To see the other types of publications on this topic, follow the link: Spline theory. Differential equations.

Dissertations / Theses on the topic 'Spline theory. Differential equations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Spline theory. Differential equations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Tarang, Mare. "Stability of the spline collocation method for Volterra integro-differential equations." Online version, 2004. http://dspace.utlib.ee/dspace/bitstream/10062/793/5/Tarang.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kadhum, Nashat Ibrahim. "The spline approach to the numerical solution of parabolic partial differential equations." Thesis, Loughborough University, 1988. https://dspace.lboro.ac.uk/2134/6725.

Full text
Abstract:
This thesis is concerned with the Numerical Solution of Partial Differential Equations. Initially some definitions and mathematical background are given, accompanied by the basic theories of solving linear systems and other related topics. Also, an introduction to splines, particularly cubic splines and their identities are presented. The methods used to solve parabolic partial differential equations are surveyed and classified into explicit or implicit (direct and iterative) methods. We concentrate on the Alternating Direction Implicit (ADI), the Group Explicit (GE) and the Crank-Nicolson (C-N) methods. A new method, the Splines Group Explicit Iterative Method is derived, and a theoretical analysis is given. An optimum single parameter is found for a special case. Two criteria for the acceleration parameters are considered; they are the Peaceman-Rachford and the Wachspress criteria. The method is tested for different numbers of both parameters. The method is also tested using single parameters, i. e. when used as a direct method. The numerical results and the computational complexity analysis are compared with other methods, and are shown to be competitive. The method is shown to have good stability property and achieves high accuracy in the numerical results. Another direct explicit method is developed from cubic splines; the splines Group Explicit Method which includes a parameter that can be chosen to give optimum results. Some analysis and the computational complexity of the method is given, with some numerical results shown to confirm the efficiency and compatibility of the method. Extensions to two dimensional parabolic problems are given in a further chapter. In this thesis the Dirichlet, the Neumann and the periodic boundary conditions for linear parabolic partial differential equations are considered. The thesis concludes with some conclusions and suggestions for further work.
APA, Harvard, Vancouver, ISO, and other styles
3

Roeser, Markus Karl. "The ASD equations in split signature and hypersymplectic geometry." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:7d46ffc8-6d12-4fec-9450-13d2c726885c.

Full text
Abstract:
This thesis is mainly concerned with the study of hypersymplectic structures in gauge theory. These structures arise via applications of the hypersymplectic quotient construction to the action of the gauge group on certain spaces of connections and Higgs fields. Motivated by Kobayashi-Hitchin correspondences in the case of hyperkähler moduli spaces, we first study the relationship between hypersymplectic, complex and paracomplex quotients in the spirit of Kirwan's work relating Kähler quotients to GIT quotients. We then study dimensional reductions of the ASD equations on $mathbb R^{2,2}$. We discuss a version of twistor theory for hypersymplectic manifolds, which we use to put the ASD equations into Lax form. Next, we study Schmid's equations from the viewpoint of hypersymplectic quotients and examine the local product structure of the moduli space. Then we turn towards the integrability aspects of this system. We deduce various properties of the spectral curve associated to a solution and provide explicit solutions with cyclic symmetry. Hitchin's harmonic map equations are the split signature analogue of the self-duality equations on a Riemann surface, in which case it is known that there is a smooth hyperkähler moduli space. In the case at hand, we cannot expect to obtain a globally well-behaved moduli space. However, we are able to construct a smooth open set of solutions with small Higgs field, on which we then analyse the hypersymplectic geometry. In particular, we exhibit the local product structures and the family of complex structures. This is done by interpreting the equations as describing certain geodesics on the moduli space of unitary connections. Using this picture we relate the degeneracy locus to geodesics with conjugate endpoints. Finally, we present a split signature version of the ADHM construction for so-called split signature instantons on $S^2 imes S^2$, which can be given an interpretation as a hypersymplectic quotient.
APA, Harvard, Vancouver, ISO, and other styles
4

Castro, Douglas Azevedo 1982. "Esquemas de aproximação em multinível e aplicações." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306587.

