Academic literature on the topic 'Tokamaks modelling and control'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tokamaks modelling and control.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Tokamaks modelling and control"

1

Albanese, R., E. Coccorese, and G. Rubinacci. "Plasma modelling for the control of vertical instabilities in tokamaks." Nuclear Fusion 29, no. 6 (1989): 1013–23. http://dx.doi.org/10.1088/0029-5515/29/6/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

PORTELA, JEFFERSON S. E., IBERÊ L. CALDAS, RICARDO L. VIANA, and MIGUEL A. F. SANJUÁN. "FRACTAL AND WADA EXIT BASIN BOUNDARIES IN TOKAMAKS." International Journal of Bifurcation and Chaos 17, no. 11 (2007): 4067–79. http://dx.doi.org/10.1142/s021812740701986x.

Full text
Abstract:
The creation of an outer layer of chaotic magnetic field lines in a tokamak is useful to control plasma-wall interactions. Chaotic field lines (in the Lagrangian sense) in this region eventually hit the tokamak wall and are considered lost. Due to the underlying dynamical structure of this chaotic region, namely a chaotic saddle formed by intersections of invariant stable and unstable manifolds, the exit patterns are far from being uniform, rather presenting an involved fractal structure. If three or more exit basins are considered, the respective basins exhibit an even stronger Wada property, for which a boundary point is arbitrarily close to points belonging to all exit basins. We describe such a structure for a tokamak with an ergodic limiter by means of an analytical Poincaré field line mapping.
APA, Harvard, Vancouver, ISO, and other styles
3

Ramos, J. I. "Numerical simulation and optimal control in plasma physics with applications to Tokamaks." Applied Mathematical Modelling 14, no. 1 (1990): 53. http://dx.doi.org/10.1016/0307-904x(90)90166-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vincent, Benjamin, Nicolas Hudon, Laurent Lefèvre, and Denis Dochain. "Modelling of Tokamak plasmas as open GENERIC systems." IFAC-PapersOnLine 52, no. 7 (2019): 7–12. http://dx.doi.org/10.1016/j.ifacol.2019.07.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Olofsson, K. E. J., W. Choi, D. A. Humphreys, et al. "Electromechanical modelling and design for phase control of locked modes in the DIII-D tokamak." Plasma Physics and Controlled Fusion 58, no. 4 (2016): 045008. http://dx.doi.org/10.1088/0741-3335/58/4/045008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Moreau, D., J. F. Artaud, J. R. Ferron, et al. "Combined magnetic and kinetic control of advanced tokamak steady state scenarios based on semi-empirical modelling." Nuclear Fusion 55, no. 6 (2015): 063011. http://dx.doi.org/10.1088/0029-5515/55/6/063011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Martin, J. D., M. Bacharis, M. Coppins, G. F. Counsell, and J. E. Allen. "Modelling dust transport in tokamaks." EPL (Europhysics Letters) 83, no. 6 (2008): 65001. http://dx.doi.org/10.1209/0295-5075/83/65001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Porcelli, F., A. Airoldi, C. Angioni, et al. "Modelling of macroscopic magnetic islands in tokamaks." Nuclear Fusion 41, no. 9 (2001): 1207–18. http://dx.doi.org/10.1088/0029-5515/41/9/309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Phillips, C. K., W. Houlberg, D. Q. Hwang, S. Attenberger, J. Tolliver, and L. Hively. "Predictive transport modelling of ICRF-heated tokamaks." Plasma Physics and Controlled Fusion 35, no. 3 (1993): 301–17. http://dx.doi.org/10.1088/0741-3335/35/3/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

UEDA, Noriaki, and Masaaki TANAKA. "Computer Modelling of Boundary Plasmas in Tokamaks." Journal of Nuclear Science and Technology 27, no. 2 (1990): 106–21. http://dx.doi.org/10.1080/18811248.1990.9731160.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Tokamaks modelling and control"

1

Sharma, Atul Stefan. "Tokamak modelling & control." Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mavkov, Bojan. "Control of coupled transport in Tokamak plasmas." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAT004/document.

