To see the other types of publications on this topic, follow the link: Strictly singular operators.

Journal articles on the topic 'Strictly singular operators'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Strictly singular operators.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Cobos, F., A. Manzano, A. Martínez, and P. Matos. "On interpolation of strictly singular operators, strictly co-singular operators and related operator ideals." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 130, no. 5 (2000): 971–89. http://dx.doi.org/10.1017/s0308210500000524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cross, R. W. "Unbounded strictly singular operators." Indagationes Mathematicae (Proceedings) 91, no. 3 (1988): 245–48. http://dx.doi.org/10.1016/s1385-7258(88)80004-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kizgut, Ersin, and Murat Yurdakul. "Remarks on strictly singular operators." International Journal of Mathematical Analysis 11 (2017): 883–90. http://dx.doi.org/10.12988/ijma.2017.77103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lindström, Mikael, Eero Saksman, and Hans-Olav Tylli. "Strictly Singular and Cosingular Multiplications." Canadian Journal of Mathematics 57, no. 6 (2005): 1249–78. http://dx.doi.org/10.4153/cjm-2005-050-7.

Full text
Abstract:
AbstractLet L(X) be the space of bounded linear operators on the Banach space X. We study the strict singularity and cosingularity of the two-sidedmultiplication operators S ↦ ASB on L(X), where A, B ∈ L(X) are fixed bounded operators and X is a classical Banach space. Let 1 < p < ∞and p ≠ 2. Our main result establishes that the multiplication S ↦ ASB is strictly singular on L(Lp(0, 1)) if and only if the non-zero operators A, B ∈ L(Lp(0, 1)) are strictly singular. We also discuss the case where X is a L1- or a L∞-space, as well as several other relevant examples.
APA, Harvard, Vancouver, ISO, and other styles
5

Ganesa Moorthy, C., and C. T. Ramasamy. "Characterizations of Strong Strictly Singular Operators." Chinese Journal of Mathematics 2013 (December 25, 2013): 1–4. http://dx.doi.org/10.1155/2013/834637.

Full text
Abstract:
A new class of operators called strong strictly singular operators on normed spaces is introduced. This class includes the class of precompact operators, and is contained in the class of strictly singular operators. Some properties and characterizations for these operators are derived.
APA, Harvard, Vancouver, ISO, and other styles
6

Flores, J., F. L. Hernandez, and P. Tradacete. "POWERS OF OPERATORS DOMINATED BY STRICTLY SINGULAR OPERATORS." Quarterly Journal of Mathematics 59, no. 3 (2007): 321–34. http://dx.doi.org/10.1093/qmath/ham050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ji-Shou, Ruan. "Invariant Subspace of Strictly Singular Operators." Proceedings of the American Mathematical Society 108, no. 4 (1990): 931. http://dx.doi.org/10.2307/2047948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

del Amo, A. García, F. L. Hernández, and C. Ruiz. "Disjointly strictly singular operators and interpolation." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 126, no. 5 (1996): 1011–26. http://dx.doi.org/10.1017/s0308210500023222.

Full text
Abstract:
Interpolation properties of the class of disjointly strictly singular operators on Banach lattices are studied. We also give some applications to compare the lattice structure of two rearrangement invariant function spaces. In particular, we obtain suitable analytic characterisations of when the inclusion map between two Orlicz function spaces is disjointly strictly singular.
APA, Harvard, Vancouver, ISO, and other styles
9

Flores, Julio, and Francisco L. Hernández. "Domination by Positive Strictly Singular Operators." Journal of the London Mathematical Society 66, no. 2 (2002): 433–52. http://dx.doi.org/10.1112/s0024610702003447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Odell, Edward, and Ricardo V. Teixeira. "On S$_1$-strictly singular operators." Proceedings of the American Mathematical Society 143, no. 11 (2015): 4745–57. http://dx.doi.org/10.1090/proc/12452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Hernández and Semenov. "Strictly Singular Operators on Banach Lattices." Real Analysis Exchange 44, no. 1 (2019): 37. http://dx.doi.org/10.14321/realanalexch.44.1.0037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ruan, Ji Shou. "Invariant subspace of strictly singular operators." Proceedings of the American Mathematical Society 108, no. 4 (1990): 931. http://dx.doi.org/10.1090/s0002-9939-1990-1002160-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Flores, Julio. "Strictly Singular and Regular Integral Operators." Integral Equations and Operator Theory 55, no. 4 (2005): 487–96. http://dx.doi.org/10.1007/s00020-005-1399-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

AIENA, PIETRO, MANUEL GONZÁLEZ, and ANTONIO MARTÍNEZ-ABEJÓN. "CHARACTERIZATIONS OF STRICTLY SINGULAR AND STRICTLY COSINGULAR OPERATORS BY PERTURBATION CLASSES." Glasgow Mathematical Journal 54, no. 1 (2011): 87–96. http://dx.doi.org/10.1017/s0017089511000346.

Full text
Abstract:
AbstractWe consider a class of operators that contains the strictly singular operators and it is contained in the perturbation class of the upper semi-Fredholm operators PΦ+. We show that this class is strictly contained in PΦ+, solving a question of Friedman. We obtain similar results for the strictly cosingular operators and the perturbation class of the lower semi-Fredholm operators PΦ−. We also characterize in terms of PΦ+ and in terms of PΦ−. As a consequence, we show that and are the biggest operator ideals contained in PΦ+ and PΦ−, respectively.
APA, Harvard, Vancouver, ISO, and other styles
15

Abbott, Catherine, Elizabeth Bator, and Paul Lewis. "Strictly singular and strictly cosingular operators on spaces of continuous functions." Mathematical Proceedings of the Cambridge Philosophical Society 110, no. 3 (1991): 505–21. http://dx.doi.org/10.1017/s0305004100070584.

Full text
Abstract:
In this paper we will be concerned with studying operators T: C(K, X) → Y defined on Banach spaces of continuous functions. We will be particularly interested in studying the classes of strictly singular and strictly cosingular operators. In the process, we obtain answers to certain questions recently raised by Bombal and Porras in [5]. Specifically, we study Banach space X and Y for which an operator T: C(K, X) → Y with representing measure m is strictly singular (strictly cosingular) whenever m is strongly bounded and m(A) is strictly singular (strictly cosingular) for each Borel subset A of K. Along the way we establish several results dealing with non-compact operators on continuous function spaces, and we consolidate numerous results concerning extension theorems for operators defined on these same spaces. Also, we join Saab and Saab [25] in demonstrating that if l1 does not embed in X* then the adjoint T* of a strongly bounded map must be weakly precompact, thereby presenting an alternative solution to a question raised in [2].
APA, Harvard, Vancouver, ISO, and other styles
16

Bombal, F., and B. Porras. "Strictly Singular and Strictly Cosingular Operators on C(K, E)." Mathematische Nachrichten 143, no. 1 (1989): 355–64. http://dx.doi.org/10.1002/mana.19891430125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Tradacete, Pedro. "Spectral properties of disjointly strictly singular operators." Journal of Mathematical Analysis and Applications 395, no. 1 (2012): 376–84. http://dx.doi.org/10.1016/j.jmaa.2012.05.051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Flores, Julio, and Francisco L. Hernández. "Domination by positive disjointly strictly singular operators." Proceedings of the American Mathematical Society 129, no. 7 (2000): 1979–86. http://dx.doi.org/10.1090/s0002-9939-00-05948-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Argyros, Spiros A., Kevin Beanland, and Pavlos Motakis. "Strictly singular operators in Tsirelson like spaces." Illinois Journal of Mathematics 57, no. 4 (2013): 1173–217. http://dx.doi.org/10.1215/ijm/1417442566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Meyer, Michael J. "Ideals of operators strictly singular on subspaces." Proceedings of the American Mathematical Society 122, no. 4 (1994): 1121. http://dx.doi.org/10.1090/s0002-9939-1994-1219729-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Mathieu, Martin, та Pedro Tradacete. "Strictly singular multiplication operators on ℒ(X)". Israel Journal of Mathematics 236, № 2 (2020): 685–709. http://dx.doi.org/10.1007/s11856-020-1985-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Chalendar, Isabelle, Emmanuel Fricain, Alexey I. Popov, Dan Timotin, and Vladimir G. Troitsky. "Finitely strictly singular operators between James spaces." Journal of Functional Analysis 256, no. 4 (2009): 1258–68. http://dx.doi.org/10.1016/j.jfa.2008.09.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Dehici, Abdelkader, and Khaled Saoudi. "Some Remarks on Perturbation Classes of Semi-Fredholm and Fredholm Operators." International Journal of Mathematics and Mathematical Sciences 2007 (2007): 1–10. http://dx.doi.org/10.1155/2007/26254.

Full text
Abstract:
We show the existence of Banach spacesX,Ysuch that the set of strictly singular operators𝒮(X,Y)(resp., the set of strictly cosingular operators𝒞𝒮(X,Y))would be strictly included inℱ+(X,Y)(resp.,ℱ−(X,Y))for the nonempty class of closed densely defined upper semi-Fredholm operatorsΦ+(X,Y)(resp., for the nonempty class of closed densely defined lower semi-Fredholm operatorsΦ−(X,Y)).
APA, Harvard, Vancouver, ISO, and other styles
24

Beucher, O. J. "On interpolation of strictly (co-)singular linear operators." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 112, no. 3-4 (1989): 263–69. http://dx.doi.org/10.1017/s0308210500018734.

Full text
Abstract:
SynopsisWe show that the property of linear operators to be in the surjective hull (injective hull) of the ideal of strictly singular (strictly cosingular) operators between Banach spaces is an interpolation property with respect to the real interpolation method with parameters 0 < ủ < 1 and < p < ℞.
APA, Harvard, Vancouver, ISO, and other styles
25

Read, C. "Strictly singular operators and the invariant subspace problem." Studia Mathematica 132, no. 3 (1999): 203–26. http://dx.doi.org/10.4064/sm-132-3-203-226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Flores, J., F. L. Hernández, N. J. Kalton, and P. Tradacete. "Characterizations of strictly singular operators on Banach lattices." Journal of the London Mathematical Society 79, no. 3 (2009): 612–30. http://dx.doi.org/10.1112/jlms/jdp007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Beanland, Kevin, and Pandelis Dodos. "ON STRICTLY SINGULAR OPERATORS BETWEEN SEPARABLE BANACH SPACES." Mathematika 56, no. 2 (2010): 285–304. http://dx.doi.org/10.1112/s0025579310001014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hernández, Francisco L., Evgeny M. Semenov, and Pedro Tradacete. "Strictly singular operators on $L_p$ spaces and interpolation." Proceedings of the American Mathematical Society 138, no. 02 (2009): 675–86. http://dx.doi.org/10.1090/s0002-9939-09-10089-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Flores, Julio. "Some Remarks on Disjointly Strictly Singular Positive Operators." Positivity 9, no. 3 (2005): 385–96. http://dx.doi.org/10.1007/s11117-004-0733-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Androulakis, G., P. Dodos, G. Sirotkin, and V. G. Troitsky. "Classes of strictly singular operators and their products." Israel Journal of Mathematics 169, no. 1 (2008): 221–50. http://dx.doi.org/10.1007/s11856-009-0010-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Androulakis, George, and Kevin Beanland. "Descriptive Set Theoretic Methods Applied to Strictly Singular and Strictly Cosingular Operators." Quaestiones Mathematicae 31, no. 2 (2008): 151–61. http://dx.doi.org/10.2989/qm.2008.31.2.4.476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Gurarie, David. "Finite propagation speed and kernels of strictly elliptic operators." International Journal of Mathematics and Mathematical Sciences 8, no. 1 (1985): 75–91. http://dx.doi.org/10.1155/s0161171285000072.

Full text
Abstract:
We establish estimates of the resolvent and other related kernels and discussLp-theory for a class of strictly elliptic operators onRn. The class of operators considered in the paper is of the formA0+Bwith the leading elliptic partA0and a “singular” perturbationB, whose coefficients haveLp-type and are modeled after Schrödinger operators.
APA, Harvard, Vancouver, ISO, and other styles
33

Castillo, Jesús M. F., Marilda Simoes, and Jesús Suárez de la Fuente. "On a Question of Pełczyński about Strictly Singular Operators." Bulletin of the Polish Academy of Sciences Mathematics 60, no. 1 (2012): 27–36. http://dx.doi.org/10.4064/ba60-1-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kutzarova, Denka, Antonis Manoussakis, and Anna Pelczar-Barwacz. "Isomorphisms and strictly singular operators in mixed Tsirelson spaces." Journal of Mathematical Analysis and Applications 388, no. 2 (2012): 1040–60. http://dx.doi.org/10.1016/j.jmaa.2011.10.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Semenov, E. M., P. Tradacete, and F. L. Hernandez. "Strictly singular operators in pairs of L p space." Doklady Mathematics 94, no. 1 (2016): 450–52. http://dx.doi.org/10.1134/s1064562416040281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Pelczar-Barwacz, Anna. "Strictly singular operators in asymptotic $\ell_{p}$ Banach spaces." Illinois Journal of Mathematics 56, no. 3 (2012): 861–83. http://dx.doi.org/10.1215/ijm/1391178553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Androulakis, George, and Per Enflo. "A property of strictly singular one-to-one operators." Arkiv för Matematik 41, no. 2 (2003): 233–52. http://dx.doi.org/10.1007/bf02390813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Mykhaylyuk, V., M. Popov, B. Randrianantoanina та G. Schechtman. "Narrow and ℓ2-strictly singular operators from L p". Israel Journal of Mathematics 203, № 1 (2014): 81–108. http://dx.doi.org/10.1007/s11856-014-0012-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Flores, Julio, Francisco L. Hernández, Evgueni M. Semenov, and Pedro Tradacete. "Strictly singular and power-compact operators on Banach lattices." Israel Journal of Mathematics 188, no. 1 (2011): 323–52. http://dx.doi.org/10.1007/s11856-011-0152-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Álvarez, Teresa, and Diane Wilcox. "Perturbation theory of multivalued atkinson operators in normed spaces." Bulletin of the Australian Mathematical Society 76, no. 2 (2007): 195–204. http://dx.doi.org/10.1017/s0004972700039587.

Full text
Abstract:
We prove several stability results for Atkinson linear relations under additive perturbation by small norm, strictly singular and strictly cosingular multivalued linear operators satisfying some additional conditions.
APA, Harvard, Vancouver, ISO, and other styles
41

ÁLVAREZ, T. "STRICTLY SINGULAR PERTURBATION OF ALMOST SEMI-FREDHOLM LINEAR RELATIONS IN NORMED SPACES." Glasgow Mathematical Journal 56, no. 1 (2013): 211–19. http://dx.doi.org/10.1017/s0017089513000189.

Full text
Abstract:
AbstractIn this paper, we introduce the notions of almost upper semi-Fredholm and strictly singular pairs of subspaces and show that the class of almost upper semi-Fredholm pairs of subspaces is stable under strictly singular pairs perturbation. We apply this perturbation result to investigate the stability of almost semi-Fredholm multi-valued linear operators in normed spaces under strictly singular perturbation as well as the behaviour of the index under perturbation.
APA, Harvard, Vancouver, ISO, and other styles
42

González, Manuel. "On the duality problem for weakly compact, strictly singular operators." Quaestiones Mathematicae 28, no. 1 (2005): 37–38. http://dx.doi.org/10.2989/16073600509486113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Gasparis, I. "Strictly singular non-compact operators on hereditarily indecomposable Banach spaces." Proceedings of the American Mathematical Society 131, no. 4 (2002): 1181–89. http://dx.doi.org/10.1090/s0002-9939-02-06657-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Flores, Julio, Francisco L. Hernández, and Pedro Tradacete. "Domination problems for strictly singular operators and other related classes." Positivity 15, no. 4 (2010): 595–616. http://dx.doi.org/10.1007/s11117-010-0100-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Beanland, Kevin. "An ordinal indexing on the space of strictly singular operators." Israel Journal of Mathematics 182, no. 1 (2011): 47–59. http://dx.doi.org/10.1007/s11856-011-0023-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Flores, Julio, Pedro Tradacete, and Vladimir G. Troitsky. "Invariant subspaces of positive strictly singular operators on Banach lattices." Journal of Mathematical Analysis and Applications 343, no. 2 (2008): 743–51. http://dx.doi.org/10.1016/j.jmaa.2008.01.067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Lefèvre, Pascal, and Luis Rodríguez-Piazza. "Finitely strictly singular operators in harmonic analysis and function theory." Advances in Mathematics 255 (April 2014): 119–52. http://dx.doi.org/10.1016/j.aim.2013.12.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Hernández, Francisco L., Evgeny M. Semenov, and Pedro Tradacete. "Interpolation and extrapolation of strictly singular operators between L spaces." Advances in Mathematics 316 (August 2017): 667–90. http://dx.doi.org/10.1016/j.aim.2017.06.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Manoussakis, Antonis, and Anna Pelczar-Barwacz. "Strictly singular non-compact operators on a class of HI spaces." Bulletin of the London Mathematical Society 45, no. 3 (2012): 463–82. http://dx.doi.org/10.1112/blms/bds111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Latrach, Khalid, and Abdelkader Dehici. "Relatively Strictly Singular Perturbations, Essential Spectra, and Application to Transport Operators." Journal of Mathematical Analysis and Applications 252, no. 2 (2000): 767–89. http://dx.doi.org/10.1006/jmaa.2000.7121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!