Journal articles on the topic 'Thrust specific impulse'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Thrust specific impulse.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Navalino, RDA, NRS Muda, MAE Hafizah, and Y. Ruyat. "Analysis of carbon nano particle variant as the propellant fuel to increase specific impulses of rockets." F1000Research 12 (May 29, 2024): 1414. http://dx.doi.org/10.12688/f1000research.138276.3.
Full textNavalino, RDA, NRS Muda, MAE Hafizah, and Y. Ruyat. "Analysis of carbon nano particle variant as the propellant fuel to increase specific impulses of rockets." F1000Research 12 (October 26, 2023): 1414. http://dx.doi.org/10.12688/f1000research.138276.1.
Full textNavalino, RDA, NRS Muda, MAE Hafizah, and Y. Ruyat. "Analysis of carbon nano particle variant as the propellant fuel to increase specific impulses of rockets." F1000Research 12 (December 11, 2023): 1414. http://dx.doi.org/10.12688/f1000research.138276.2.
Full textK., F. Oyedeko*1 &. A. Onyieagho2. "EFFECT OF PROPELLANT FORMULATION ON PROPELLANT PROPERTIES." INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY 7, no. 8 (2018): 305–13. https://doi.org/10.5281/zenodo.1345623.
Full textBerliand, M., and R. Ishchenko. "CALCULATION OF THE EXPANSION PROCESS OF THE FLOW OF WORKING BODY IN THE NOZZLE OF A LIQUID-PHASE NUCLEAR ROCKET ENGINE." Slovak international scientific journal, no. 95 (May 15, 2025): 86–92. https://doi.org/10.5281/zenodo.15427667.
Full textCook, Ronald, James A. Nabity, and John W. Daily. "Characterizing Propellants for Variable-Thrust/Specific Impulse Colloid Thrusters." Journal of Propulsion and Power 33, no. 6 (2017): 1325–31. http://dx.doi.org/10.2514/1.b36495.
Full textKammash, Terry, Myoung-Jae Lee, and David I. Poston. "High-Thrust-High-Specific Impulse Gasdynamic Fusion Propulsion System." Journal of Propulsion and Power 13, no. 3 (1997): 421–27. http://dx.doi.org/10.2514/2.5180.
Full textTaheri, Ehsan, and John L. Junkins. "How Many Impulses Redux." Journal of the Astronautical Sciences 67, no. 2 (2019): 257–334. http://dx.doi.org/10.1007/s40295-019-00203-1.
Full textCojocea, Andrei Vlad, Ionuț Porumbel, Mihnea Gall, and Tudor Cuciuc. "Experimental Thrust and Specific Impulse Analysis of Pulsed Detonation Combustor." Applied Sciences 14, no. 14 (2024): 5999. http://dx.doi.org/10.3390/app14145999.
Full textDHAMA, Sanjeev Kumar, T. K. JINDAL, and S. K. MANGAL. "Influence of Nozzle Type, Divergence Angle and Area Ratio on Impulse of Pulse Detonation Engine." INCAS BULLETIN 12, no. 2 (2020): 35–45. http://dx.doi.org/10.13111/2066-8201.2020.12.2.4.
Full textLin, Zhen, and Yong Li. "Performance Analysis of Bipropellant Propulsion System on Special Working Conditions." Applied Mechanics and Materials 390 (August 2013): 296–300. http://dx.doi.org/10.4028/www.scientific.net/amm.390.296.
Full textJobanpreet Singh. "Performance and Combustion Analysis of Solid Rocket Propellant Using Aluminum Powder, Ammonium Perchlorate, and HTPB." International Journal of Advanced Research and Interdisciplinary Scientific Endeavours 2, no. 3 (2025): 519–28. https://doi.org/10.61359/11.2206-2513.
Full textCheng, Dah Yu. "Deflagration Plasma Thruster, a High Thrust, High Specific Impulse Device for Nuclear Space Propulsion." Fusion Technology 20, no. 4P2 (1991): 730–34. http://dx.doi.org/10.13182/fst91-a11946928.
Full textZhong, Yubin, Fabrizio Ponti, Francesco Barato, et al. "Design and Analysis of a Micro–Electro-Mechanical System Thruster for Small Satellites and Low-Thrust Propulsion." Aerospace 12, no. 3 (2025): 172. https://doi.org/10.3390/aerospace12030172.
Full textPalla, Daniele, and Gabriele Cristoforetti. "Laser–Accelerated Plasma–Propulsion System." Applied Sciences 11, no. 21 (2021): 10154. http://dx.doi.org/10.3390/app112110154.
Full textK., F. Oyedeko*1 &. A. Onyieagho2. "OPTIMISATION OF THE FORMULATION OF A DOUBLE – BASED SOLID PROPELLANT." INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY 7, no. 8 (2018): 296–304. https://doi.org/10.5281/zenodo.1345619.
Full textPakhomov, Andrew V., M. Shane Thompson, Wesley Swift, and Don A. Gregory. "Ablative Laser Propulsion: Specific Impulse and Thrust Derived from Force Measurements." AIAA Journal 40, no. 11 (2002): 2305–11. http://dx.doi.org/10.2514/2.1567.
Full textKetsdever, Andrew D., Brian C. D'Souza, and Riki H. Lee. "Thrust Stand Micromass Balance for the Direct Measurement of Specific Impulse." Journal of Propulsion and Power 24, no. 6 (2008): 1376–81. http://dx.doi.org/10.2514/1.36921.
Full textPakhomov, A. V., M. S. Thompson, W. Swift, and D. A. Gregory. "Ablative laser propulsion - Specific impulse and thrust derived from force measurements." AIAA Journal 40 (January 2002): 2305–11. http://dx.doi.org/10.2514/3.15323.
Full textZheng, Jiaxuan, Beinan Jia, and Yongjun Jian. "Steric Effects on Space Electroosmotic Thrusters in Soft Nanochannels." Mathematics 9, no. 16 (2021): 1916. http://dx.doi.org/10.3390/math9161916.
Full textSliusariev, V. V., and I. V. Bilotserkovsky. "ANALYSIS OF THE CORRECTNESS APPROACHES TO DETERMINING THE SPECIFIC IMPULSE OF THRUST GENERATED BY THE WORKING FLUID OF A GAS GENERATOR CYCLE ROCKET ENGINE TURBINE." System design and analysis of aerospace technique characteristics 34, no. 1 (2024): 93–106. http://dx.doi.org/10.15421/472408.
Full textUnderwood, Thomas C., William M. Riedel, and Mark A. Cappelli. "Dual mode operation of a hydromagnetic plasma thruster to achieve tunable thrust and specific impulse." Journal of Applied Physics 130, no. 13 (2021): 133301. http://dx.doi.org/10.1063/5.0051467.
Full textKirshina, A. A., A. A. Levikhin, and A. Yu Kirshin. "Comparative results of computational and theoretical study of the annular nozzle with a flat central body." VESTNIK of Samara University. Aerospace and Mechanical Engineering 23, no. 2 (2024): 28–39. http://dx.doi.org/10.18287/2541-7533-2024-23-2-28-39.
Full textOlena, Kositsyna, Varlan Kostiantyn, Dron Mykola, and Kulyk Oleksii. "Determining energetic characteristics and selecting environmentally friendly components for solid rocket propellants at the early stages of design." Eastern-European Journal of Enterprise Technologies 6, no. 6 (114) (2021): 6–14. https://doi.org/10.15587/1729-4061.2021.247233.
Full textZolotko, O. E., O. V. Zolotko, O. V. Sosnovska, O. S. Aksyonov, and I. S. Savchenko. "Tte stage deorbiting with a deceleration pulse detonation engine." Kosmìčna nauka ì tehnologìâ 27, no. 4 (2021): 32–41. http://dx.doi.org/10.15407/knit2021.04.032.
Full textZheng, Jiaxuan, Siyi An, and Yongjun Jian. "Steric Effects on Electroosmotic Nano-Thrusters under High Zeta Potentials." Mathematics 9, no. 24 (2021): 3222. http://dx.doi.org/10.3390/math9243222.
Full textSenent, Juan, Cesar Ocampo, and Antonio Capella. "Low-Thrust Variable-Specific-Impulse Transfers and Guidance to Unstable Periodic Orbits." Journal of Guidance, Control, and Dynamics 28, no. 2 (2005): 280–90. http://dx.doi.org/10.2514/1.6398.
Full textMendoza-Anchondo, Reyna Judith, Cornelio Alvarez-Herrera, and José Guadalupe Murillo-Ramírez. "Visualization and Parameters Determination of Supersonic Flows in Convergent-Divergent Micro-Nozzles Using Schlieren Z-Type Technique and Fluid Mechanics." Fluids 10, no. 2 (2025): 40. https://doi.org/10.3390/fluids10020040.
Full textTahsini, Amir Mahdi. "Numerical Prediction of the Magneto Plasma Dynamic Thrusters’ Performance." Applied Mechanics and Materials 598 (July 2014): 239–43. http://dx.doi.org/10.4028/www.scientific.net/amm.598.239.
Full textRadhakrishnan, Kanmaniraja, Dong Hwi Ha, and Hyoung Jin Lee. "Effect of Multicoaxial Injectors on Nitrogen Film Cooling in a GCH4/GO2 Thrust Chamber for Small-Scale Methane Rocket Engines: A CFD Study." Aerospace 11, no. 9 (2024): 744. http://dx.doi.org/10.3390/aerospace11090744.
Full textTakao, Yoshinori, Takeshi Takahashi, Koji Eriguchi, and Kouichi Ono. "Microplasma thruster for ultra-small satellites: Plasma chemical and aerodynamical aspects." Pure and Applied Chemistry 80, no. 9 (2008): 2013–23. http://dx.doi.org/10.1351/pac200880092013.
Full textJia, FeiDa, Dong Qiao, HongWei Han, and XiangYu Li. "Efficient optimization method for variable-specific-impulse low-thrust trajectories with shutdown constraint." Science China Technological Sciences 65, no. 3 (2022): 581–94. http://dx.doi.org/10.1007/s11431-021-1949-0.
Full textХмелевской, И. А., та Д. А. Томилин. "Исследование режимов горения разряда "спица" и "колокол" на холловском двигателе мощностью 1.5 kW". Письма в журнал технической физики 46, № 10 (2020): 31. http://dx.doi.org/10.21883/pjtf.2020.10.49429.18240.
Full textWei, Shih-Sin, Jui-Cheng Hsu, Hsi-Yu Tso, and Jong-Shinn Wu. "Investigation of Performance Stability of a Nytrox Hybrid Rocket Propulsion System." Aerospace 12, no. 5 (2025): 372. https://doi.org/10.3390/aerospace12050372.
Full textKositsyna, Olena, Kostiantyn Varlan, Mykola Dron, and Oleksii Kulyk. "Determining energetic characteristics and selecting environmentally friendly components for solid rocket propellants at the early stages of design." Eastern-European Journal of Enterprise Technologies 6, no. 6 (114) (2021): 6–14. http://dx.doi.org/10.15587/1729-4061.2021.247233.
Full textPetrov, Nikolay, and Tamara Antonova. "Increasing the specific impulse of the ion engine by zone engineering of the solid-state field cathode." Proceedings of the Russian higher school Academy of sciences, no. 4 (January 20, 2021): 41–50. http://dx.doi.org/10.17212/1727-2769-2020-4-41-50.
Full textEisen, Nachum E., and Alon Gany. "Theoretical Performance Evaluation of a Marine Solid Propellant Water-Breathing Ramjet Propulsor." Journal of Marine Science and Engineering 8, no. 1 (2019): 8. http://dx.doi.org/10.3390/jmse8010008.
Full textMahammadsalman Warimani, Muhammad Hanafi Azami, Sher Afghan Khan, et al. "Analytical Assessment of Blended Fuels for Pulse Detonation Engine Performance." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 93, no. 2 (2022): 1–16. http://dx.doi.org/10.37934/arfmts.93.2.116.
Full textShi, Lisong, E. Fan, Hua Shen, Chih-Yung Wen, Shuai Shang, and Hongbo Hu. "Numerical Study of the Effects of Injection Conditions on Rotating Detonation Engine Propulsive Performance." Aerospace 10, no. 10 (2023): 879. http://dx.doi.org/10.3390/aerospace10100879.
Full textYachmenev, P. S., V. V. Fedyanin, and I. S. Vavilov. "DEVELOPMENT OF A THRUST MEASUREMENT STAND BASED ON THE AERODYNAMIC METHOD FOR ELECTRIC THRUSTERS OF SMALL SPACECRAFT." DYNAMICS OF SYSTEMS, MECHANISMS AND MACHINES 11, no. 2 (2023): 51–57. http://dx.doi.org/10.25206/2310-9793-2023-11-2-51-57.
Full textRezaei, Hadi, and Mohammad Reza Soltani. "An analytical and experimental study of a hybrid rocket motor." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 228, no. 13 (2014): 2475–86. http://dx.doi.org/10.1177/0954410013519432.
Full textGenta, Giancarlo, and Dario Riccobono. "Optimization of Interplanetary Trajectory for Direct Fusion Drive Spacecraft." Journal of the British Interplanetary Society 76, no. 5 (2023): 170–77. http://dx.doi.org/10.59332/jbis-076-05-170.
Full textGenta, Giancarlo, and Dario Riccobono. "Optimization of Interplanetary Trajectory for Direct Fusion Drive Spacecraft." Journal of the British Interplanetary Society 76, no. 5 (2023): 170–77. http://dx.doi.org/10.59332/jbis-076-05-0170.
Full textYao, Zhaohui, Shan Zhou, Tianlin Yang, and Yani Han. "Thermal Performance Characteristics of an 80-Ton Variable-Thrust Liquid Engine for Reusable Launch Rockets." Sustainability 15, no. 8 (2023): 6552. http://dx.doi.org/10.3390/su15086552.
Full textMunro-O’Brien, Thomas F., Mohamed Ahmed, Andrea Lucca Fabris, and Charles N. Ryan. "Inter-Laboratory Characterisation of a Low-Power Channel-Less Hall-Effect Thruster: Performance Comparisons and Lessons Learnt." Aerospace 12, no. 7 (2025): 601. https://doi.org/10.3390/aerospace12070601.
Full textQi, Rui, and ShiJie Xu. "Optimal Low-Thrust Transfers to Lunar L1 Halo Orbit Using Variable Specific Impulse Engine." Journal of Aerospace Engineering 28, no. 4 (2015): 04014096. http://dx.doi.org/10.1061/(asce)as.1943-5525.0000432.
Full textSemenov, V. L., V. Yu Aleksandrov, A. N. Prokhorov, K. Yu Arefyev, and S. V. Kruchkov. "Methodological Aspects of Determining Thrust of Irrotational Air-Breathing Jet Engines in Bench and Flight Tests." Proceedings of Higher Educational Institutions. Маchine Building, no. 11 (716) (November 2019): 86–97. http://dx.doi.org/10.18698/0536-1044-2019-11-86-97.
Full textGlascock, Matthew S., Joshua L. Rovey, and Kurt A. Polzin. "Impulse and Performance Measurements of Electric Solid Propellant in a Laboratory Electrothermal Ablation-Fed Pulsed Plasma Thruster." Aerospace 7, no. 6 (2020): 70. http://dx.doi.org/10.3390/aerospace7060070.
Full textArzhannikov, Andrey, and Alexey Beklemishev. "An Electro-Jet Rocket Engine With Big Thrust At Helical Corrugated Magnetic Field." Siberian Journal of Physics 11, no. 1 (2016): 107–18. http://dx.doi.org/10.54362/1818-7919-2016-11-1-107-118.
Full textLiu, Bendong, Xinrui Li, Jiahui Yang, and Guohua Gao. "Recent Advances in MEMS-Based Microthrusters." Micromachines 10, no. 12 (2019): 818. http://dx.doi.org/10.3390/mi10120818.
Full text