Academic literature on the topic 'Thrust vector'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thrust vector.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Thrust vector"

1

Kanyshev, Alexey V., Oleg N. Korsun, and Alexander V. Stulovskii. "Methods of Computing Thrust Vector Coordinates for Aircrafts Equipped With Thrust Vector Control." ITM Web of Conferences 10 (2017): 01004. http://dx.doi.org/10.1051/itmconf/20171001004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Xu, Fei, Yan Xia, Shiyi He, Wenlei Xiao, Xiaoping Ouyang, and Guoqing Liu. "Structural Design and Performance Analysis of α Particle Micro-thruster." MATEC Web of Conferences 288 (2019): 01004. http://dx.doi.org/10.1051/matecconf/201928801004.

Full text
Abstract:
The α particle propelling is a technology under developing by the author’s research group, which uses α decay isotopes emitting high-speed particles to generate thrust. In this paper we mainly designed the thrust magnitude control and vector control structure suitable for this propelling principle and preliminarily analyzed its control performance. The proposed structure mounts the trust film composed of the decay nuclides onto a quasi-spherical frame surface that is conducive to vector synthesis. The traveling wave type ultrasonic motor drives the diaphragm to control the thrust magnitude of each thrust unit independently and efficiently. The vector control of the joint thrust is implemented by taking advantage of the diversity of combination of multiple thrust units. Theoretical calculation and analysis showed that the thruster structure could achieve the thrust magnitude control accuracy of 0.05µN, and the thrust angle control accuracy of 0.5-1.5 degrees.
APA, Harvard, Vancouver, ISO, and other styles
3

Bugrova, A. I., G. E. Bugrov, A. M. Bishaev, A. V. Desyatskov, M. V. Kozintseva, A. S. Lipatov, V. K. Kharchevnikov, and P. G. Smirnov. "Experimental investigation of thrust-vector deviation in a plasma thruster." Technical Physics Letters 40, no. 2 (February 2014): 161–63. http://dx.doi.org/10.1134/s1063785014020199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Orr, Jeb S., and Nathan J. Slegers. "High-Efficiency Thrust Vector Control Allocation." Journal of Guidance, Control, and Dynamics 37, no. 2 (March 2014): 374–82. http://dx.doi.org/10.2514/1.61644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lilley, Jay S., and Jerrold H. Arszman. "Scarfed nozzles for thrust-vector adjustment." Journal of Propulsion and Power 7, no. 3 (May 1991): 382–88. http://dx.doi.org/10.2514/3.23338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Forghany, Farzad, Mohammad Taeibe-Rahni, Abdollah Asadollahi-Ghohieh, and Afshin Banazdeh. "Numerical investigation of injection angle effects on shock vector control performance." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 2 (October 31, 2017): 405–17. http://dx.doi.org/10.1177/0954410017733292.

Full text
Abstract:
The present research paper attempted to utilize a computational investigation for optimizing the fluidic injection angle effects on thrust vectoring. Simulation of a convergent divergent nozzle with shock-vector control method was performed, using URANS approach with Spalart–Allmaras turbulence model. The variable fluidic injection angle is investigated at different aerodynamic and geometric conditions. The current investigation demonstrated that injection angle is an essential parameter in fluidic thrust vectoring. Computational results indicate that optimizing injection angle would improve the thrust vectoring performance. Moreover, dynamic response of starting thrust vectoring would decrease by increasing nozzle pressure ratios and secondary to primary total pressure ratios. Also, shifting the location of fluidic injection towards the nozzle throat would have positive effect on response time. Additionally, the results of response time are more sensitive to primary and secondary total pressure ratios of nozzle and fluidic injection location than the fluidic injection angle. Furthermore, increasing fluidic thrust vectoring performance has negative impact on nozzle thrust at different expansion ratios. In addition, to guide the design and development of an efficient propulsion system, the current study attempted to initiate a database of optimum injection angles with different important parameter effects on thrust vectoring and nozzle thrust decline.
APA, Harvard, Vancouver, ISO, and other styles
7

Palmisano, John S., Jason D. Geder, Ravi Ramamurti, William C. Sandberg, and Banahalli Ratna. "Robotic Pectoral Fin Thrust Vectoring Using Weighted Gait Combinations." Applied Bionics and Biomechanics 9, no. 3 (2012): 333–45. http://dx.doi.org/10.1155/2012/802985.