Full text
Abstract:
L'objectif de cette thèse est le développement de nouvelles méthodes d'analyse et de commande pour une classe d'équations aux dérivées partielles couplées permettant de modéliser le transport combiné du flux magnétique et de la pression (produit de la densité et de la température) dans les plasmas tokamak. Le système couplé est représenté par deux équations 1D de diffusion résistive. Dans cette thèse, on a obtenu deux types de modèles: le premier repose sur des principes physiques et le second exploite les données obtenues en utilisant des techniques d'identification des systèmes. La conception de commande est basée sur l'etude en dimension infinie en utilisant l'analyse de Lyapunov. Le contrôle composite est synthétisé en utilisant la théorie des perturbations singulières pour isoler la composante rapide de la composante lente. Tout le travail théorique est implémenté et testé dans des simulations basées sur la physique avancée en utilisant le simulateur de plasma pour les tokamaks DIII-D, ITER et TCV<br>The objective of this thesis is to propose new methods for analysis and control of partial differential equations that describe the coupling between the transport models of the electron pressure (density multiplied by the temperature) and the magnetic flux in the tokamak plasma. The coupled system is presented by two1D resistive diffusion equations. In this thesis two kinds of control models are obtained. The first is a first-principle driven model and the second one is the data-driven model obtained using system identification techniques. The control design is based on an infinite dimensional setting using Lyapunov analysis. Composite control is designed using singular perturbation theory to divide the fast from the slow component. All the theoretical work is implemented and benchmarked in advanced physics based on simulations using plasma simulator dor DIII-D, ITER and TCV tokamaks
APA, Harvard, Vancouver, ISO, and other styles
3

Na, Yong-Su. "Modelling of current profile control in tokamak plasmas." [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=970018460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vyas, Parag. "Plasma vertical position control in the COMPASS–D tokamak." Thesis, University of Oxford, 1996. http://ora.ox.ac.uk/objects/uuid:1d6e881a-117c-422d-a901-0927774ae3dd.

Full text
Abstract:
The plasma vertical position system on the COMPASS–D tokamak is studied in this thesis. An analogue P+D controller is used to regulate the plasma vertical position which is open loop unstable. Measurements from inside the vessel are used for the derivative component of the control signal and external measurements for the proportional component. Two main sources of disturbances are observed on COMPASS–D. One source is 600Hz noise from thyristor power supplies which cause large oscillations at the control amplifier output. Another source is impulse–like disturbances due to ELMs (Edge Localized Modes) and this can occasionally lead to loss of control when the control amplifier saturates. Models of the plasma open loop dynamics were obtained using the process of system identification. Experimental data is used to fit the coefficients of a mathematical model. The frequency response of the model is strongly dependent on the shape of the plasma. The effect of shielding by the vessel wall on external measurements when compared with internal measurements is also observed. The models were used to predict values of gain margins and phase crossover frequencies which were found to be in good agreement with measured values. The harsh reactor conditions on the proposed ITER tokamak preclude the use of internal measurements. On COMPASS–D the stability margins of the loop decrease when using only external flux loops. High order controllers were designed to stabilize the system using only external measurements and to reduce the effect of 600Hz noise on the control amplifier voltage. The controllers were tested on COMPASS–D and demonstrated the improved performance of high order controllers over the simple P+D controller. ELMs cause impulse–like disturbances on the plasma position. The optimal controller minimizing the peak of the impulse response can be calculated analytically for COMPASS–D. A multiobjective controller which combines a small peak impulse response with robust stability and noise attenuation can be obtained using a numerical search.
APA, Harvard, Vancouver, ISO, and other styles
5

Vu, Ngoc Minh Trang. "Approche hamiltonienne à ports pour la modélisation, la réduction et la commande des dynamiques des plasmas dans les tokamaks." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENT067/document.

Full text
Abstract:
L'objectif principal de la thèse est d'établir un modèle sous forme hamiltonienne à ports pour la dynamique du plasma dans les réacteurs de fusion de type tokamak, puis de démontrer le potentiel de cette approche pour aborder les problèmes d'intégration numérique et de commande non linéaire. Les bilans thermo-magnéto-hydrodynamiques, écrits sous forme hamiltonienne à ports à l'aide de structures Stokes-Dirac, conduisent à un modèle 3D “ multi-physique ” du plasma. Ensuite, un modèle 1D équivalent au modèle de diffusion résistive est obtenu en supposant les mêmes hypothèses d'équilibre quasi-statique et de symétries. Un schéma symplectique de réduction spatiale de ce modèle 1D qui préserve la structure du modèle et ses invariants est établi. Il ouvre la voie à des travaux ultérieurs de commande non linéaire fondés sur la structure géométrique d'interconnexion et les bilans du modèle. La commande IDA-PBC (Interconnection and Damping Assignment - Passivity Based Control) basée sur la passivité du modèle est d'abord synthétisée pour ce système en dimension finie. Finalement, une commande IDA-PBC associée avec la commande à la frontière est proposée pour le système en dimension infinie. Les controlleurs sont testés et validés avec les simulateurs des tokamak (METIS pour le Tore Supra de CEA/ Cadarache, et RAPTOR pour le TCV de l'EPFL Lausanne, Suisse)<br>The modelling and analysis of the plasma dynamics in tokamaks using the port-Hamiltonian approach is the main project purpose. Thermo-mMagnetohydrodynamics balances have been written in port-Hamiltonian form using Stokes-Dirac interconnection structures and 3D differential forms. A simplified 1D model for control has been derived using quasi-static and symmetry assumptions. It has been proved to be equivalent to a classical 1D control model: the resistive diffusion model for the poloidal magnetic flux. Then a geometric spatial integration scheme has been developped. It preserves both the symplecticity of the Dirac interconnection structure and physically conserved extensive quantities. This will allow coming works on energy-based approaches for the non linear control of the plasma dynamics.An Interconnection and Damping Assignment - Passivity Based Control (IDA-PBC) , the most general Port-Hamiltonian control, is chosen first to deal with the studied Tokamak system. It is based on a model made of the two coupled PDEs of resistive diffusion for the magnetic poloidal flux and of radial thermal diffusion. The used TMHD couplings are the Lorentz forces (with non-uniform resistivity) and the bootstrap current. The loop voltage at the plasma boundary, the total external current and the plasma heating power are considered as controller outputs. Due to the actuator constraints which imply to have a physically feasible current profile deposits, a feedforward control is used to ensure the compatibility with the actuator physical capability. Then, the IDA-PBC controllers, both finite-dimensional and infinite-dimensional, are designed to improve the system stabilization and convergence speed. The proposed works are validated against the simulation data obtained from the Tore-Supra WEST (CEA/Cadarache, France) test case and from RAPTOR code for the TCV real-time control system (CRPP/ EPFL, Lausanne, Switzerland)
APA, Harvard, Vancouver, ISO, and other styles
6

Humphreys, David A. (David Allan). "Axisymmetric control in tokamaks." Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/13769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lycken, Tomas. "Modelling of Collisionless Alpha-particle Confinement in Tokamaks." Thesis, KTH, Fusionsplasmafysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-165106.

Full text
Abstract:
A collisionless model for fast-ion transport in a tokamak reactor is derived from first principles, and a new orbitfollowing code is developed to simulate this model. Results from the model applied on two scenarios of DT fusion plasmas, one from ITER and one from JET, are compared, and the prompt losses as well as the effects of orbit shapes are quantified; it is shown that both the prompt losses and the orbit effect on confined particles are very small in both reactors. Although some problems are still present, the method presented shows potential for further investigating orbit effects.<br>En modell för kollisionsfri transport av högenergetiska joner i tokamaks har tagits fram, och en ny banlösande kod har utvecklads för att simulera denna model. Resultat från modellen applicerad på två scenarion med DTplasma, ett från ITER och ett från JET, jämförs, och omedelbara förluster samt effekter av inneslutna banors form kvantifieras; både ban- och omedelbara förluster visas vara mycket små i båda reaktorerna. Även om mindre problem återstår att lösa, har metodent pontential för att vidare undersöka baneffekter i fusionsplasman.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhu, Ping. "Predictive modelling and simulations of internal transport barriers in tokamaks /." Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3008483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hannan, Abdul. "Modelling Ion Cyclotron Resonance Heating and Fast Wave Current Drive in Tokamaks." Doctoral thesis, KTH, Fusionsplasmafysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-119930.

Full text
Abstract:
Fast magnetosonic waves in the ion cyclotron range of frequencies have the potential to heat plasma and drive current in a thermonuclear fusion reactor. A code, SELFO-light, has been developed to study the physics of ion cyclotron resonantheating and current drive in thermonuclear fusion reactors. It uses a global full wave solver LION and a new 1D Fokker-Planck solver for the self-consistent calculations of the wave field and the distribution function of ions.In present day tokamak experiments like DIII-D and JET, fast wave damping by ions at higher harmonic cyclotron frequencies is weak compared to future thermonuclear tokamak reactors like DEMO. The strong damping by deuterium, tritium and thermonuclear alpha-particles and the large Doppler width of fast alpha-particles in DEMO makes it difficult to drive the current when harmonic resonance layers of these ionspecies are located at low field side of the magnetic axis. At higher harmonic frequencies the possibility of fast wave current drive diminishes due to the overlapping of alpha-particle harmonic resonance layers. Narrow frequency bands suitable for the fast wave current drive in DEMO have been identified at lower harmonics of the alpha-particles. For these frequencies the effect of formation of high-energy tails in the distribution function of majority and minority ion species on the current drive have been studied. Some of these frequencies are found to provide efficient ion heating in the start up phase of DEMO. The spectrum where efficient current drive can be obtained is restricted due to weak electron damping at lower toroidal mode numbers and strong trapped electron damping at higher toroidal mode numbers. The width of toroidal mode spectra for which efficient current drive can be obtained have been identified, which has important implications for the antenna design.<br><p>QC 20130327</p>
APA, Harvard, Vancouver, ISO, and other styles
10

Tanner, Robert Michael John. "Effects of anisotropy in modelling the velocity distributions of fast ion in tokamaks." Thesis, University of Nottingham, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287169.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Tokamaks modelling and control"

1

Emaami-Khonsaari, Majid. Modelling and control of plasma position in the STOR-M Tokamak. Plasma Physics Laboratory, University of Saskatchewan, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Coiffet, Philippe. Modelling and control. Kogan Page, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schwarzenbach, J. System modelling and control. 3rd ed. Halsted Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

B, Vinter R., ed. Stochastic modelling and control. Chapman and Hall, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

F, Gill K., ed. System modelling and control. 3rd ed. Edward Arnold, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Davis, M. H. A., and R. B. Vinter. Stochastic Modelling and Control. Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4828-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Byrnes, Christopher Ian, and Alexander B. Kurzhanski, eds. Modelling and Adaptive Control. Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0043171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Alfredo, Pironti, ed. Magnetic control of tokamak plasmas. Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Xiao, Chengmo. Yacht modelling and adaptive control. Nova Science Publishers, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mikleš, Ján. Process modelling, identification, and control. Slovak Technical University Press, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Tokamaks modelling and control"

1

Ariola, Marco, and Alfredo Pironti. "Plasma Modelling for Magnetic Control." In Magnetic Control of Tokamak Plasmas. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29890-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ariola, Marco, and Alfredo Pironti. "Modelling of the Resistive Wall Modes." In Magnetic Control of Tokamak Plasmas. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29890-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cohen, S. A. "Particle Confinement and Control in Existing Tokamaks." In Physics of Plasma-Wall Interactions in Controlled Fusion. Springer US, 1986. http://dx.doi.org/10.1007/978-1-4757-0067-1_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bissell, C. C. "Modelling dynamic systems." In Control Engineering. Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-7224-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bissell, C. C. "Modelling Dynamic Systems." In Control Engineering. Springer US, 1988. http://dx.doi.org/10.1007/978-1-4615-9711-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

McCloy, D., and D. M. J. Harris. "Modelling and control." In Robotics: An Introduction. Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-010-9752-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Berglind, Luke, and Erdem Ozturk. "Modelling of Machining Processes." In Twin-Control. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02203-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wilkie, Jacqueline, Michael Johnson, and Reza Katebi. "Modelling for control engineering." In Control Engineering. Macmillan Education UK, 2002. http://dx.doi.org/10.1007/978-1-4039-1457-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Benítez-Pérez, Héctor, Jorge L. Ortega-Arjona, Paul E. Méndez-Monroy, Ernesto Rubio-Acosta, and Oscar A. Esquivel-Flores. "Distributed Systems Modelling." In Control Strategies and Co-Design of Networked Control Systems. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97044-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Corriou, Jean-Pierre. "Dynamic Modelling of Chemical Processes." In Process Control. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61143-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Tokamaks modelling and control"

1

Laxåback, M. "Self-Consistent Modelling of Polychromatic ICRH in Tokamaks." In RADIO FREQUENCY POWER IN PLASMAS: 15th Topical Conference on Radio Frequency Power in Plasmas. AIP, 2003. http://dx.doi.org/10.1063/1.1638010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Garrido, Izaskun, Jesus Antonio Romero, Aitor J. Garrido, Davide Lucchin, Edorta Carrascal, and Goretti Sevillano-Berasategui. "Internal inductance predictive control for Tokamaks." In 2014 World Automation Congress (WAC). IEEE, 2014. http://dx.doi.org/10.1109/wac.2014.6936072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rosanvallon, S., C. Grisolia, P. Sharpe, et al. "Control of Dust Inventory in Tokamaks." In MULTIFACETS OF DUSTRY PLASMAS: Fifth International Conference on the Physics of Dusty Plasmas. AIP, 2008. http://dx.doi.org/10.1063/1.2997271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Villone, Fabio, and Stefano Mastrostefano. "Nonlinear modelling of the effects of plasma perturbations in tokamaks." In IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2016. http://dx.doi.org/10.1109/iecon.2016.7794131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nishida, Gou, and Noboru Sakamoto. "Port-based modeling of magnetohydrodynamics equations for Tokamaks." In Control (MSC). IEEE, 2010. http://dx.doi.org/10.1109/cca.2010.5611289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ou, Yongsheng, and Eugenio Schuster. "Controllability analysis for current profile control in tokamaks." In 2009 Joint 48th IEEE Conference on Decision and Control (CDC) and 28th Chinese Control Conference (CCC). IEEE, 2009. http://dx.doi.org/10.1109/cdc.2009.5400418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Granucci, G., B. Esposito, M. Maraschek, et al. "ECRH: A Tool To Control Disruptions In Tokamaks." In RADIO FREQUENCY POWER IN PLASMAS: Proceedings of the 18th Topical Conference. AIP, 2009. http://dx.doi.org/10.1063/1.3273802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pajares, Andres, and Eugenio Schuster. "Nonlinear burn control in tokamaks using in-vessel coils." In 2016 IEEE Conference on Control Applications (CCA). IEEE, 2016. http://dx.doi.org/10.1109/cca.2016.7587898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pajares, Andres, and Eugenio Schuster. "Safety factor profile control in tokamaks via feedback linearization." In 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016. http://dx.doi.org/10.1109/cdc.2016.7799140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pajares, Andres, and Eugenio Schuster. "Integrated Robust Control of Individual Scalar Variables in Tokamaks." In 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. http://dx.doi.org/10.1109/cdc40024.2019.9029195.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Tokamaks modelling and control"

1

Cohen, R. H., B. I. Cohen, and P. F. Dubois. Comprehensive numerical modelling of tokamaks. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/6205417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Russell, David L. Modelling, Information Processing and Control. Defense Technical Information Center, 1991. http://dx.doi.org/10.21236/ada250571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Park, Jong-kyu, Michael J. Schaffer, Jonathan E. Menard, and Allen H. Boozer. Control of Asymmetric Magnetic Perturbations in Tokamaks. Office of Scientific and Technical Information (OSTI), 2007. http://dx.doi.org/10.2172/961752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jardin, S. C., N. Pomphrey, and J. DeLucia. Dynamic modeling of transport and positional control of tokamaks. Office of Scientific and Technical Information (OSTI), 1985. http://dx.doi.org/10.2172/5139994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Slavov, Tsonio, Jordan Kralev, and Petko Petkov. Uncertainty Modelling and Robust Control of Multivariable Plants. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, 2019. http://dx.doi.org/10.7546/crabs.2019.08.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

C.E. Kessel, P. Heitzenroeder, and C. Jun. Plasma Vertical Control with Internal and External Coils in Nest Step Tokamaks. Office of Scientific and Technical Information (OSTI), 2000. http://dx.doi.org/10.2172/766643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fleming, Wendell H., and Harold J. Kushner. Numerical Methods and Approximation and Modelling Problems in Stochastic Control Theory. Defense Technical Information Center, 1988. http://dx.doi.org/10.21236/ada218419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Swain, D. W., S. E. Attenberger, W. A. Houlberg, P. T. Bonoli, and W. M. Nevins. Operating points and feedback control of plasma characteristics in tokamaks with full current drive. Office of Scientific and Technical Information (OSTI), 1994. http://dx.doi.org/10.2172/10121845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Byers, R. Application of RELAP4/MOD6 to analysis of solar-thermal power plants: control system modelling. Office of Scientific and Technical Information (OSTI), 1986. http://dx.doi.org/10.2172/5554016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Feliu, Vicente, Kuldip S. Rattan, Jr Brown, and H. B. A New Approach to Control Single-Link Flexible Arms. Part 1. Modelling and Identification in the Presence of Joint Friction. Defense Technical Information Center, 1989. http://dx.doi.org/10.21236/ada210590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!