadas: splines diádicos e wavelets. A primeira abordagem considera espaços aproximantes por funções splines sobre uma hierarquia de malhas cuja resolução depende do nível. A outra abordagem considera ferramentas da analise wavelet para representações em multirresolução de médias celulares. O enfoque está no desenvolvimento de algoritmos baseados em dados amostrais d-dimensionais em malhas diádicas que são armazenados em uma estrutura de árvore binária. A adaptatividade ocorre quando o refinamento é interrompido em algumas regiões do domínio, onde os detalhes entre dois níveis consecutivos são suficientemente pequenos. Um importante aspecto deste tipo de representação é que a mesma estrutura de dados é usada em qualquer dimensão, além de facilitar o acesso aos dados nela armezenados. Utilizamos as técnicas desenvolvidas na construção de um método adaptativo de volumes finitos em malhas diádicas para a solução de problemas diferenciais. Analisamos o desempenho do método adaptativo em termos da compressão de memória e tempo de CPU em comparação com os resultados do esquema de referência em malha uniforme no nível mais refinado. Neste sentido, comprovamos a eficiência do método adaptativo, que foi avaliada levando-se em consideração os efeitos da escolha de diferentes tipos de fluxo numérico e dos parâmetros de truncamento
Abstract: The goal of this thesis is to develop algorithms based on innovative meshes and functional bases using multiscale techniques for function approximation and solution of differential equation problems. For certain classes of problems, one can increase the efficiency of multiscale algorithms using hierarchical adaptive bases, associated to meshes whose resolution varies according to the local features of the phenomenon to be modeled. In this approach, at each level of the hierarchy the details-differences between the approximation for that level and that of the next coarser level-can be used as indicators of regions that need more or less refinement. In this way, in regions where the solution is smooth, it suffices to use elements of the less refined levels of the hierarchy, while the maximum refinement is used only where the solution has sharp variations. We consider two classes of formulations for multiscale representations, depending on the bases used: dyadic splines and wavelets. The first approach uses approximation spaces consisting of spline functions defined over a mesh hierarchy whose resolution depends on the level. The other approach uses tools from wavelet analysis for multiresolu-tion representations of cell averages. The focus is on the development of algorithms based on sampled d-dimensional data on dyadic meshes which are stored in a binary tree structures. The adaptivity happens when the refinement is interrupted in certain regions of the domain, where the details between two consecutive levels are sufficiently small. This representation greatly simplifies the access to the data and it can be used in any dimension. We use these techniques to build an adaptive finite volume method on dyadic grids for the solution of differential problems. We analyze the performance of the method in terms of memory compression and CPU time, comparing it with the reference scheme (which uses a uniform mesh at the maximum refinement level). In these tests, we confirmed the efficiency of the adaptive method for various numeric flow formulas and various choices of the thresholding parameters
Doutorado
Matematica Aplicada
Doutor em Matemática Aplicada
Tung, Michael Ming-Sha. "Spline approximations for systems of ordinary differential equations." Doctoral thesis, Universitat Politècnica de València, 2013. http://hdl.handle.net/10251/31658.
Full textTESIS
Premiado
Kirby, P. J. "The theory of exponential differential equations." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.433471.
Full textZhu, Wei. "Fractional differential equations in risk theory." Thesis, University of Liverpool, 2018. http://livrepository.liverpool.ac.uk/3018514/.
Full textNagloo, Joel Chris Ronnie. "Model theory, algebra and differential equations." Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/6813/.
Full textWhitehead, Andrew John. "Differential equations and differential polynomials in the complex plane." Thesis, University of Nottingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273112.
Full textOzbekler, Abdullah. "Sturm Comparison Theory For Impulsive Differential Equations." Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606894/index.pdf.
Full text#8217
s equation with damping and forced linear equations with damping are established.
Ballinger, George Henri. "Qualitative theory of impulsive delay differential equations." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ51178.pdf.
Full textReich, Sebastian. "Differential-algebraic equations and applications in circuit theory." Universität Potsdam, 1992. http://opus.kobv.de/ubp/volltexte/2010/4664/.
Full textDie mathematische Modellierung technisch physikalischer Systeme wie elektrische Netzwerke, führt häufig auf ein System von Differentialgleichungen und nichtlinearen impliziten Gleichungen sogenannten Algebrodifferentialgleichungen (ADGL). Es zeigt sich, daß die numerischen und analytischen Eigenschaften von ADGL durch den Index des Problems charakterisiert werden können. Insbesondere können die bekannten Integrationsformeln von Gear im allgemeinen nur auf ADGL mit dem Index eins angewendet werden. In diesem Beitrag wird eine geometrische Interpretation von ADGL mit einem höheren Index gegeben sowie auf Probleme im Zusammenhang mit derartigen ADGL an Hand verschiedener Beispiele hingewiesen.
Ros, Xavier. "Integro-differential equations : regularity theory and Pohozaev identities." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/279289.
Full textChulkov, Sergei. "Topics in analytic theory of partial differential equations /." Stockholm : Dept. of mathematics, Stockholm university, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-782.
Full text蔡澤鍔 and Chak-ngok Choy. "Lie's theory on solvability of ordinary differential equations." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B3121518X.
Full textChoy, Chak-ngok. "Lie's theory on solvability of ordinary differential equations /." Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19472675.
Full textKasonga, Raphael Abel Carleton University Dissertation Mathematics. "Asymptotic parameter estimation theory for stochastic differential equations." Ottawa, 1986.
Find full textHuang, Guan. "An averaging theory for nonlinear partial differential equations." Palaiseau, Ecole polytechnique, 2014. http://pastel.archives-ouvertes.fr/docs/01/00/25/27/PDF/these.pdf.
Full textThis Ph. D thesis focuses on studying the long-time behavior of solutions for non-linear PDEs that are close to a linear or an integrable Hamiltonian PDE. An averaging theory for nonlinear PDEs is presented. The model equations are the perturbed Korteweg-de Vries (KdV) equations and some weakly nonlinear partial differential equations
Yung, Tamara. "Traffic Modelling Using Parabolic Differential Equations." Thesis, Linköpings universitet, Kommunikations- och transportsystem, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-102745.
Full textHu, Zuosheng. "Contributions to the theory of almost periodic differential equations." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ60955.pdf.
Full textSticka, Wilhelm Michael. "Floquet theory for picard-type systems of differential equations /." free to MU campus, to others for purchase, 1996. http://wwwlib.umi.com/cr/mo/fullcit?p9720555.
Full textRizzolo, Douglas. "Approximating Solutions to Differential Equations via Fixed Point Theory." Scholarship @ Claremont, 2008. https://scholarship.claremont.edu/hmc_theses/213.
Full textNavarro, Quiles Ana. "COMPUTATIONAL METHODS FOR RANDOM DIFFERENTIAL EQUATIONS: THEORY AND APPLICATIONS." Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/98703.
Full textEver since the early contributions by Isaac Newton, Gottfried Wilhelm Leibniz, Jacob and Johann Bernoulli in the XVII century until now, difference and differential equations have uninterruptedly demonstrated their capability to model successfully interesting complex problems in Engineering, Physics, Chemistry, Epidemiology, Economics, etc. But, from a practical standpoint, the application of difference or differential equations requires setting their inputs (coefficients, source term, initial and boundary conditions) using sampled data, thus containing uncertainty stemming from measurement errors. In addition, there are some random external factors which can affect to the system under study. Then, it is more advisable to consider input data as random variables or stochastic processes rather than deterministic constants or functions, respectively. Under this consideration random difference and differential equations appear. This thesis makes a trail by solving, from a probabilistic point of view, different types of random difference and differential equations, applying fundamentally the Random Variable Transformation method. This technique is an useful tool to obtain the probability density function of a random vector that results from mapping another random vector whose probability density function is known. Definitely, the goal of this dissertation is the computation of the first probability density function of the solution stochastic process in different problems, which are based on random difference or differential equations. The interest in determining the first probability density function is justified because this deterministic function characterizes the one-dimensional probabilistic information, as mean, variance, asymmetry, kurtosis, etc. of corresponding solution of a random difference or differential equation. It also allows to determine the probability of a certain event of interest that involves the solution. In addition, in some cases, the theoretical study carried out is completed, showing its application to modelling problems with real data, where the problem of parametric statistics distribution estimation is addressed in the context of random difference and differential equations.
Des de les contribucions de Isaac Newton, Gottfried Wilhelm Leibniz, Jacob i Johann Bernoulli al segle XVII fins a l'actualitat, les equacions en diferències i les diferencials han demostrat la seua capacitat per a modelar satisfactòriament problemes complexos de gran interés en Enginyeria, Física, Epidemiologia, etc. Però, des d'un punt de vista pràctic, els paràmetres o inputs (condicions inicials/frontera, terme font i/o coeficients), que apareixen en aquests problemes, són fixats a partir de certes dades, les quals poden contenir errors de mesura. A més, poden existir factors externs que afecten el sistema objecte d'estudi, de manera que, la seua complexitat faça que no es conega de forma certa els inputs de l'equació que modelitza el problema. Tot aço justifica la necessitat de considerar els paràmetres de l'equació en diferències o de la equació diferencial com a variables aleatòries o processos estocàstics, i no com constants o funcions deterministes. Sota aquesta consideració apareixen les equacions en diferències i les equacions diferencials aleatòries. Aquesta tesi fa un recorregut resolent, des d'un punt de vista probabilístic, diferents tipus d'equacions en diferències i diferencials aleatòries, aplicant fonamentalment el mètode de Transformació de Variables Aleatòries. Aquesta tècnica és una eina útil per a l'obtenció de la funció de densitat de probabilitat d'un vector aleatori, que és una transformació d'un altre vector aleatori i la funció de densitat de probabilitat és del qual és coneguda. En definitiva, l'objectiu d'aquesta tesi és el càlcul de la primera funció de densitat de probabilitat del procés estocàstic solució en diversos problemes basats en equacions en diferències i diferencials. L'interés per determinar la primera funció de densitat es justifica perquè aquesta funció determinista caracteritza la informació probabilística unidimensional, com la mitjana, variància, asimetria, curtosis, etc., de la solució de l'equació en diferències o l'equació diferencial aleatòria corresponent. També permet determinar la probabilitat que esdevinga un determinat succés d'interés que involucre la solució. A més, en alguns casos, l'estudi teòric realitzat es completa mostrant la seua aplicació a problemes de modelització amb dades reals, on s'aborda el problema de l'estimació de distribucions estadístiques paramètriques dels inputs en el context de les equacions en diferències i diferencials aleatòries.
Navarro Quiles, A. (2018). COMPUTATIONAL METHODS FOR RANDOM DIFFERENTIAL EQUATIONS: THEORY AND APPLICATIONS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/98703
TESIS
Jenab, Bita. "Asymptotic theory of second-order nonlinear ordinary differential equations." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/24690.
Full textScience, Faculty of
Mathematics, Department of
Graduate
Yantır, Ahmet Ufuktepe Ünal. "Oscillation theory for second order differential equations and dynamic equations on time scales/." [s.l.]: [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/matematik/T000418.pdf.
Full textTaylor, S. Richard. "Probabilistic Properties of Delay Differential Equations." Thesis, University of Waterloo, 2004. http://hdl.handle.net/10012/1183.
Full textClark, Troy Arthur. "The Trefoil: An Analysis in Curve Minimization and Spline Theory." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1596460534956624.
Full textTempesta, Patricia. "Simmetries in binary differential equations." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11072017-170308/.
Full textO objetivo desta tese é introduzir o estudo sistemático de simetrias em equações diferenciais binárias (EDBs). Neste trabalho formalizamos o conceito de EDB simétrica sobre a ação de um grupo de Lie compacto. Um dos principais resultados é uma fórmula que relaciona o efeito geométrico e algébrico das simetrias presentes no problema. Utilizando ferramentas da teoria invariante e de representação para grupos compactos deduzimos as formas gerais para EDBs equivariantes. Um estudo sobre o comportamento das retas invariantes na configuração de EDBs com coeficientes homogêneos de grau n é feito com ênfase nos casos de grau 0 e 1, ainda no caso de grau 1 são apresentadas suas formas normais. Simetrias de 1-formas lineares são também estudadas e relacionadas com as simetrias dos seus campos tangente e ortogonal.
Barge, S. "Twistor theory and the K.P. equations." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301766.
Full textFontes, Ramiro. "Applications of Allouba's differentiation theory and semi-SPDEs." [Kent, Ohio] : Kent State University, 2010. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=kent1271438954.