Full text
Abstract:
A method was devised to vector propulsion of a robotic pectoral fin by means of actively controlling fin surface curvature. Separate flapping fin gaits were designed to maximize thrust for each of three different thrust vectors: forward, reverse, and lift. By using weighted combinations of these three pre-determined main gaits, new intermediate hybrid gaits for any desired propulsion vector can be created with smooth transitioning between these gaits. This weighted gait combination (WGC) method is applicable to other difficult-to-model actuators. Both 3D unsteady computational fluid dynamics (CFD) and experimental results are presented.
APA, Harvard, Vancouver, ISO, and other styles
8

Wu, Kexin, and Heuy Dong Kim. "Study on Fluidic Thrust Vector Control Based on Dual-Throat Concept." Journal of the Korean Society of Propulsion Engineers 23, no. 1 (February 1, 2019): 24–32. http://dx.doi.org/10.6108/kspe.2019.23.1.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Friddell, J. H., and M. E. Franke. "Confined jet thrust vector control nozzle studies." Journal of Propulsion and Power 8, no. 6 (November 1992): 1239–44. http://dx.doi.org/10.2514/3.11468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hokenson, Gustave J. "Thrust vector control utilizing asymmetric jet nozzles." Journal of Spacecraft and Rockets 23, no. 6 (November 1986): 655–56. http://dx.doi.org/10.2514/3.25860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Thrust vector"

1

Erdem, Erinc. "Thrust Vector Control By Secondary Injection." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607560/index.pdf.

Full text
Abstract:
A parametric study on Secondary Injection Thrust Vector Control (SITVC) has been accomplished numerically with the help of a commercial Computational Fluid Dynamics (CFD) code called FLUENT®
. This study consists of two parts
the first part includes the simulation of three dimensional flowfield inside a test case nozzle for the selection of parameters associated with both computational grid and the CFD solver such as mesh size, turbulence model accompanied with two different wall treatment approaches, and solver type. This part revealed that simulation of internal flowfield by a segregated solver with Realizable k-&
#949
(Rke) turbulence model accompanied by enhanced wall treatment approach is accurate enough to resolve this kind of complex three dimensional fluid flow problems. In the second part a typical rocket nozzle with conical diverging section is picked for the parametric study on injection mass flow rate, injection location and injection angle. A test matrix is constructed
several numerical simulations are run to yield the assessment of performance of SITVC system. The results stated that for a nozzle with a small divergence angle, downstream injections with distances of 2.5-3.5 throat diameters from the nozzle throat lead to higher efficiencies over a certain range of total pressure ratios, i.e., mass flow rate ratios, upstream injections should be aligned more to the nozzle axis, i.e., higher injection angles, to prevent reflection of shock waves from the opposite wall and thus low efficiencies. Injection locations that are too much downstream may result reversed flows on nozzle exit.
APA, Harvard, Vancouver, ISO, and other styles
2

Orr, Jeb S. "High efficiency thrust vector control allocation." Thesis, The University of Alabama in Huntsville, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3561548.

Full text
Abstract:

The design of control mixing algorithms for launch vehicles with multiple vectoring engines yields competing objectives for which no straightforward solution approach exists. The designer seeks to optimally allocate the effector degrees of freedom such that maneuvering capability is maximized subject to constraints on available control authority. In the present application, such algorithms are generally restricted to linear transformations so as to minimize adverse control-structure interaction and maintain compatibility with industry-standard methods for control gain design and stability analysis. Based on the application of the theory of ellipsoids, a complete, scalable, and extensible framework is developed to effect rapid analysis of launch vehicle capability. Furthermore, a control allocation scheme is proposed that simultaneously balances attainment of the maximum maneuvering capability with rejection of internal loads and performance losses resulting from thrust vectoring in the null region of the admissible controls. This novel approach leverages an optimal parametrization of the weighted least squares generalized inverse and exploits the analytic properties of the constraint geometry so as to enable recovery of more than ninety percent of the theoretical capability while maintaining linearity over the majority of the attainable set.

APA, Harvard, Vancouver, ISO, and other styles
3

Nguyen, Tâm Willy. "Thrust Vector Control of Multi-Body Systems Subject to Constraints." Doctoral thesis, Universite Libre de Bruxelles, 2018. https://dipot.ulb.ac.be/dspace/bitstream/2013/279469/5/contratTN.pdf.

Full text
Abstract:
This dissertation focuses on the constrained control of multi-body systems which are actuated by vectorized thrusters. A general control framework is proposed to stabilize the task configuration while ensuring constraints satisfaction at all times. For this purpose, the equations of motion of the system are derived using the Euler-Lagrange method. It is seen that under some reasonable conditions, the system dynamics are decoupled. This property is exploited in a cascade control scheme to stabilize the points of equilibrium of the system. The control scheme is composed of an inner loop, tasked to control the attitude of the vectorized thrusters, and an outer loop which is tasked to stabilize the task configuration of the system to a desired configuration. To prove stability, input-to-state stability and small gain arguments are used. All stability properties are derived in the absence of constraints, and are shown to be local. The main result of this analysis is that the proposed control scheme can be directly applied under the assumption that a suitable mapping between the generalized force and the real inputs of the system is designed. This thesis proposes to enforce constraints by augmenting the control scheme with two types of Reference Governor units: the Scalar Reference Governor, and the Explicit Reference Governor. This dissertation presents two case studies which inspired the main generalization of this thesis: (i) the control of an unmanned aerial and ground vehicle manipulating an object, and (ii) the control of a tethered quadrotor. Two further case studies are discussed afterwards to show that the generalized control framework can be directly applied when a suitable mapping is designed.
Doctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
4

Reno, Margaret Mary. "Modeling transient thermal behavior in a thrust vector control jet vane." Thesis, Monterey, California. Naval Postgraduate School, 1988. http://hdl.handle.net/10945/23074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vidakovic, Steven Slavko. "Fluid dynamic means of varying the thrust vector from an axisymmetric nozzle /." Title page, summary and contents only, 1995. http://web4.library.adelaide.edu.au/theses/09PH/09phv648.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Johnson, Richard E. "Effects of thrust vector control on the performance of the aerobang orbital plane change maneuver." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from the National Technical Information Service, 1993. http://handle.dtic.mil/100.2/ADA272532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jung, Jackson H. (Jackson Hoa-Wai). "Modeling, and classical and advanced control of a solid rocket motor thrust vector control system." Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/12473.

Full text
Abstract:
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1993.
Includes bibliographical references (leaves 119-124).
by Jackson H. Jung.
M.S.
APA, Harvard, Vancouver, ISO, and other styles
8

Eilers, Shannon Dean. "Development of the Multiple Use Plug Hybrid for Nanosats (Muphyn) Miniature Thruster." DigitalCommons@USU, 2013. https://digitalcommons.usu.edu/etd/1726.

Full text
Abstract:
The Multiple Use Plug Hybrid for Nanosats (MUPHyN) prototype thruster incorporates solutions to several major challenges that have traditionally limited the deployment of chemical propulsion systems on small spacecraft. The MUPHyN thruster offers several features that are uniquely suited for small satellite applications. These features include 1) a non-explosive ignition system, 2) non-mechanical thrust vectoring using secondary fluid injection on an aerospike nozzle cooled with the oxidizer flow, 3) a non-toxic, chemically-stable combination of liquid and inert solid propellants, 4) a compact form factor enabled by the direct digital manufacture of the inert solid fuel grain. Hybrid rocket motors provide significant safety and reliability advantages over both solid composite and liquid propulsion systems; however, hybrid motors have found only limited use on operational vehicles due to 1) difficulty in modeling the fuel flow rate 2) poor volumetric efficiency and/or form factor 3) significantly lower fuel flow rates than solid rocket motors 4) difficulty in obtaining high combustion efficiencies. The features of the MUPHyN thruster are designed to offset and/or overcome these shortcomings. The MUPHyN motor design represents a convergence of technologies, including hybrid rocket regression rate modeling, aerospike secondary injection thrust vectoring, multiphase injector modeling, non-pyrotechnic ignition, and nitrous oxide regenerative cooling that address the traditional challenges that limit the use of hybrid rocket motors and aerospike nozzles. This synthesis of technologies is unique to the MUPHyN thruster design and no comparable work has been published in the open literature.
APA, Harvard, Vancouver, ISO, and other styles
9

Tekin, Raziye. "Design, Modeling, Guidance And Control Of A Vertical Launch Surface To Air Missile." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612408/index.pdf.

Full text
Abstract:
The recent interests in the necessity of high maneuverability and vertical launching triggered namely the unconventional control design techniques that are effective at high angle of attack flight regimes. For most of missile configurations, this interest required thrust vector control together with conventional aerodynamic control. In this study, nonlinear modeling and dynamical analysis of a surface to air missile with both aerodynamic and thrust vector control is investigated. Aerodynamic force and moment modeling of the presented missile includes the challenging high angle of attack aerodynamics behavior and the so called hybrid control, which utilizes both tail fins and jet vanes as control surfaces. Thrust vector and aerodynamic control effectiveness is examined during flight envelope. Different autopilot designs are accomplished with hybrid control. Midcourse and terminal guidance algorithms are implemented and performed on target sets including maneuverable targets. A different initial turnover strategy is suggested and compared with standard skid-to-turn maneuver. Comparisons of initial roll with aerodynamic and thrust vector control are examined. Afterwards, some critical maneuvers and hybrid control ratio is studied with a real coded genetic algorithm. Rapid turnover for low altitude targets, intercept maneuver analysis with hybrid control ratio and lastly, engagement initiation maneuver optimization is fulfilled.
APA, Harvard, Vancouver, ISO, and other styles
10

Abry, Frédéric. "Contribution à la commande et l'observation des actionneurs électropneumatiques : de l'intérêt de la transformée A-T." Phd thesis, INSA de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-01011297.

Full text
Abstract:
La commande des actionneurs électropneumatiques a été un sujet largement traité au cours des dernières décennies. Le caractère fortement non-linéaire de son comportement en a fait un cas d'étude particulièrement pertinent dans le cadre d'une démarche d'application de la théorie de la commande des systèmes non-linéaires. L'utilisation de ces techniques a été comparée aux approches linéaires traditionnelles et généralement jugée largement supérieure notamment en termes de précision ou de temps de réponse. Dans ce manuscrit nous abordons très spécifiquement l'aspect multivariable du système et introduisons la transformée A-T, similaire à la transformée de Park appliquée classiquement aux systèmes électriques, afin de donner une forme strict feedback à son modèle d'état, de clarifier les phénomènes physiques mis en jeu lors de sa commande et de distinguer les deux degrés de liberté du système. Cette transformée permet en outre une comparaison directe avec les moteurs électriques décrits dans le repère de Park. Ce parallèle rend notamment possible la solution du problème délicat de l'observation de la position à vitesse nulle en transférant des méthodologies déjà validées sur des systèmes électriques. L'exploitation des deux degrés de liberté est illustrée par la synthèse de lois de commande combinant le suivi d'une trajectoire de position du piston au respect d'un second critère variable (réglage de la pressurisation moyenne, optimisation de la consommation instantanée). L'utilisation d'un actionneur électropneumatique asservi comme actionneur à compliance variable est étudiée. Une loi de commande basée sur la transformée A-T est proposée pour contrôler simultanément la position et la raideur pneumatique de l'actionneur. Une méthodologie de réglage des gains de commande est proposée pour définir l'impédance en boucle fermée du système. L'influence de la raideur pneumatique sur la raideur en boucle fermée est étudiée. L'utilisation d'une source d'énergie alternative (de l'hélium sous pression) est également pour la première fois mise en œuvre. L'influence du changement de gaz sur le dimensionnement de l'actionneur électropneumatique est étudiée et une méthodologie permettant d'utiliser les lois de commande prévues pour de l'air est proposée. L'ensemble des propositions faites dans ce manuscrit est testée et validée sur un banc d'essais à la structure inédite. Ce dernier allie deux actionneurs, l'un électropneumatique (l'actionneur étudié) et l'autre, un moteur plat électrique (l'actionneur de charge). L'utilisation de celui-ci permet la génération d'efforts perturbateurs dans une large bande passante ainsi que la modification en temps réel des paramètres mécaniques dynamiques de la charge.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Thrust vector"

1

Leitner, A. Thrust vector control, heat transfer modeling. Monterey, California: Naval Postgraduate School, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Green, Robert S. Measured pressure distributions inside nonaxisymmetric nozzles with partially deployed thrust reversers. Hampton, Va: Langley Research Center, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mason, Mary L. A static investigation of the thrust vectoring system of the F/A-18 high-alpha research vehicle. Hampton, Va: Langley Research Center, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Asbury, Scott C. Multiaxis thrust-vectoring characteristics of a model representative of the F-18 High-Alpha Research Vehicle at angles of attack from 0 deg to 70 deg. Hampton, Va: Langley Research Center, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nunn, R. H. TVC jet vane thermal modeling using parametric system identification. Monterey, Calif: Naval Postgraduate School, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Reno, Margaret Mary. Modeling transient thermal behavior in a thrust vector control jet vane. Monterey, Calif: Naval Postgraduate School, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gilyard, Glenn B. Optimal pitch thrust-vector angle and benefits for all flight regimes. Edwards, Calif: National Aeronautics and Space Administration, Dryden Flight Research Center, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Quinto, P. Frank. Evaluation of four advanced nozzle concepts for short takeoff and landing performance. Hampton, Va: Langley Research Center, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Asbury, Scott C. Effects of internal yaw-vectoring devices on the static performance of a pitch-vectoring nonaxisymmetric convergent-divergent nozzle. Hampton, Va: Langley Research Center, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bangert, Linda S. Static internal performance of a nonaxisymmetric vaned thrust reverser with flow splay capability. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Thrust vector"