Full text
Abstract:
Orientador: Sônia Maria Gomes, Jorge Stolfi
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-19T12:39:30Z (GMT). No. of bitstreams: 1 Castro_DouglasAzevedo_D.pdf: 8872633 bytes, checksum: a17b2761789c6a831631ac143fdf5ca7 (MD5) Previous issue date: 2011
Resumo: O objetivo desta tese é desenvolver algoritmos baseados em malhas e bases funcionais inovadoras usando técnicas de multiescala para aproximação de funções e resolução de problemas de equações diferenciais. Para certas classes de problemas, é possível incrementar a eficiência dos algoritmos de multiescala usando bases adaptativas, associadas a malhas construídas de forma a se ajustarem com o fenômeno a ser modelado. Nesta abordagem, em cada nível da hierarquia, os detalhes entre a aproximação desse nível e a aproximação definida no próximo nível menos refinado pode ser usada como indicador de regiões que necessitam de mais ou menos refinamento. Desta forma, em regiões onde a solução é suave, basta utilizar os elementos dos níveis menos refinados da hierarquia, enquanto que o maior refinamento é feito apenas onde a solução tiver variações bruscas. Consideramos dois tipos de formulações para representações multiescala, dependendo das bases adotadas: splines diádicos e wavelets. A primeira abordagem considera espaços aproximantes por funções splines sobre uma hierarquia de malhas cuja resolução depende do nível. A outra abordagem considera ferramentas da analise wavelet para representações em multirresolução de médias celulares. O enfoque está no desenvolvimento de algoritmos baseados em dados amostrais d-dimensionais em malhas diádicas que são armazenados em uma estrutura de árvore binária. A adaptatividade ocorre quando o refinamento é interrompido em algumas regiões do domínio, onde os detalhes entre dois níveis consecutivos são suficientemente pequenos. Um importante aspecto deste tipo de representação é que a mesma estrutura de dados é usada em qualquer dimensão, além de facilitar o acesso aos dados nela armezenados. Utilizamos as técnicas desenvolvidas na construção de um método adaptativo de volumes finitos em malhas diádicas para a solução de problemas diferenciais. Analisamos o desempenho do método adaptativo em termos da compressão de memória e tempo de CPU em comparação com os resultados do esquema de referência em malha uniforme no nível mais refinado. Neste sentido, comprovamos a eficiência do método adaptativo, que foi avaliada levando-se em consideração os efeitos da escolha de diferentes tipos de fluxo numérico e dos parâmetros de truncamento
Abstract: The goal of this thesis is to develop algorithms based on innovative meshes and functional bases using multiscale techniques for function approximation and solution of differential equation problems. For certain classes of problems, one can increase the efficiency of multiscale algorithms using hierarchical adaptive bases, associated to meshes whose resolution varies according to the local features of the phenomenon to be modeled. In this approach, at each level of the hierarchy the details-differences between the approximation for that level and that of the next coarser level-can be used as indicators of regions that need more or less refinement. In this way, in regions where the solution is smooth, it suffices to use elements of the less refined levels of the hierarchy, while the maximum refinement is used only where the solution has sharp variations. We consider two classes of formulations for multiscale representations, depending on the bases used: dyadic splines and wavelets. The first approach uses approximation spaces consisting of spline functions defined over a mesh hierarchy whose resolution depends on the level. The other approach uses tools from wavelet analysis for multiresolu-tion representations of cell averages. The focus is on the development of algorithms based on sampled d-dimensional data on dyadic meshes which are stored in a binary tree structures. The adaptivity happens when the refinement is interrupted in certain regions of the domain, where the details between two consecutive levels are sufficiently small. This representation greatly simplifies the access to the data and it can be used in any dimension. We use these techniques to build an adaptive finite volume method on dyadic grids for the solution of differential problems. We analyze the performance of the method in terms of memory compression and CPU time, comparing it with the reference scheme (which uses a uniform mesh at the maximum refinement level). In these tests, we confirmed the efficiency of the adaptive method for various numeric flow formulas and various choices of the thresholding parameters
Doutorado
Matematica Aplicada
Doutor em Matemática Aplicada
APA, Harvard, Vancouver, ISO, and other styles
5

Tung, Michael Ming-Sha. "Spline approximations for systems of ordinary differential equations." Doctoral thesis, Universitat Politècnica de València, 2013. http://hdl.handle.net/10251/31658.

Full text
Abstract:
El objetivo de esta tesis doctoral es desarrollar nuevos métodos basados en splines para la resolución de sistemas de ecuaciones diferenciales del tipo Y'(x)=f(x,Y(x)) , aTung, MM. (2013). Spline approximations for systems of ordinary differential equations [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/31658
TESIS
Premiado
APA, Harvard, Vancouver, ISO, and other styles
6

Kirby, P. J. "The theory of exponential differential equations." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.433471.

Full text
Abstract:
This thesis is a model-theoretic study of exponential differential equations in the context of differential algebra. I define the theory of a set of differential equations and give an axiomatization for the theory of the exponential differential equations of split semiabelian varieties. In particular, this includes the theory of the equations satisfied by the usual complex exponential function and the Weierstrass p-functions. The theory consists of a description of the algebraic structure on the solution sets together with necessary and sufficient conditions for a system of equations to have solutions. These conditions are stated in terms of a dimension theory; their necessity generalizes Ax’s differential field version of Schanuel’s conjecture and their sufficiency generalizes recent work of Crampin. They are shown to apply to the solving of systems of equations in holomorphic functions away from singularities, as well as in the abstract setting. The theory can also be obtained by means of a Hrushovski-style amalgamation construction, and I give a category-theoretic account of the method. Restricting to the usual exponential differential equation, I show that a “blurring” of Zilber’s pseudo-exponentiation satisfies the same theory. I conjecture that this theory also holds for a suitable blurring of the complex exponential maps and partially resolve the question, proving the necessity but not the sufficiency of the aforementioned conditions. As an algebraic application, I prove a weak form of Zilber’s conjecture on intersections with subgroups (known as CIT) for semiabelian varieties. This in turn is used to show that the necessary and sufficient conditions are expressible in the appropriate first order language.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhu, Wei. "Fractional differential equations in risk theory." Thesis, University of Liverpool, 2018. http://livrepository.liverpool.ac.uk/3018514/.

Full text
Abstract:
This thesis considers one of the central topics in the actuarial mathematics literature, deriving the probability of ruin in the collective risk model. The classical risk model and renewal risk models are focused in this project, where the claim number processes are assumed to be Poisson counting processes and any general renewal counting processes, respectively. The first part of this project is about the classical risk model. We look at the case when claim sizes follow a gamma distribution. Explicit expressions for ruin probabilities are derived via Laplace transform and inverse Laplace transform approach. The second half is about the renewal risk model. Very general assumptions on inter-arrival times are possible for the renewal risk model, which includes the classical risk model, Erlang risk model and fractional Poisson risk model. A new family of differential operators are de ned in order to construct the fractional integro-differential equations for ruin probabilities in such renewal risk models. Through the characteristic equation approach, specific fractional differential equations for the ruin probabilities can be solved explicitly, allowing for the analysis of the ruin probabilities.
APA, Harvard, Vancouver, ISO, and other styles
8

Nagloo, Joel Chris Ronnie. "Model theory, algebra and differential equations." Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/6813/.

Full text
Abstract:
In this thesis, we applied ideas and techniques from model theory, to study the structure of the sets of solutions XII - XV I , in a differentially closed field, of the Painlevé equations. First we show that the generic XII - XV I , that is those with parameters in general positions, are strongly minimal and geometrically trivial. Then, we prove that the generic XII , XIV and XV are strictly disintegrated and that the generic XIII and XV I are ω-categorical. These results, already known for XI , are the culmination of the work started by P. Painlevé (over 100 years ago), the Japanese school and many others on transcendence and the Painlevé equations. We also look at the non generic second Painlevé equations and show that all the strongly minimal ones are geometrically trivial.
APA, Harvard, Vancouver, ISO, and other styles
9

Whitehead, Andrew John. "Differential equations and differential polynomials in the complex plane." Thesis, University of Nottingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ozbekler, Abdullah. "Sturm Comparison Theory For Impulsive Differential Equations." Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606894/index.pdf.

Full text
Abstract:
In this thesis, we investigate Sturmian comparison theory and oscillation for second order impulsive differential equations with fixed moments of impulse actions. It is shown that impulse actions may greatly alter the oscillation behavior of solutions. In chapter two, besides Sturmian type comparison results, we give Leightonian type comparison theorems and obtain Wirtinger type inequalities for linear, half-linear and non-selfadjoint equations. We present analogous results for forced super linear and super half-linear equations with damping. In chapter three, we derive sufficient conditions for oscillation of nonlinear equations. Integral averaging, function averaging techniques as well as interval criteria for oscillation are discussed. Oscillation criteria for solutions of impulsive Hill&
#8217
s equation with damping and forced linear equations with damping are established.
APA, Harvard, Vancouver, ISO, and other styles
11

Ballinger, George Henri. "Qualitative theory of impulsive delay differential equations." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ51178.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Reich, Sebastian. "Differential-algebraic equations and applications in circuit theory." Universität Potsdam, 1992. http://opus.kobv.de/ubp/volltexte/2010/4664/.

Full text
Abstract:
Technical and physical systems, especially electronic circuits, are frequently modeled as a system of differential and nonlinear implicit equations. In the literature such systems of equations are called differentialalgebraic equations (DAEs). It turns out that the numerical and analytical properties of a DAE depend on an integer called the index of the problem. For example, the well-known BDF method of Gear can be applied, in general, to a DAE only if the index does not exceed one. In this paper we give a geometric interpretation of higherindex DAEs and indicate problems arising in connection with such DAEs by means of several examples.
Die mathematische Modellierung technisch physikalischer Systeme wie elektrische Netzwerke, führt häufig auf ein System von Differentialgleichungen und nichtlinearen impliziten Gleichungen sogenannten Algebrodifferentialgleichungen (ADGL). Es zeigt sich, daß die numerischen und analytischen Eigenschaften von ADGL durch den Index des Problems charakterisiert werden können. Insbesondere können die bekannten Integrationsformeln von Gear im allgemeinen nur auf ADGL mit dem Index eins angewendet werden. In diesem Beitrag wird eine geometrische Interpretation von ADGL mit einem höheren Index gegeben sowie auf Probleme im Zusammenhang mit derartigen ADGL an Hand verschiedener Beispiele hingewiesen.
APA, Harvard, Vancouver, ISO, and other styles
13

Ros, Xavier. "Integro-differential equations : regularity theory and Pohozaev identities." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/279289.

Full text
Abstract:
The main topic of the thesis is the study of Elliptic PDEs. It is divided into three parts: (I) integro-differential equations, (II) stable solutions to reaction-diffusion problems, and (III) weighted isoperimetric and Sobolev inequalities. Integro-differential equations arise naturally in the study of stochastic processes with jumps, and are used in Finance, Physics, or Ecology. The most canonical example of integro-differential operator is the fractional Laplacian (the infinitesimal generator of the radially symmetric stable process). In the first Part of the thesis we find and prove the Pohozaev identity for such operator. We also obtain boundary regularity results for general integro-differential operators, as explained next. In the classical case of the Laplacian, the Pohozaev identity applies to any solution of linear or semilinear problems in bounded domains, and is a very important tool in the study of elliptic PDEs. Before our work, a Pohozaev identity for the fractional Laplacian was not known. It was not even known which form should it have, if any. In this thesis we find and establish such identity. Quite surprisingly, it involves a local boundary term, even though the operator is nonlocal. The proof of the identity requires fine boundary regularity properties of solutions, that we also establish here. Our boundary regularity results apply to fully nonlinear integro-differential equations, but they improve the best known ones even for linear ones. Our work in Part II concerns the regularity of local minimizers to some elliptic equations, a classical problem in the Calculus of Variations. More precisely, we study the regularity of stable solutions to reaction-diffusion problems in bounded domains. It is a long standing open problem to prove that all stable solutions are bounded, and thus regular, in dimensions n<10. In dimensions n>=10 there are examples of singular stable solutions. The question is still open in dimensions 4El tema principal de la tesi és l'estudi d'EDPs el·líptiques. La tesi està dividida en tres parts: (I) equacions integro-diferencials, (II) solucions estables de problemes de reacció-difusió, i (III) desigualtats isoperimètriques i de Sobolev amb pesos. Les equacions integro-differencials apareixen de manera natural en l'estudi de processos estocàstics amb salts (processos de Lévy), i s'utilitzen per modelitzar problemes en Finances, Física, o Ecologia. L'exemple més canònic d'operador integro-diferencial és el Laplacià fraccionari (el generador infinitesimal d'un procés estable i radialment simètric). A la Part I de la tesi trobem i demostrem la identitat de Pohozaev per aquest operador. També obtenim resultats de regularitat a la vora per operadors integro-diferencials més generals, tal com expliquem a continuació. En el cas clàssic del Laplacià, la identitat de Pohozaev s'aplica a qualsevol solució de problemes lineals o semilineals en dominis acotats, i és una eina molt important en l'estudi d'EDPs el·líptiques. Abans del nostre treball, no es coneixia cap identitat de Pohozaev pel Laplacià fraccionari. Ni tan sols es sabia quina forma hauria de tenir, en cas que existís. En aquesta tesi trobem i demostrem aquesta identitat. Sorprenentment, la identitat involucra un terma de vora local, tot i que l'operador és no-local. La demostració de la identitat requereix conèixer el comportament precís de les solucions a la vora, cosa que també obtenim aquí. Els nostres resultats de regularitat a la vora s'apliquen a equacions integro-diferencials completament no-lineals, però milloren els resultats anteriors fins i tot per a equacions lineals. A la Part II estudiem la regularitat dels minimitzants locals d'algunes equacions el·líptiques, un problema clàssic del Càlcul de Variacions. En concret, estudiem la regularitat de les solucions estables a problemes de reacció-difusió en dominis acotats. És un problema obert des de fa molts anys demostrar que totes les solucions estables són acotades (i per tant regulars) en dimensions n<10. En dimensions n>=10 hi ha exemples de solucions estables singulars. La questió encara està oberta en dimensions 4
APA, Harvard, Vancouver, ISO, and other styles
14

Chulkov, Sergei. "Topics in analytic theory of partial differential equations /." Stockholm : Dept. of mathematics, Stockholm university, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

蔡澤鍔 and Chak-ngok Choy. "Lie's theory on solvability of ordinary differential equations." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B3121518X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Choy, Chak-ngok. "Lie's theory on solvability of ordinary differential equations /." Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19472675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kasonga, Raphael Abel Carleton University Dissertation Mathematics. "Asymptotic parameter estimation theory for stochastic differential equations." Ottawa, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
18

Huang, Guan. "An averaging theory for nonlinear partial differential equations." Palaiseau, Ecole polytechnique, 2014. http://pastel.archives-ouvertes.fr/docs/01/00/25/27/PDF/these.pdf.

Full text
Abstract:
Cette thèse se consacre aux études des comportements de longtemps des solutions pour les EDPs nonlinéaires qui sont proches d'une EDP linéaire ou intégrable hamiltonienne. Une théorie de la moyenne pour les EDPs nonlinéaires est presenté. Les modèles d'équations sont les équations Korteweg-de Vries (KdV) perturbées et quelques équations aux dérivées partielles nonlinéaires faiblement
This Ph. D thesis focuses on studying the long-time behavior of solutions for non-linear PDEs that are close to a linear or an integrable Hamiltonian PDE. An averaging theory for nonlinear PDEs is presented. The model equations are the perturbed Korteweg-de Vries (KdV) equations and some weakly nonlinear partial differential equations
APA, Harvard, Vancouver, ISO, and other styles
19

Yung, Tamara. "Traffic Modelling Using Parabolic Differential Equations." Thesis, Linköpings universitet, Kommunikations- och transportsystem, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-102745.

Full text
Abstract:
The need of a working infrastructure in a city also requires an understanding of how the traffic flows. It is known that increasing number of drivers prolong the travel time and has an environmental effect in larger cities. It also makes it more difficult for commuters and delivery firms to estimate their travel time. To estimate the traffic flow the traffic department can arrange cameras along popular roads and redirect the traffic, but this is a costly method and difficult to implement. Another approach is to apply theories from physics wave theory and mathematics to model the traffic flow; in this way it is less costly and possible to predict the traffic flow as well. This report studies the application of wave theory and expresses the traffic flow as a modified linear differential equation. First is an analytical solution derived to find a feasible solution. Then a numerical approach is done with Taylor expansions and Crank-Nicolson’s method. All is performed in Matlab and compared against measured values of speed and flow retrieved from Swedish traffic department over a 24 hours traffic day. The analysis is performed on a highway stretch outside Stockholm with no entries, exits or curves. By dividing the interval of the highway into shorter equal distances the modified linear traffic model is expressed in a system of equations. The comparison between actual values and calculated values of the traffic density is done with a nominal average difference. The results reveal that the numbers of intervals don’t improve the average difference. As for the small constant that is applied to make the linear model stable is higher than initially considered.
APA, Harvard, Vancouver, ISO, and other styles
20

Hu, Zuosheng. "Contributions to the theory of almost periodic differential equations." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ60955.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Sticka, Wilhelm Michael. "Floquet theory for picard-type systems of differential equations /." free to MU campus, to others for purchase, 1996. http://wwwlib.umi.com/cr/mo/fullcit?p9720555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Rizzolo, Douglas. "Approximating Solutions to Differential Equations via Fixed Point Theory." Scholarship @ Claremont, 2008. https://scholarship.claremont.edu/hmc_theses/213.

Full text
Abstract:
In the study of differential equations there are two fundamental questions: is there a solution? and what is it? One of the most elegant ways to prove that an equation has a solution is to pose it as a fixed point problem, that is, to find a function f such that x is a solution if and only if f (x) = x. Results from fixed point theory can then be employed to show that f has a fixed point. However, the results of fixed point theory are often nonconstructive: they guarantee that a fixed point exists but do not help in finding the fixed point. Thus these methods tend to answer the first question, but not the second. One such result is Schauder’s fixed point theorem. This theorem is broadly applicable in proving the existence of solutions to differential equations, including the Navier-Stokes equations under certain conditions. Recently a semi-constructive proof of Schauder’s theorem was developed in Rizzolo and Su (2007). In this thesis we go through the construction in detail and show how it can be used to search for multiple solutions. We then apply the method to a selection of differential equations.
APA, Harvard, Vancouver, ISO, and other styles
23

Navarro, Quiles Ana. "COMPUTATIONAL METHODS FOR RANDOM DIFFERENTIAL EQUATIONS: THEORY AND APPLICATIONS." Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/98703.

Full text
Abstract:
Desde las contribuciones de Isaac Newton, Gottfried Wilhelm Leibniz, Jacob y Johann Bernoulli en el siglo XVII hasta ahora, las ecuaciones en diferencias y las diferenciales han demostrado su capacidad para modelar satisfactoriamente problemas complejos de gran interés en Ingeniería, Física, Epidemiología, etc. Pero, desde un punto de vista práctico, los parámetros o inputs (condiciones iniciales/frontera, término fuente y/o coeficientes), que aparecen en dichos problemas, son fijados a partir de ciertos datos, los cuales pueden contener un error de medida. Además, pueden existir factores externos que afecten al sistema objeto de estudio, de modo que su complejidad haga que no se conozcan de forma cierta los parámetros de la ecuación que modeliza el problema. Todo ello justifica considerar los parámetros de la ecuación en diferencias o de la ecuación diferencial como variables aleatorias o procesos estocásticos, y no como constantes o funciones deterministas, respectivamente. Bajo esta consideración aparecen las ecuaciones en diferencias y las ecuaciones diferenciales aleatorias. Esta tesis hace un recorrido resolviendo, desde un punto de vista probabilístico, distintos tipos de ecuaciones en diferencias y diferenciales aleatorias, aplicando fundamentalmente el método de Transformación de Variables Aleatorias. Esta técnica es una herramienta útil para la obtención de la función de densidad de probabilidad de un vector aleatorio, que es una transformación de otro vector aleatorio cuya función de densidad de probabilidad es conocida. En definitiva, el objetivo de este trabajo es el cálculo de la primera función de densidad de probabilidad del proceso estocástico solución en diversos problemas basados en ecuaciones en diferencias y diferenciales aleatorias. El interés por determinar la primera función de densidad de probabilidad se justifica porque dicha función determinista caracteriza la información probabilística unidimensional, como media, varianza, asimetría, curtosis, etc., de la solución de la ecuación en diferencias o diferencial correspondiente. También permite determinar la probabilidad de que acontezca un determinado suceso de interés que involucre a la solución. Además, en algunos casos, el estudio teórico realizado se completa mostrando su aplicación a problemas de modelización con datos reales, donde se aborda el problema de la estimación de distribuciones estadísticas paramétricas de los inputs en el contexto de las ecuaciones en diferencias y diferenciales aleatorias.
Ever since the early contributions by Isaac Newton, Gottfried Wilhelm Leibniz, Jacob and Johann Bernoulli in the XVII century until now, difference and differential equations have uninterruptedly demonstrated their capability to model successfully interesting complex problems in Engineering, Physics, Chemistry, Epidemiology, Economics, etc. But, from a practical standpoint, the application of difference or differential equations requires setting their inputs (coefficients, source term, initial and boundary conditions) using sampled data, thus containing uncertainty stemming from measurement errors. In addition, there are some random external factors which can affect to the system under study. Then, it is more advisable to consider input data as random variables or stochastic processes rather than deterministic constants or functions, respectively. Under this consideration random difference and differential equations appear. This thesis makes a trail by solving, from a probabilistic point of view, different types of random difference and differential equations, applying fundamentally the Random Variable Transformation method. This technique is an useful tool to obtain the probability density function of a random vector that results from mapping another random vector whose probability density function is known. Definitely, the goal of this dissertation is the computation of the first probability density function of the solution stochastic process in different problems, which are based on random difference or differential equations. The interest in determining the first probability density function is justified because this deterministic function characterizes the one-dimensional probabilistic information, as mean, variance, asymmetry, kurtosis, etc. of corresponding solution of a random difference or differential equation. It also allows to determine the probability of a certain event of interest that involves the solution. In addition, in some cases, the theoretical study carried out is completed, showing its application to modelling problems with real data, where the problem of parametric statistics distribution estimation is addressed in the context of random difference and differential equations.
Des de les contribucions de Isaac Newton, Gottfried Wilhelm Leibniz, Jacob i Johann Bernoulli al segle XVII fins a l'actualitat, les equacions en diferències i les diferencials han demostrat la seua capacitat per a modelar satisfactòriament problemes complexos de gran interés en Enginyeria, Física, Epidemiologia, etc. Però, des d'un punt de vista pràctic, els paràmetres o inputs (condicions inicials/frontera, terme font i/o coeficients), que apareixen en aquests problemes, són fixats a partir de certes dades, les quals poden contenir errors de mesura. A més, poden existir factors externs que afecten el sistema objecte d'estudi, de manera que, la seua complexitat faça que no es conega de forma certa els inputs de l'equació que modelitza el problema. Tot aço justifica la necessitat de considerar els paràmetres de l'equació en diferències o de la equació diferencial com a variables aleatòries o processos estocàstics, i no com constants o funcions deterministes. Sota aquesta consideració apareixen les equacions en diferències i les equacions diferencials aleatòries. Aquesta tesi fa un recorregut resolent, des d'un punt de vista probabilístic, diferents tipus d'equacions en diferències i diferencials aleatòries, aplicant fonamentalment el mètode de Transformació de Variables Aleatòries. Aquesta tècnica és una eina útil per a l'obtenció de la funció de densitat de probabilitat d'un vector aleatori, que és una transformació d'un altre vector aleatori i la funció de densitat de probabilitat és del qual és coneguda. En definitiva, l'objectiu d'aquesta tesi és el càlcul de la primera funció de densitat de probabilitat del procés estocàstic solució en diversos problemes basats en equacions en diferències i diferencials. L'interés per determinar la primera funció de densitat es justifica perquè aquesta funció determinista caracteritza la informació probabilística unidimensional, com la mitjana, variància, asimetria, curtosis, etc., de la solució de l'equació en diferències o l'equació diferencial aleatòria corresponent. També permet determinar la probabilitat que esdevinga un determinat succés d'interés que involucre la solució. A més, en alguns casos, l'estudi teòric realitzat es completa mostrant la seua aplicació a problemes de modelització amb dades reals, on s'aborda el problema de l'estimació de distribucions estadístiques paramètriques dels inputs en el context de les equacions en diferències i diferencials aleatòries.
Navarro Quiles, A. (2018). COMPUTATIONAL METHODS FOR RANDOM DIFFERENTIAL EQUATIONS: THEORY AND APPLICATIONS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/98703
TESIS
APA, Harvard, Vancouver, ISO, and other styles
24

Jenab, Bita. "Asymptotic theory of second-order nonlinear ordinary differential equations." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/24690.

Full text
Abstract:
The asymptotic behaviour of nonoscillatory solutions of second order nonlinear ordinary differential equations is studied. Necessary and sufficient conditions are given for the existence of positive solutions with specified asymptotic behaviour at infinity. Existence of nonoscillatory solutions is established using the Schauder-Tychonoff fixed point theorem. Techniques such as factorization of linear disconjugate operators are employed to reveal the similar nature of asymptotic solutions of nonlinear differential equations to that of linear equations. Some examples illustrating the asymptotic theory of ordinary differential equations are given.
Science, Faculty of
Mathematics, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
25

Yantır, Ahmet Ufuktepe Ünal. "Oscillation theory for second order differential equations and dynamic equations on time scales/." [s.l.]: [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/matematik/T000418.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Taylor, S. Richard. "Probabilistic Properties of Delay Differential Equations." Thesis, University of Waterloo, 2004. http://hdl.handle.net/10012/1183.

Full text
Abstract:
Systems whose time evolutions are entirely deterministic can nevertheless be studied probabilistically, i. e. in terms of the evolution of probability distributions rather than individual trajectories. This approach is central to the dynamics of ensembles (statistical mechanics) and systems with uncertainty in the initial conditions. It is also the basis of ergodic theory--the study of probabilistic invariants of dynamical systems--which provides one framework for understanding chaotic systems whose time evolutions are erratic and for practical purposes unpredictable. Delay differential equations (DDEs) are a particular class of deterministic systems, distinguished by an explicit dependence of the dynamics on past states. DDEs arise in diverse applications including mathematics, biology and economics. A probabilistic approach to DDEs is lacking. The main problems we consider in developing such an approach are (1) to characterize the evolution of probability distributions for DDEs, i. e. develop an analog of the Perron-Frobenius operator; (2) to characterize invariant probability distributions for DDEs; and (3) to develop a framework for the application of ergodic theory to delay equations, with a view to a probabilistic understanding of DDEs whose time evolutions are chaotic. We develop a variety of approaches to each of these problems, employing both analytical and numerical methods. In transient chaos, a system evolves erratically during a transient period that is followed by asymptotically regular behavior. Transient chaos in delay equations has not been reported or investigated before. We find numerical evidence of transient chaos (fractal basins of attraction and long chaotic transients) in some DDEs, including the Mackey-Glass equation. Transient chaos in DDEs can be analyzed numerically using a modification of the "stagger-and-step" algorithm applied to a discretized version of the DDE.
APA, Harvard, Vancouver, ISO, and other styles
27

Clark, Troy Arthur. "The Trefoil: An Analysis in Curve Minimization and Spline Theory." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1596460534956624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Tempesta, Patricia. "Simmetries in binary differential equations." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11072017-170308/.

Full text
Abstract:
The purpose of this thesis in to introduce the systematic study of symmetries in binary differential equations (BDEs). We formalize the concept of a symmetric BDE, under the linear action of a compact Lie group. One of the main results establishes a formula that relates the algebraic and geometric effects of the occurrence of the symmetry in the problem. Using tools from invariant theory and representation theory for compact Lie groups we deduce the general forms of equivariant binary differential equations under compact subgroups of O(2). A study about the behavior of the invariant straight lines on the configuration of homogeneous BDEs of degree n is done with emphasis on cases in which n = 0 and n = 1. Also for the linear case (n = 1) the equivariant normal forms are presented. Symmetries of linear 1-forms are also studied and related with symmetries of tangent orthogonal vectors fields associated with it.
O objetivo desta tese é introduzir o estudo sistemático de simetrias em equações diferenciais binárias (EDBs). Neste trabalho formalizamos o conceito de EDB simétrica sobre a ação de um grupo de Lie compacto. Um dos principais resultados é uma fórmula que relaciona o efeito geométrico e algébrico das simetrias presentes no problema. Utilizando ferramentas da teoria invariante e de representação para grupos compactos deduzimos as formas gerais para EDBs equivariantes. Um estudo sobre o comportamento das retas invariantes na configuração de EDBs com coeficientes homogêneos de grau n é feito com ênfase nos casos de grau 0 e 1, ainda no caso de grau 1 são apresentadas suas formas normais. Simetrias de 1-formas lineares são também estudadas e relacionadas com as simetrias dos seus campos tangente e ortogonal.
APA, Harvard, Vancouver, ISO, and other styles
29

Barge, S. "Twistor theory and the K.P. equations." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301766.

Full text
Abstract:
In this thesis, we discuss a geometric construction analogous to the Ward correspondence for the KP equations. We propose a Dirac operator based on the inverse scattering transform for the KP-II equation and discuss the similarities and differences to the Ward correspondence. We also consider the KP-I equation, describing a geometric construction for a certain class of solutions. We also discuss the general inverse scattering of the equation, how this is related to the KP-II equation and the problems with describing a single geometric construction that incorporates both equations. We also consider the Davey-Stewartson equations, which have a similar behaviour. We demonstrate explicitly the problems of localising the theory with generic boundary conditions. We also present a reformulation of the Dirac operator and demonstrate a duality between the Dirac operator and the first Lax operator for the DS-II equations. We then proceed to generalise the Dirac operator construction to generate other integrable systems. These include the mKP and Ishimori equations, and an extension to the KP and mKP hierarchies.
APA, Harvard, Vancouver, ISO, and other styles
30

Fontes, Ramiro. "Applications of Allouba's differentiation theory and semi-SPDEs." [Kent, Ohio] : Kent State University, 2010. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=kent1271438954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Dasht, Johan. "Some developments of homogenization theory and Rothe's method /." Luleå : Dept. of Mathematics, Univ, 2005. http://epubl.luth.se/1402-1757/2005/05/LTU-LIC-0505-SE.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Lattimer, Timothy Richard Bislig. "Singular partial integro-differential equations arising in thin aerofoil theory." Thesis, University of Southampton, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Surnachev, Mikhail. "On qualitative theory of solutions to nonlinear partial differential equations." Thesis, Swansea University, 2010. https://cronfa.swan.ac.uk/Record/cronfa42611.

Full text
Abstract:
In this work I study certain aspects of qualitative behaviour of solutions to nonlinear PDEs. The thesis consists of introduction and three parts. In the first part I study solutions of Emden-Fowler type elliptic equations in nondivergence form. In this part I establish the following results; 1. Asymptotic representation of solutions in conical domains; 2. A priori estimates for solutions to equations with weighted absorption term; 3. Existence and nonexistence of positive solutions to equations with source term in conical domains. In the second part I study regularity properties of nonlinear degenerate parabolic equations. There are two results here: A Harnack inequality and the H51der continuity for solutions of weighted degenerate parabolic equations with a time-independent weight from a suitable Muckenhoupt class; A new proof of the Holder continuity of solutions. The third part is propedeutic. In this part I gathered some facts and simple proofs relating to the Harnack inequality for elliptic equations. Both divergent and nondivergent case are considered. The material of this chapter is not new, but it is not very easy to find it in the literature. This chapter is built entirely upon the so-called "growth lemma" ideology (introduced by E.M. Landis).
APA, Harvard, Vancouver, ISO, and other styles
34

Correa, Alvaro. "Bifurcation theory for a class of second order differential equations." Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/940.

Full text
Abstract:
We consider positive solutions of the nonlinear two point boundary value problem u‘‘+λf(u)=0, u(-1)=u(1)=0 , f(u)=u(u-a)(u-b)(u-c)(1-u), 0, depending on a parameter λ. Each solution u(x) is even function, and it is uniquely identified by α=u(0). We will prove, using delicate integral estimates that α=b,1 are not bifurcations points. We explore and prove a series of properties which restrict the location of a bifurcation point by studying the change of concavity of the graph of f and the points where the rays from 0 and b touche the graph of f.
APA, Harvard, Vancouver, ISO, and other styles
35

Xu, Yuhua. "Disconjugacy and Oscillation Theory of Linear Differential and Difference Equations." DigitalCommons@USU, 1992. https://digitalcommons.usu.edu/etd/7130.

Full text
Abstract:
This dissertation is both a literature survey and a presentation of new and independent results. The survey gives an overview of disconjugacy and oscillation theory for linear differential and difference equations with an emphasis on comparing the theory of difference equations to the theory of differential equations. higher order scalar equations. Second order scalar equations, matrix equations (systems) and Hamiltonian systems are discussed. A chapter on three-term recurrences of systems is also included. Both similarities and differences between differential and difference equations are described. The new and independent results are for Hamiltonian systems of difference equations. Those results include the representation of any solution in terms of an isotropic solution, necessary conditions for disconjugacy, the development of appropriate Riccati equations and the existence of principal solutions.
APA, Harvard, Vancouver, ISO, and other styles
36

Agueh, Martial Marie-Paul. "Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/29180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Xiong, Sheng. "Stochastic Differential Equations: Some Risk and Insurance Applications." Diss., Temple University Libraries, 2011. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/133166.

Full text
Abstract:
Mathematics
Ph.D.
In this dissertation, we have studied diffusion models and their applications in risk theory and insurance. Let Xt be a d-dimensional diffusion process satisfying a system of Stochastic Differential Equations defined on an open set G Rd, and let Ut be a utility function of Xt with U0 = u0. Let T be the first time that Ut reaches a level u^*. We study the Laplace transform of the distribution of T, as well as the probability of ruin, psileft(u_{0}right)=Prleft{ TTemple University--Theses
APA, Harvard, Vancouver, ISO, and other styles
38

Reich, Sebastian. "On an existence and uniqueness theory for nonlinear differential-algebraic equations." Universität Potsdam, 1991. http://opus.kobv.de/ubp/volltexte/2010/4670/.

Full text
Abstract:
An existence and uniqueness theory is developed for general nonlinear and nonautonomous differential-algebraic equations (DAEs) by exploiting their underlying differential-geometric structure. A DAE is called regular if there is a unique nonautonomous vector field such that the solutions of the DAE and the solutions of the vector field are in one-to-one correspondence. Sufficient conditions for regularity of a DAE are derived in terms of constrained manifolds. Based on this differential-geometric characterization, existence and uniqueness results are stated for regular DAEs. Furthermore, our not ons are compared with techniques frequently used in the literature such as index and solvability. The results are illustrated in detail by means of a simple circuit example.
APA, Harvard, Vancouver, ISO, and other styles
39

Seiler, Werner Markus. "Analysis and application of the formal theory of partial differential equations." Thesis, Lancaster University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Pierson, Mark A. "Theory and Application of a Class of Abstract Differential-Algebraic Equations." Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/27416.

Full text
Abstract:
We first provide a detailed background of a geometric projection methodology developed by Professor Roswitha Marz at Humboldt University in Berlin for showing uniqueness and existence of solutions for ordinary differential-algebraic equations (DAEs). Because of the geometric and operator-theoretic aspects of this particular method, it can be extended to the case of infinite-dimensional abstract DAEs. For example, partial differential equations (PDEs) are often formulated as abstract Cauchy or evolution problems which we label abstract ordinary differential equations or AODE. Using this abstract formulation, existence and uniqueness of the Cauchy problem has been studied. Similarly, we look at an AODE system with operator constraint equations to formulate an abstract differential-algebraic equation or ADAE problem. Existence and uniqueness of solutions is shown under certain conditions on the operators for both index-1 and index-2 abstract DAEs. These existence and uniqueness results are then applied to some index-1 DAEs in the area of thermodynamic modeling of a chemical vapor deposition reactor and to a structural dynamics problem. The application for the structural dynamics problem, in particular, provides a detailed construction of the model and development of the DAE framework. Existence and uniqueness are primarily demonstrated using a semigroup approach. Finally, an exploration of some issues which arise from discretizing the abstract DAE are discussed.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
41

Baugh, James Emory. "Group analysis of a system of reaction-diffusion equations." Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/28554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Arugaslan, Cincin Duygu. "Differential Equations With Discontinuities And Population Dynamics." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610574/index.pdf.

Full text
Abstract:
In this thesis, both theoretical and application oriented results are obtained for differential equations with discontinuities of different types: impulsive differential equations, differential equations with piecewise constant argument of generalized type and differential equations with discontinuous right-hand sides. Several qualitative problems such as stability, Hopf bifurcation, center manifold reduction, permanence and persistence are addressed for these equations and also for Lotka-Volterra predator-prey models with variable time of impulses, ratio-dependent predator-prey systems and logistic equation with piecewise constant argument of generalized type. For the first time, by means of Lyapunov functions coupled with the Razumikhin method, sufficient conditions are established for stability of the trivial solution of differential equations with piecewise constant argument of generalized type. Appropriate examples are worked out to illustrate the applicability of the method. Moreover, stability analysis is performed for the logistic equation, which is one of the most widely used population dynamics models. The behaviour of solutions for a 2-dimensional system of differential equations with discontinuous right-hand side, also called a Filippov system, is studied. Discontinuity sets intersect at a vertex, and are of the quasilinear nature. Through the B&
#8722
equivalence of that system to an impulsive differential equation, Hopf bifurcation is investigated. Finally, the obtained results are extended to a 3-dimensional discontinuous system of Filippov type. After the existence of a center manifold is proved for the 3-dimensional system, a theorem on the bifurcation of periodic solutions is provided in the critical case. Illustrative examples and numerical simulations are presented to verify the theoretical results.
APA, Harvard, Vancouver, ISO, and other styles
43

Sancier-Barbosa, Flavia Cabral. "Closing the memory gap in stochastic functional differential equations." OpenSIUC, 2011. https://opensiuc.lib.siu.edu/dissertations/346.

Full text
Abstract:
In this paper, we obtain convergence of solutions of stochastic differential systems with memory gap to those with full finite memory. More specifically, solutions of stochastic differential systems with memory gap are processes in which the intrinsic dependence of the state on its history goes only up to a specific time in the past. As a consequence of this convergence, we obtain a new existence proof and approximation scheme for stochastic functional differential equations (SFDEs) whose coefficients have linear growth. In mathematical finance, an option pricing formula with full finite memory is obtained through convergence of stock dynamics with memory gap to stock dynamics with full finite memory.
APA, Harvard, Vancouver, ISO, and other styles
44

Sijbrandij, Klass Rienk. "The Toda equations and congruence in flag manifolds." Thesis, Durham University, 2000. http://etheses.dur.ac.uk/4516/.

Full text
Abstract:
This thesis is concerned with the 2-dimensional Toda equations and their geometric interpretation in form of r-adapted maps into flag manifolds, r-adapted maps are not only of interest due to their relation with the Toda equations, but also for their adaption to the m-synametric space structure of flag manifolds. This thesis studies the congruence question for r-adapted maps in flag manifolds. The main theorem of this thesis is a congruence theorem for г-holomorphic maps Ψ : S(^2) → G/T of constant curvature, where G can be any compact simple Lie group. It is supplemented by a congruence theorem for general r-holomorphic maps Ψ : S(^2) → G/T if G has rank 2, and a number of congruence theorems for isometric r-primitive Ψ : S(^2) → G/T of constant Kahler angle. The second group of congruence theorems is proved for the rank 2 case, as well as a selection of Lie groups with higher rank: SU(4),SU(5),F(_4),E(_6),E(_6),E(_8),Sp(n).
APA, Harvard, Vancouver, ISO, and other styles
45

馮漢國 and Hon-kwok Fung. "Some linear preserver problems in system theory." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1995. http://hub.hku.hk/bib/B3121227X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Fung, Hon-kwok. "Some linear preserver problems in system theory /." [Hong Kong] : University of Hong Kong, 1995. http://sunzi.lib.hku.hk/hkuto/record.jsp?B16121673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Sun, Xun. "Twin solutions of even order boundary value problems for ordinary differential equations and finite difference equations." [Huntington, WV : Marshall University Libraries], 2009. http://www.marshall.edu/etd/descript.asp?ref=1014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Howard, Timothy G. "Predicting the asymptotic behavior for differential equations with a quadratic nonlinearity." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/28823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Nguyen, Phuc Cong. "Potential theory and harmonic analysis methods for quasilinear and Hessian equations." Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4402.

Full text
Abstract:
Thesis (Ph.D.)--University of Missouri-Columbia, 2006.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (February 28, 2007) Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
50

Wenzel, Ansgar. "An Introduction to Lefschetz Coincidence Theory with an Application to Differential Equations." Thesis, Uppsala universitet, Algebra, geometri och logik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-154736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!