Full textDasht, Johan. "Some developments of homogenization theory and Rothe's method /." Luleå : Dept. of Mathematics, Univ, 2005. http://epubl.luth.se/1402-1757/2005/05/LTU-LIC-0505-SE.pdf.
Full textLattimer, Timothy Richard Bislig. "Singular partial integro-differential equations arising in thin aerofoil theory." Thesis, University of Southampton, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243192.
Full textSurnachev, Mikhail. "On qualitative theory of solutions to nonlinear partial differential equations." Thesis, Swansea University, 2010. https://cronfa.swan.ac.uk/Record/cronfa42611.
Full textCorrea, Alvaro. "Bifurcation theory for a class of second order differential equations." Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/940.
Full textXu, Yuhua. "Disconjugacy and Oscillation Theory of Linear Differential and Difference Equations." DigitalCommons@USU, 1992. https://digitalcommons.usu.edu/etd/7130.
Full textAgueh, Martial Marie-Paul. "Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/29180.
Full textXiong, Sheng. "Stochastic Differential Equations: Some Risk and Insurance Applications." Diss., Temple University Libraries, 2011. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/133166.
Full textPh.D.
In this dissertation, we have studied diffusion models and their applications in risk theory and insurance. Let Xt be a d-dimensional diffusion process satisfying a system of Stochastic Differential Equations defined on an open set G Rd, and let Ut be a utility function of Xt with U0 = u0. Let T be the first time that Ut reaches a level u^*. We study the Laplace transform of the distribution of T, as well as the probability of ruin, psileft(u_{0}right)=Prleft{ T
Reich, Sebastian. "On an existence and uniqueness theory for nonlinear differential-algebraic equations." Universität Potsdam, 1991. http://opus.kobv.de/ubp/volltexte/2010/4670/.
Full textSeiler, Werner Markus. "Analysis and application of the formal theory of partial differential equations." Thesis, Lancaster University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238979.
Full textPierson, Mark A. "Theory and Application of a Class of Abstract Differential-Algebraic Equations." Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/27416.
Full textPh. D.
Baugh, James Emory. "Group analysis of a system of reaction-diffusion equations." Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/28554.
Full textArugaslan, Cincin Duygu. "Differential Equations With Discontinuities And Population Dynamics." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610574/index.pdf.
Full text#8722
equivalence of that system to an impulsive differential equation, Hopf bifurcation is investigated. Finally, the obtained results are extended to a 3-dimensional discontinuous system of Filippov type. After the existence of a center manifold is proved for the 3-dimensional system, a theorem on the bifurcation of periodic solutions is provided in the critical case. Illustrative examples and numerical simulations are presented to verify the theoretical results.
Sancier-Barbosa, Flavia Cabral. "Closing the memory gap in stochastic functional differential equations." OpenSIUC, 2011. https://opensiuc.lib.siu.edu/dissertations/346.
Full textSijbrandij, Klass Rienk. "The Toda equations and congruence in flag manifolds." Thesis, Durham University, 2000. http://etheses.dur.ac.uk/4516/.
Full text馮漢國 and Hon-kwok Fung. "Some linear preserver problems in system theory." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1995. http://hub.hku.hk/bib/B3121227X.
Full textFung, Hon-kwok. "Some linear preserver problems in system theory /." [Hong Kong] : University of Hong Kong, 1995. http://sunzi.lib.hku.hk/hkuto/record.jsp?B16121673.
Full textSun, Xun. "Twin solutions of even order boundary value problems for ordinary differential equations and finite difference equations." [Huntington, WV : Marshall University Libraries], 2009. http://www.marshall.edu/etd/descript.asp?ref=1014.
Full textHoward, Timothy G. "Predicting the asymptotic behavior for differential equations with a quadratic nonlinearity." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/28823.
Full textNguyen, Phuc Cong. "Potential theory and harmonic analysis methods for quasilinear and Hessian equations." Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4402.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (February 28, 2007) Vita. Includes bibliographical references.
Wenzel, Ansgar. "An Introduction to Lefschetz Coincidence Theory with an Application to Differential Equations." Thesis, Uppsala universitet, Algebra, geometri och logik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-154736.
Full text