To see the other types of publications on this topic, follow the link: Sums of binomial squares.

Journal articles on the topic 'Sums of binomial squares'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Sums of binomial squares.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Granville, Andrew, and Yiliang Zhu. "Representing Binomial Coefficients as Sums of Squares." American Mathematical Monthly 97, no. 6 (1990): 486. http://dx.doi.org/10.2307/2323831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Granville, Andrew, and Yiliang Zhu. "Representing Binomial Coefficients as Sums of Squares." American Mathematical Monthly 97, no. 6 (1990): 486–93. http://dx.doi.org/10.1080/00029890.1990.11995632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mincu, Gabriel, and Laurenţiu Panaitopol. "Writing binomial coefficients as sums of three squares." Archiv der Mathematik 95, no. 5 (2010): 401–9. http://dx.doi.org/10.1007/s00013-010-0182-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kılıç, Emrah, and Helmut Prodinger. "Identities with squares of binomial coefficients: An elementary and explicit approach." Publications de l'Institut Math?matique (Belgrade) 99, no. 113 (2016): 243–48. http://dx.doi.org/10.2298/pim1613243k.

Full text
Abstract:
In 2014, Slavik presented a recursive method to find closed forms for two kinds of sums involving squares of binomial coefficients. We give an elementary and explicit approach to compute these two kinds of sums. It is based on a triangle of numbers which is akin to the Stirling subset numbers.
APA, Harvard, Vancouver, ISO, and other styles
5

Sofo, Anthony. "Alternating cubic Euler sums with binomial squared terms." International Journal of Number Theory 14, no. 05 (2018): 1357–74. http://dx.doi.org/10.1142/s1793042118500859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sofo, Anthony. "HARMONIC NUMBERS AT HALF INTEGER AND BINOMIAL SQUARED SUMS." Honam Mathematical Journal 38, no. 2 (2016): 279–94. http://dx.doi.org/10.5831/hmj.2016.38.2.279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sofo, Anthony. "Identities for Alternating Inverse Squared Binomial and Harmonic Number Sums." Mediterranean Journal of Mathematics 13, no. 4 (2015): 1407–18. http://dx.doi.org/10.1007/s00009-015-0574-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Belbachir, Hacène, and Abdelghani Mehdaoui. "Recurrence relation associated with the sums of square binomial coefficients." Quaestiones Mathematicae 44, no. 5 (2021): 615–24. http://dx.doi.org/10.2989/16073606.2020.1729269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kilic, Emrah, and Ilker Akkus. "Partial sums of the Gaussian q-binomial coefficients, their reciprocals, square and squared reciprocals with applications." Miskolc Mathematical Notes 20, no. 1 (2019): 299. http://dx.doi.org/10.18514/mmn.2019.2456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Knopfmacher, Arnold, and Florian Luca. "Digit sums of binomial sums." Journal of Number Theory 132, no. 2 (2012): 324–31. http://dx.doi.org/10.1016/j.jnt.2011.07.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Bostan, Alin, Pierre Lairez, and Bruno Salvy. "Multiple binomial sums." Journal of Symbolic Computation 80 (May 2017): 351–86. http://dx.doi.org/10.1016/j.jsc.2016.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Shparlinski, Igor E., and José Felipe Voloch. "Binomial exponential sums." ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA - CLASSE DI SCIENZE 21, no. 2 (2020): 931–41. http://dx.doi.org/10.2422/2036-2145.201811_007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Weinzierl, Stefan. "Expansion around half-integer values, binomial sums, and inverse binomial sums." Journal of Mathematical Physics 45, no. 7 (2004): 2656–73. http://dx.doi.org/10.1063/1.1758319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Sofo, Anthony. "Euler Related Binomial Sums." Indian Journal of Pure and Applied Mathematics 50, no. 1 (2019): 149–60. http://dx.doi.org/10.1007/s13226-019-0313-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bai, Mei, and Wenchang Chu. "Seven equivalent binomial sums." Discrete Mathematics 343, no. 2 (2020): 111691. http://dx.doi.org/10.1016/j.disc.2019.111691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bai, Mei, and Wenchang Chu. "Further Equivalent Binomial Sums." Comptes Rendus. Mathématique 359, no. 4 (2021): 421–25. http://dx.doi.org/10.5802/crmath.184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Guichard, David R. "Sums of Selected Binomial Coefficients." College Mathematics Journal 26, no. 3 (1995): 209. http://dx.doi.org/10.2307/2687345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Guichard, David R. "Sums of Selected Binomial Coefficients." College Mathematics Journal 26, no. 3 (1995): 209–13. http://dx.doi.org/10.1080/07468342.1995.11973698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Lee, Dong Hoon, and Sang Geun Hahn. "Gauss Sums and Binomial Coefficients." Journal of Number Theory 92, no. 2 (2002): 257–71. http://dx.doi.org/10.1006/jnth.2001.2688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lee, Jung-Jo. "Congruences for certain binomial sums." Czechoslovak Mathematical Journal 63, no. 1 (2013): 65–71. http://dx.doi.org/10.1007/s10587-013-0004-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kim, Aeran. "The Binomial Combinatorial Convolution Sums." British Journal of Mathematics & Computer Science 4, no. 7 (2014): 896–911. http://dx.doi.org/10.9734/bjmcs/2014/7422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ni, He-Xia, and Hao Pan. "Divisibility of some binomial sums." Acta Arithmetica 194, no. 4 (2020): 367–81. http://dx.doi.org/10.4064/aa181114-24-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Thongjunthug, Thotsaphon. "Nonintegrality of certain binomial sums." European Journal of Mathematics 5, no. 2 (2018): 571–84. http://dx.doi.org/10.1007/s40879-018-0260-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Cao, Hui-Qin, and Hao Pan. "Factors of alternating binomial sums." Advances in Applied Mathematics 45, no. 1 (2010): 96–107. http://dx.doi.org/10.1016/j.aam.2009.09.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Rankin, R. "Generalized Jacobsthal sums and sums of squares." Acta Arithmetica 49, no. 1 (1987): 5–14. http://dx.doi.org/10.4064/aa-49-1-5-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Bateman, Paul, Adolf Hildebrand, and George Purdy. "Sums of distinct squares." Acta Arithmetica 67, no. 4 (1994): 349–80. http://dx.doi.org/10.4064/aa-67-4-349-380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Peters, Meinhard. "Sums of nine squares." Acta Arithmetica 102, no. 2 (2002): 131–35. http://dx.doi.org/10.4064/aa102-2-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Huard, James G., and Kenneth S. Williams. "Sums of twelve squares." Acta Arithmetica 109, no. 2 (2003): 195–204. http://dx.doi.org/10.4064/aa109-2-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Blomer, V., J. Brüdern, and R. Dietmann. "Sums of smooth squares." Compositio Mathematica 145, no. 6 (2009): 1401–41. http://dx.doi.org/10.1112/s0010437x09004254.