1

Zhen-qiang, MA, Dong Wen-han, Xie Wu-jie, and Shao Peng-jie. "Design and Modeling of an Omni-Directional Vector Thrust Hexarotor." In Lecture Notes in Electrical Engineering, 283–94. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2875-5_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vulpetti, Giovanni. "Applying Vector Scattering Theory to Solar-Photon Sail Thrust Modeling." In Advances in Solar Sailing, 489–508. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-34907-2_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Misgeld, Berno J. E., Marco Darcis, and Thomas Kuhn. "Robust Linear-Parameter Varying Autopilot Design for a Tail/Thrust Vector Controlled Missile." In Advances in Aerospace Guidance, Navigation and Control, 287–301. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19817-5_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zmijanovic, V., V. Lago, S. Palerm, J. Oswald, M. Sellam, and A. Chpoun. "Thrust Shock Vector Control of an Axisymmetric C-D Nozzle via Transverse Gas Injection." In 28th International Symposium on Shock Waves, 171–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25685-1_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Junjie, Zengqiang Chen, Mingwei Sun, and Qinglin Sun. "High Angle of Attack Sliding Mode Control for Aircraft with Thrust Vector Based on ESO." In Lecture Notes in Electrical Engineering, 48–57. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9682-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Haber, Morey J., and Brad Hibbert. "Threat Hunting." In Privileged Attack Vectors, 75–78. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-3048-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Haber, Morey J. "Threat Hunting." In Privileged Attack Vectors, 127–31. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5914-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Haber, Morey J., and Brad Hibbert. "Threat Intelligence." In Asset Attack Vectors, 39–44. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3627-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Haber, Morey J., and Darran Rolls. "Identity-Based Threat Response." In Identity Attack Vectors, 167–70. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-5165-2_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gubler, Duane J. "The Global Threat of Emergent/Re-emergent Vector-Borne Diseases." In Vector Biology, Ecology and Control, 39–62. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-2458-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Thrust vector"

1

Gozhaya, Elena, Sergey Kudriavtzev, and Nikolay Nikulin. "SPT thrust vector control." In 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-3643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

YEZZI, C., and P. DONGUY. "Thrust vector control technology demonstration." In 22nd Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-1642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Buhlmann, K. "Thrust vector and flight steering." In 11th Lighter-than-Air Systems Technology Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-1615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

KITTOCK, M. "High power thrust vector actuation." In 29th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-2459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Figueiredo, William. "High Thrust-to-Weight Ratio Bipropellant Reentry Vehicle Thrust Vector Control thru Micro-Miniaturization." In 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-5258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Polk, J., J. Anderson, and J. Brophy. "Behavior of the thrust vector in the NSTAR ion thruster." In 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-3940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhuang, Taisen, Alexey Shashurin, Dereck Chiu, George Teel, and Michael Keidar. "Micro-Cathode Arc Thruster (uCAT) Performance and Thrust Vector Control." In 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-4103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

CATON, J., and M. FRANKE. "Two-dimensional thrust vector control nozzle." In 27th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-2101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

BERDOYES, MICHEL, and RUSSELL ELLIS. "Hot gas thrust vector control motor." In 28th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-3551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Goldsborough, Mark. "Solid-State Thrust Vector Control Systems." In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-4941.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Thrust vector"

1

Leitner, Amiram. Thrust Vector Control, Heat Transfer Modeling. Fort Belvoir, VA: Defense Technical Information Center, July 1986. http://dx.doi.org/10.21236/ada522372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

VAN Poppel, Jon A., Brian J. Barton, David J. Pancratz, Mike H. Rangel, and Robert D. Banks. Simulation of Thrust-Vectored Aircraft Maneuvers on a Human Centrifuge: Model Validation and Design for the Dynamic Environment Simulator. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada370781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography