Academic literature on the topic 'Star fields'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Star fields.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Star fields"

1

Clem, James L., and Arlo U. Landolt. "FAINTUBVRISTANDARD STAR FIELDS." Astronomical Journal 146, no. 4 (September 5, 2013): 88. http://dx.doi.org/10.1088/0004-6256/146/4/88.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hubrig, Swetlana, Markus Schöller, and Silva P. Järvinen. "Magnetic massive stars in star forming regions." Proceedings of the International Astronomical Union 14, A30 (August 2018): 132. http://dx.doi.org/10.1017/s174392131900382x.

Full text
Abstract:
AbstractOne idea for the origin of magnetic fields in massive stars suggests that the magnetic field is the fossil remnant of the Galactic ISM magnetic field, amplified during the collapse of the magnetised gas cloud. A search for the presence of magnetic fields in massive stars located in active sites of star formation led to the detection of rather strong magnetic fields in a few young stars. Future spectropolarimetric observations are urgently needed to obtain insights into the mechanisms that drive the generation of kG magnetic fields during high-mass star formation.
APA, Harvard, Vancouver, ISO, and other styles
3

Gourgouliatos, Konstantinos N., Rainer Hollerbach, and Robert F. Archibald. "Modelling neutron star magnetic fields." Astronomy & Geophysics 59, no. 5 (October 1, 2018): 5.37–5.42. http://dx.doi.org/10.1093/astrogeo/aty235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Van Loo, S., T. W. Hartquist, and S. A. E. G. Falle. "Magnetic fields and star formation." Astronomy & Geophysics 53, no. 5 (September 18, 2012): 5.31–5.36. http://dx.doi.org/10.1111/j.1468-4004.2012.53531.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bellazzini, B., and M. Mintchev. "Quantum fields on star graphs." Journal of Physics A: Mathematical and General 39, no. 35 (August 11, 2006): 11101–17. http://dx.doi.org/10.1088/0305-4470/39/35/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Qizhou. "Magnetic fields and massive star formation." Proceedings of the International Astronomical Union 14, A30 (August 2018): 141. http://dx.doi.org/10.1017/s1743921319003922.

Full text
Abstract:
AbstractMassive stars ( ${\rm{M}} > \,8{M_ \odot }$ ) often form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. The role of magnetic fields during the formation of massive dense cores is still not clear. The steady improvement in sensitivity of (sub)millimeter interferometers over the past decade enabled observations of dust polarization of large samples of massive star formation regions. We carried out a polarimetric survey with the Submillimeter Array of 14 massive star forming clumps in continuum emission at a wavelength of 0.89 mm. This unprecedentedly large sample of massive star forming regions observed by a submillimeter interferometer before the advent of ALMA revealed compelling evidence of strong magnetic influence on the gas dynamics from 1 pc to 0.1 pc scales. We found that the magnetic fields in dense cores tend to be either parallel or perpendicular to the mean magnetic fields in their parental molecular clumps. Furthermore, the main axis of protostellar outflows does not appear to be aligned with the mean magnetic fields in the dense core where outflows are launched. These findings suggest that from 1 pc to 0.1 pc scales, magnetic fields are dynamically important in the collapse of clumps and the formation of dense cores. From the dense core scale to the accretion disk scale of ∼102 au, however, gravity and angular momentum appear to be more dominant relative to the magnetic field.
APA, Harvard, Vancouver, ISO, and other styles
7

Crutcher, Richard M. "Magnetic fields and massive star formation." Proceedings of the International Astronomical Union 1, S227 (May 2005): 98–107. http://dx.doi.org/10.1017/s1743921305004412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Feitzinger, J. V., E. Harfst, and J. Spicker. "Stochastic Star Formation and Magnetic Fields." Symposium - International Astronomical Union 140 (1990): 257–58. http://dx.doi.org/10.1017/s0074180900190175.

Full text
Abstract:
The model of selfpropagating star formation uses local processes (200 pc cell size) in the interstellar medium to simulate the large scale cooperative behaviour of spiral structure in galaxies. The dynamic of the model galaxies is taken into account via the mass distribution and the resulting rotation curve; flat rotation curves are used. The interstellar medium is treated as a multiphase medium with appropriate cooling times and density history. The phases are: molecular gas, cool HI gas, warm intercloud and HII gas and hot coronal fountain gas. A detailed gas reshuffeling between the star forming cells in the plane and outside the galactic plane controls the cell content. Two processes working stochastically are incooperated: the building and the decay of molecular clouds and the star forming events in the molecular clouds.
APA, Harvard, Vancouver, ISO, and other styles
9

Yakovlev, D. G., and A. D. Kaminker. "Neutron Star Crusts With Magnetic Fields." International Astronomical Union Colloquium 147 (1994): 214–38. http://dx.doi.org/10.1017/s0252921100026385.