Full text
Abstract:
AbstractLet R(n,θ) denote the number of representations of the natural number n as the sum of four squares, each composed only with primes not exceeding nθ/2. When θ>e−1/3 a lower bound for R(n,θ) of the expected order of magnitude is established, and when θ>365/592, it is shown that R(n,θ)>0 holds for large n. A similar result is obtained for sums of three squares. An asymptotic formula is obtained for the related problem of representing an integer as the sum of two squares and two squares composed of small primes, as above, for any fixed θ>0. This last result is the key to bound R(n,θ) from below.
APA, Harvard, Vancouver, ISO, and other styles
30

Prakash, Gyan, D. S. Ramana, and O. Ramaré. "Monochromatic sums of squares." Mathematische Zeitschrift 289, no. 1-2 (2017): 51–69. http://dx.doi.org/10.1007/s00209-017-1943-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Lewis, D. W. "Sums of hermitian squares." Journal of Algebra 115, no. 2 (1988): 466–80. http://dx.doi.org/10.1016/0021-8693(88)90273-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

McCullough, Scott, and Mihai Putinar. "Noncommutative sums of squares." Pacific Journal of Mathematics 218, no. 1 (2005): 167–71. http://dx.doi.org/10.2140/pjm.2005.218.167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Peters, Meinhard. "Sums of Odd Squares." gmj 13, no. 4 (2006): 779–81. http://dx.doi.org/10.1515/gmj.2006.779.

Full text
Abstract:
Abstract The number of representations of an integer as a sum of 𝑛 odd squares for 𝑛 ≡ 0 mod 4 is expressed by the number of representations as a sum of 𝑛 squares of integers and the number of representations by the lattice .
APA, Harvard, Vancouver, ISO, and other styles
34

Hillar, Christopher J. "Sums of squares over totally real fields are rational sums of squares." Proceedings of the American Mathematical Society 137, no. 03 (2008): 921–30. http://dx.doi.org/10.1090/s0002-9939-08-09641-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kuhapatanakul, Kantaphon, and Antony G. Shannon. "Binomial Coefficients and Triangular Numbers." European Journal of Mathematics and Statistics 2, no. 3 (2021): 22–24. http://dx.doi.org/10.24018/ejmath.2021.2.3.31.

Full text
Abstract:
We produce formulas of sums the product of the binomial coefficients and triangular numbers. And we apply our formula to prove an identity of Wang and Zhang. Further, we provide an analogue of our identity for the alternating sums.
APA, Harvard, Vancouver, ISO, and other styles
36

Pigno, Vincent, and Christopher Pinner. "Binomial Character Sums Modulo Prime Powers." Journal de Théorie des Nombres de Bordeaux 28, no. 1 (2016): 39–53. http://dx.doi.org/10.5802/jtnb.927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sun, Zhi-Wei, and Roberto Tauraso. "Congruences for sums of binomial coefficients." Journal of Number Theory 126, no. 2 (2007): 287–96. http://dx.doi.org/10.1016/j.jnt.2007.01.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Bowman, K. O., and L. R. Shenton. "Sums of powers of binomial coefficients." Communications in Statistics - Simulation and Computation 16, no. 4 (1987): 1189–207. http://dx.doi.org/10.1080/03610918708812644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Konvalina, J., and Y. H. Liu. "Arithmetic progression sums of binomial coefficients." Applied Mathematics Letters 10, no. 4 (1997): 11–13. http://dx.doi.org/10.1016/s0893-9659(97)00051-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

BENJAMIN, ARTHUR, BOB CHEN, and KIMBERLY KINDRED. "Sums of Evenly Spaced Binomial Coefficients." Mathematics Magazine 83, no. 5 (2010): 370. http://dx.doi.org/10.4169/002557010x529860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

McIntosh, Richard J. "An Asymptotic Formula for Binomial Sums." Journal of Number Theory 58, no. 1 (1996): 158–72. http://dx.doi.org/10.1006/jnth.1996.0072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Boyadzhiev, Khristo N. "Evaluation of series with binomial sums." Analysis Mathematica 40, no. 1 (2014): 13–23. http://dx.doi.org/10.1007/s10476-014-0102-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Bruns, Winfried. "Binomial Regular Sequences and Free Sums." Acta Mathematica Vietnamica 40, no. 1 (2015): 71–83. http://dx.doi.org/10.1007/s40306-015-0113-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Sofo, Anthony. "Sums of derivatives of binomial coefficients." Advances in Applied Mathematics 42, no. 1 (2009): 123–34. http://dx.doi.org/10.1016/j.aam.2008.07.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Chalendar, Isabelle, Karim Kellay, and Thomas Ransford. "Binomial sums, moments and invariant subspaces." Israel Journal of Mathematics 115, no. 1 (2000): 303–20. http://dx.doi.org/10.1007/bf02810592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wastun, C. G. "Proof without Words: Sums of Sums of Squares." Mathematics Magazine 73, no. 3 (2000): 238. http://dx.doi.org/10.2307/2691531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wastun, C. G. "Proof Without Words: Sums of Sums of Squares." Mathematics Magazine 73, no. 3 (2000): 238. http://dx.doi.org/10.1080/0025570x.2000.11996844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Hoffmann, Detlev W. "Sums of integers and sums of their squares." Acta Arithmetica 194, no. 3 (2020): 295–313. http://dx.doi.org/10.4064/aa190219-15-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Cooper, Shaun, and Michael Hirschhorn. "Sums of Squares and Sums of Triangular Numbers." gmj 13, no. 4 (2006): 675–86. http://dx.doi.org/10.1515/gmj.2006.675.

Full text
Abstract:
Abstract Motivated by two results of Ramanujan, we give a family of 15 results and 4 related ones. Several have interesting interpretations in terms of the number of representations of an integer by a quadratic form , where λ1 + . . . + λ𝑚 = 2, 4 or 8. We also give a new and simple combinatorial proof of the modular equation of order seven.
APA, Harvard, Vancouver, ISO, and other styles
50

Okada, T., T. Sekiguchi, and Y. Shiota. "Applications of Binomial Measures To Power Sums of Digital Sums." Journal of Number Theory 52, no. 2 (1995): 256–66. http://dx.doi.org/10.1006/jnth.1995.1068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!