Full text
Abstract:
AbstractThe properties of plasma in neutron star crusts with strong magnetic fields B = 1010 − 1013 G are reviewed: thermodynamic properties (equation of state, entropy, specific heat), transport properties (electron thermal and electrical conductivity of degenerate electron gas, radiative thermal conductivity of very surface nondegenerate layers) and neutrino energy losses. Classical effects of electron Larmor rotation in a magnetic field are considered as well as quantum effects of the electron motion (Landau levels). The influence of the magnetic fields on density and temperature profiles in the surface layers of neutron stars and on neutron star cooling is briefly discussed.
APA, Harvard, Vancouver, ISO, and other styles
10

Michel, F. C. "Evolution of Neutron Star Magnetic Fields." Publications of the Astronomical Society of the Pacific 103 (August 1991): 770. http://dx.doi.org/10.1086/132877.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Star fields"

1

Andersson, Mattias. "Scalar fields on star graphs." Thesis, Karlstads universitet, Avdelningen för fysik och elektroteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-9139.

Full text
Abstract:
A star graph consists of a vertex to which a set of edges are connected. Such an object can be used to, among other things, model the electromagnetic properties of quantum wires. A scalar field theory is constructed on the star graph and its properties are investigated. It turns out that there exist Kirchoff's rules for the conserved charges in the system leading to restrictions of the possible type of boundary conditions at the vertex. Scale invariant boundary conditions are investigated in detail.
En stjärngraf består av en nod på vilken vilken ett antal kanter är anslutna. Ett sådant objekt kan bland annat användas till att modellera de elektromagnetiska egenskaperna hos kvanttrådar. En skalärfältsteori konstrueras på stjärngrafen och dess egenskaper undersöks. Det visar sig att det exisisterar en typ av Kirchoffs lagar för de konserverade laddningarna i systemet. Detta leder till restriktioner på vilka randvillkor som är möjliga vid noden. Skalinvarianta randvillkor undersöks i detalj.
APA, Harvard, Vancouver, ISO, and other styles
2

張承民 and Chengmin Zhang. "The evolution of neutron star magnetic fields." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B31241359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Curran, Rachel Louise. "Magnetic fields in regions of star formation." Thesis, University of Hertfordshire, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Chengmin. "The evolution of neutron star magnetic fields /." Hong Kong : University of Hong Kong, 2000. http://sunzi.lib.hku.hk/hkuto/record.jsp?B21687559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Thurman, Hugh O. Copeland Gary E. "Neutron star electromagnetic field structure /." Connect to this resource. (Authorized users only), 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Viganò, Daniele. "Magnetic fields in neutron stars." Doctoral thesis, Universidad de Alicante, 2013. http://hdl.handle.net/10045/36185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Matthews, Brenda Christine. "A polarimetric study of magnetic fields in star-forming molecular clouds /." *McMaster only, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Boz, Tamer Süleyman. "Quantum Fields on Star Graphs with Bound States at the Vertex." Thesis, Karlstads universitet, Fakulteten för teknik- och naturvetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-7503.

Full text
Abstract:
A star graph consists of an arbitrary number of segments that are joined at a point which is called the vertex. In this work it is investigated from a pure theoretical point of view, in the framework of quantum field theory. As a concrete physical application, the electric conductance tensor is obtained. In particular it is shown that this conductance behaves differently according to whether the scattering matrix associated with the vertex of the graph has bound-state poles or not.
APA, Harvard, Vancouver, ISO, and other styles
9

Volgenau, Nikolaus Herman. "Turbulence in star formation tracing the velocity fields of dense cores /." College Park, Md. : University of Maryland, 2004. http://hdl.handle.net/1903/2314.

Full text
Abstract:
Thesis (Ph. D.) -- University of Maryland, College Park, 2004.
Thesis research directed by: Astronomy. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
APA, Harvard, Vancouver, ISO, and other styles
10

Ji, Young Hun. "Understanding the Gender Performance Gap among Star Performers in STEM Fields." Thesis, The George Washington University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10621447.

Full text
Abstract:

Despite much improvement over the past several decades, women continue to be underrepresented across many STEM fields. In this study, I draw upon past research to theorize that (1) there exist a substantial gender performance gap among STEM researchers and that (2) the gap is disproportionately larger among star performers, i.e., individuals who produce output many times greater than others holding the same job (Aguinis & O’Boyle, 2014). I then discuss how a gender performance gap specifically among star performers can be more harmful to the underrepresented group than an equivalent gap among average performers. To investigate the possible existence of such gender performance gaps, I assess the research productivity of all researchers in the fields of mathematics, materials sciences, and genetics who have published in the past decade at least one article in the most influential journals in their fields. Using the process of distribution pitting (Joo, Aguinis & Bradley, 2017), I identify the best-fitting theoretical distributions and associated dominant generative mechanisms that shape individual performance across the three STEM fields. Assessment of the shapes of the performance distributions confirms the existence of considerable gender performance gaps in favor of men, although the gap was substantially lower in the field of genetics compared to in the others. In addition, the findings suggest that (1) individual STEM researchers vary in performance predominantly due to differences in their accumulation rates (i.e., average output produced per time period), and (2) women’s research output accumulation rates are lower (on average) and also less variable compared to men’s. Implications for theory and practice based on these findings are discussed.

APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Star fields"

1

de Castro, A. I. Gómez, M. Heyer, E. Vázquez-Semadeni, R. Rebolo, M. Tagger, and R. E. Pudritz, eds. Magnetic Fields and Star Formation. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-017-0491-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Symposium, International Astronomical Union. Physics of sun and star spots: Proceedings of the 273th [i.e. 273rd] Symposium of the International Astronomical Union held in Ventura, California, USA, August 22-26, 2010. Cambridge, U.K: Cambridge University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Crelin, Bob. There once was a sky full of stars. Cambridge, Mass: Sky Pub., 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Prasad, Choudhary Debi, Strassmeier Klaus G, and International Astronomical Union, eds. Physics of sun and star spots: Proceedings of the 273th [i.e. 273rd] Symposium of the International Astronomical Union held in Ventura, California, USA, August 22-26, 2010. Cambridge, U.K: Cambridge University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mattison, Alice. Field of stars. New York: Morrow, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fredrick, McKissack, and Biegel Michael David ill, eds. Jesse Owens: Olympic star. Hillside, N.J., U.S.A: Enslow Publishers, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jan, Wisniewski, ed. Star clusters: A pocket field guide. Calverton, New York: Springer Science+Business Media, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

McKissack, Pat. Jesse Owens: Legendary track star. Berkeley Heights, NJ: Enslow Publishers, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Korhonen, Heidi. Surface structures of FK Com. Oulu: Oulu University Press, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

A, Balona Luis, Henrichs Huib F, and Medupe Rodney, eds. International Conference on Magnetic Fields in O, B and A Stars: Origin and connection to pulsation, rotation and mass loss : proceedings of a conference held at University of North-West, Mmabatho, South Africa, 27 November - 1 December, 2002. San Francisco, California: Astronomical Society of the Pacific, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Star fields"

1

Küker, M., Th Henning, and G. Rüdiger. "Magnetic Star-Disk Interaction in Classical T Tauri Stars." In Magnetic Fields and Star Formation, 425–33. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-017-0491-5_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Crutcher, Richard M. "What Drives Star Formation?" In Magnetic Fields and Star Formation, 175–87. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-017-0491-5_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Scarrott, S. M., T. M. Gledhill, and R. F. Warren-Smith. "Optical Polarisation Studies of Star Formation Regions." In Interstellar Magnetic Fields, 161–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72621-7_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Roberge, Wayne G., and Glenn E. Ciolek. "Magnetic Fields and Star Formation." In Encyclopedia of Astrobiology, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_5084-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Roberge, Wayne G., and Glenn E. Ciolek. "Magnetic Fields and Star Formation." In Encyclopedia of Astrobiology, 1424–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_5084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zweibel, Ellen G. "Magnetic Fields and Star Formation." In Cosmical Magnetism, 73–85. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1110-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ballesteros-Paredes, Javier. "Turbulent Fragmentation and Star Formation." In Magnetic Fields and Star Formation, 143–55. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-017-0491-5_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Klessen, Ralf S. "Comments on Gravoturbulent Star Formation." In Magnetic Fields and Star Formation, 165–73. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-017-0491-5_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nakamura, Takashi, and Takuji Iwata. "Gravitational Instability of Rotating Gaseous Disks with Magnetic Fields." In Star Forming Regions, 435. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4782-5_138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wardle, Mark. "Star Formation and the Hall Effect." In Magnetic Fields and Star Formation, 231–37. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-017-0491-5_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Star fields"

1

Scholl, Marija S. "Star field identification algorithm: performance verification using simulated star fields." In SPIE's 1993 International Symposium on Optics, Imaging, and Instrumentation, edited by Marija S. Scholl. SPIE, 1993. http://dx.doi.org/10.1117/12.157848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Barranco, J., A. Bernal, Heriberto Castilla-Valdez, Omar Miranda, and Eli Santos. "Towards a Realistic Axion Star." In PARTICLES AND FIELDS: XI Mexican Workshop on Particles and Fields. AIP, 2008. http://dx.doi.org/10.1063/1.2965050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Giannakouros, Maria. "Star fields in 2D." In ACM SIGGRAPH 2002 conference abstracts and applications. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/1242073.1242265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Calderón de la Barca Sánchez, M. "Recent results from the STAR experiment at RHIC." In PARTICLES AND FIELDS: Tenth Mexican School on Particles and Fields. AIP, 2003. http://dx.doi.org/10.1063/1.1594365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lery, Thibaut. "Star Formation Histories." In MAGNETIC FIELDS IN THE UNIVERSE: From Laboratory and Stars to Primordial Structures. AIP, 2005. http://dx.doi.org/10.1063/1.2077178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Spruit, H. C., C. Bassa, Z. Wang, A. Cumming, and V. M. Kaspi. "Origin of neutron star magnetic fields." In 40 YEARS OF PULSARS: Millisecond Pulsars, Magnetars and More. AIP, 2008. http://dx.doi.org/10.1063/1.2900262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vlemmings, Wouter H. T. "Magnetic fields and massive star formation." In ISKAF2010 Science Meeting. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.112.0055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ostriker, Eve C. "Turbulence and magnetic fields in star formation." In The seventh astrophysical conference: Star formation, near and far. AIP, 1997. http://dx.doi.org/10.1063/1.52734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schleicher, Dominik, Sharanya Sur, Robi Banerjee, Ralf S. Klessen, Christoph Federrath, Tigran Arshakian, Rainer Beck, and Marco Spaans. "The role of magnetic fields during primordial star formation." In Cosmic Radiation Fields: Sources in the early Universe. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.121.0027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lépine, Jacques R. D. "Star formation in local spiral arms." In MAGNETIC FIELDS IN THE UNIVERSE: From Laboratory and Stars to Primordial Structures. AIP, 2005. http://dx.doi.org/10.1063/1.2077225.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Star fields"

1

Collins, David C. "Magnetic Fields in Star Formation". Office of Scientific and Technical Information (OSTI), April 2013. http://dx.doi.org/10.2172/1074570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Frisch, J. Sensitivity to Nano-Tesla Scale Stary Magnetic Fields(LCC-0140). Office of Scientific and Technical Information (OSTI), June 2004. http://dx.doi.org/10.2172/827018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Potekhin, A. Partially Ionized Atmospheres of Neutron Stars with Strong Magnetic Fields. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/839670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shafiul Alam, S., Abhishek Banerjee, Cliff Loughmiller, Thomas Mosier, Ben Jenkins, Matthew Roberts, Vahan Gevorgian, and Brion Bennett. Idaho Falls Power Black Start Field Demonstration - Preliminary Outcomes Report. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1817907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zwetsloot, Remco, Jacob Feldgoise, and James Dunham. Trends in U.S. Intention-to-Stay Rates of International Ph.D. Graduates Across Nationality and STEM Fields. Center for Security and Emerging Technology, April 2020. http://dx.doi.org/10.51593/20200001.

Full text
Abstract:
Policymakers continue to debate the ability of the United States to attract and retain top international talent. This Issue Brief assesses how many international Ph.D. graduates across various STEM fields and nationalities intend to stay in the United States after completing their degrees.
APA, Harvard, Vancouver, ISO, and other styles
6

Lang, Kenneth R. Radio Wavelength Observations of Magnetic Fields on Active Dwarf-M, RS CVN and Magnetic Stars,. Fort Belvoir, VA: Defense Technical Information Center, January 1986. http://dx.doi.org/10.21236/ada171985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chu, Yuh-Yi. Fusion core start-up, ignition and burn simulations of reversed-field pinch (RFP) reactors. Office of Scientific and Technical Information (OSTI), January 1988. http://dx.doi.org/10.2172/5386865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Allen, S. J. High Electric Field Quantum Transport: Submillimeter Wave AC Stark Localization in Vertical and Lateral Superlattices. Fort Belvoir, VA: Defense Technical Information Center, March 1996. http://dx.doi.org/10.21236/ada313811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Levinton, F. M., R. J. Fonck, G. M. Gammel, R. Kaita, H. W. Kugel, E. T. Powell, and D. W. Roberts. Measurement of the poloidal magnetic field in the PBX-M tokamak using the motional Stark effect. Office of Scientific and Technical Information (OSTI), May 1989. http://dx.doi.org/10.2172/6135803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Arnold, Zachary, Roxanne Heston, Remco Zwetsloot, and Tina Huang. Immigration Policy and the U.S. AI Sector. Center for Security and Emerging Technology, September 2019. http://dx.doi.org/10.51593/20190009.

Full text
Abstract:
As the artificial intelligence field becomes more developed globally, the United States will continue to rely on foreign AI talent to stay ahead of the curve. Here are our preliminary recommendations to maintain current U.S. leadership, bolster the domestic AI workforce and improve the outlook for the future.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography