Journal articles on the topic 'Topological chaos'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Topological chaos.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
DOWNAROWICZ, TOMASZ, and YVES LACROIX. "Measure-theoretic chaos." Ergodic Theory and Dynamical Systems 34, no. 1 (2012): 110–31. http://dx.doi.org/10.1017/etds.2012.117.
Full textLu, Tianxiu, Peiyong Zhu, and Xinxing Wu. "The Retentivity of Chaos under Topological Conjugation." Mathematical Problems in Engineering 2013 (2013): 1–4. http://dx.doi.org/10.1155/2013/817831.
Full textQian, Yun, and Peng Guan. "Li-York Chaos of Set-Valued Discrete Dynamical Systems Based on Semi-Group Actions." Applied Mechanics and Materials 380-384 (August 2013): 1778–82. http://dx.doi.org/10.4028/www.scientific.net/amm.380-384.1778.
Full textLi, Shihai. "ω-Chaos and Topological Entropy". Transactions of the American Mathematical Society 339, № 1 (1993): 243. http://dx.doi.org/10.2307/2154217.
Full textTomaschitz, Roman. "Topological evolution and cosmic chaos." Reports on Mathematical Physics 40, no. 2 (1997): 359–65. http://dx.doi.org/10.1016/s0034-4877(97)85933-2.
Full textTan, Amanda J., Eric Roberts, Spencer A. Smith, et al. "Topological chaos in active nematics." Nature Physics 15, no. 10 (2019): 1033–39. http://dx.doi.org/10.1038/s41567-019-0600-y.
Full textLi, Shi Hai. "$\omega$-chaos and topological entropy." Transactions of the American Mathematical Society 339, no. 1 (1993): 243–49. http://dx.doi.org/10.1090/s0002-9947-1993-1108612-8.
Full textLeboeuf, P., J. Kurchan, M. Feingold, and D. P. Arovas. "Topological aspects of quantum chaos." Chaos: An Interdisciplinary Journal of Nonlinear Science 2, no. 1 (1992): 125–30. http://dx.doi.org/10.1063/1.165915.
Full textLiu, Xin, Huoyun Wang, and Heman Fu. "Topological Sequence Entropy and Chaos." International Journal of Bifurcation and Chaos 24, no. 07 (2014): 1450100. http://dx.doi.org/10.1142/s0218127414501004.
Full textCÁNOVAS, JOSE S., and MARÍA MUÑOZ. "REVISITING PARRONDO'S PARADOX FOR THE LOGISTIC FAMILY." Fluctuation and Noise Letters 12, no. 03 (2013): 1350015. http://dx.doi.org/10.1142/s0219477513500156.
Full textFinn, Matthew D., Jean-Luc Thiffeault, and Emmanuelle Gouillart. "Topological chaos in spatially periodic mixers." Physica D: Nonlinear Phenomena 221, no. 1 (2006): 92–100. http://dx.doi.org/10.1016/j.physd.2006.07.018.
Full textBanasiak, J., M. Lachowicz, and M. Moszyński. "Topological chaos: When topology meets medicine." Applied Mathematics Letters 16, no. 3 (2003): 303–8. http://dx.doi.org/10.1016/s0893-9659(03)80048-4.
Full textDegond, P., and M. Pulvirenti. "Propagation of chaos for topological interactions." Annals of Applied Probability 29, no. 4 (2019): 2594–612. http://dx.doi.org/10.1214/19-aap1469.
Full textBlanchard, François. "Topological chaos: what may this mean?" Journal of Difference Equations and Applications 15, no. 1 (2009): 23–46. http://dx.doi.org/10.1080/10236190802385355.
Full textDownarowicz, T. "Positive topological entropy implies chaos DC2." Proceedings of the American Mathematical Society 142, no. 1 (2013): 137–49. http://dx.doi.org/10.1090/s0002-9939-2013-11717-x.
Full textTomaschitz, Roman. "Chaos and Topological Evolution in Cosmology." International Journal of Bifurcation and Chaos 07, no. 08 (1997): 1847–53. http://dx.doi.org/10.1142/s0218127497001412.
Full textMa, You Jie, Shuang Song, and Xue Song Zhou. "Introduction of Topological Horseshoe Theory in Chaotic Research." Advanced Materials Research 811 (September 2013): 716–19. http://dx.doi.org/10.4028/www.scientific.net/amr.811.716.
Full textDoleželová-Hantáková, Jana, Zuzana Roth, and Samuel Roth. "On the Weakest Version of Distributional Chaos." International Journal of Bifurcation and Chaos 26, no. 14 (2016): 1650235. http://dx.doi.org/10.1142/s0218127416502357.
Full textDai, Xiongping, and Xinjia Tang. "Devaney chaos, Li–Yorke chaos, and multi-dimensional Li–Yorke chaos for topological dynamics." Journal of Differential Equations 263, no. 9 (2017): 5521–53. http://dx.doi.org/10.1016/j.jde.2017.06.021.
Full textCHEN, AN, and XUETING TIAN. "Distributional chaos in multifractal analysis, recurrence and transitivity." Ergodic Theory and Dynamical Systems 41, no. 2 (2019): 349–78. http://dx.doi.org/10.1017/etds.2019.57.
Full textMohtashamipour, Maliheh, and Alireza Zamani Bahabadi. "Chaos in Iterated Function Systems." International Journal of Bifurcation and Chaos 30, no. 12 (2020): 2050177. http://dx.doi.org/10.1142/s0218127420501771.
Full textZamani Bahabadi, Alireza. "Controlled shadowing property." Applied General Topology 19, no. 1 (2018): 91. http://dx.doi.org/10.4995/agt.2018.7731.
Full textPROTOPOPESCU, V., and Y. Y. AZMY. "TOPOLOGICAL CHAOS FOR A CLASS OF LINEAR MODELS." Mathematical Models and Methods in Applied Sciences 02, no. 01 (1992): 79–90. http://dx.doi.org/10.1142/s0218202592000065.
Full textFINN, M. D., S. M. COX, and H. M. BYRNE. "Topological chaos in inviscid and viscous mixers." Journal of Fluid Mechanics 493 (October 25, 2003): 345–61. http://dx.doi.org/10.1017/s0022112003005858.
Full textVikhansky, A. "Simulation of topological chaos in laminar flows." Chaos: An Interdisciplinary Journal of Nonlinear Science 14, no. 1 (2004): 14–22. http://dx.doi.org/10.1063/1.1621092.
Full textBerblinger, Michael, and Christoph Schlier. "The double-morse well and topological chaos." Chemical Physics Letters 145, no. 4 (1988): 299–304. http://dx.doi.org/10.1016/0009-2614(88)80011-3.
Full textBarnsley, Michael F., Krzysztof Leśniak, and Miroslav Rypka. "Chaos game for IFSs on topological spaces." Journal of Mathematical Analysis and Applications 435, no. 2 (2016): 1458–66. http://dx.doi.org/10.1016/j.jmaa.2015.11.022.
Full textDu, Bau-Sen. "Topological entropy and chaos of interval maps." Nonlinear Analysis: Theory, Methods & Applications 11, no. 1 (1987): 105–14. http://dx.doi.org/10.1016/0362-546x(87)90029-0.
Full textMackay, R. S., and C. Tresser. "Transition to topological chaos for circle maps." Physica D: Nonlinear Phenomena 19, no. 2 (1986): 206–37. http://dx.doi.org/10.1016/0167-2789(86)90020-5.
Full textMackay, R. S., and C. Tresser. "Transition to topological chaos for circle maps." Physica D: Nonlinear Phenomena 29, no. 3 (1988): 427. http://dx.doi.org/10.1016/0167-2789(88)90042-5.
Full textLETELLIER, C., G. GOUESBET, and N. F. RULKOV. "TOPOLOGICAL ANALYSIS OF CHAOS IN EQUIVARIANT ELECTRONIC CIRCUITS." International Journal of Bifurcation and Chaos 06, no. 12b (1996): 2531–55. http://dx.doi.org/10.1142/s0218127496001624.
Full textWang, Lidong, Nan Li, Fengchun Lei, and Zhenyan Chu. "Topological Entropy and Mixing Invariant Extremal Distributional Chaos." International Journal of Bifurcation and Chaos 27, no. 09 (2017): 1750139. http://dx.doi.org/10.1142/s0218127417501395.
Full textKwabi, Prince Amponsah, William Obeng Denteh, and Richard Kena Boadi. "On the dynamics of the Tent function - Phase diagrams." Journal of Advanced Studies in Topology 7, no. 4 (2016): 261. http://dx.doi.org/10.20454/jast.2016.1011.
Full textBernardes, Nilson C., and Rômulo M. Vermersch. "Hyperspace Dynamics of Generic Maps of the Cantor Space." Canadian Journal of Mathematics 67, no. 2 (2015): 330–49. http://dx.doi.org/10.4153/cjm-2014-005-5.
Full textOvchinnikov, Igor V., and Massimiliano Di Ventra. "Chaos as a symmetry-breaking phenomenon." Modern Physics Letters B 33, no. 24 (2019): 1950287. http://dx.doi.org/10.1142/s0217984919502877.
Full textArai, Tatsuya, and Naotsugu Chinen. "P-chaos implies distributional chaos and chaos in the sense of Devaney with positive topological entropy." Topology and its Applications 154, no. 7 (2007): 1254–62. http://dx.doi.org/10.1016/j.topol.2005.11.016.
Full textLefranc, Marc, Pierre-Emmanuel Morant, and Michel Nizette. "Topological characterization of deterministic chaos: enforcing orientation preservation." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, no. 1865 (2007): 559–67. http://dx.doi.org/10.1098/rsta.2007.2110.
Full textHURDER, STEVEN, and ANA RECHTMAN. "Aperiodicity at the boundary of chaos." Ergodic Theory and Dynamical Systems 38, no. 7 (2017): 2683–728. http://dx.doi.org/10.1017/etds.2016.144.
Full textJacobs, Joeri, Edward Ott, and Brian R. Hunt. "Calculating topological entropy for transient chaos with an application to communicating with chaos." Physical Review E 57, no. 6 (1998): 6577–88. http://dx.doi.org/10.1103/physreve.57.6577.
Full textChen, Chung-Chuan, J. Alberto Conejero, Marko Kostić, and Marina Murillo-Arcila. "Dynamics of multivalued linear operators." Open Mathematics 15, no. 1 (2017): 948–58. http://dx.doi.org/10.1515/math-2017-0082.
Full textCattaneo, Gianpiero, Michele Finelli, and Luciano Margara. "Investigating topological chaos by elementary cellular automata dynamics." Theoretical Computer Science 244, no. 1-2 (2000): 219–41. http://dx.doi.org/10.1016/s0304-3975(98)00345-4.
Full textLeboeuf, P., J. Kurchan, M. Feingold, and D. P. Arovas. "Phase-space localization: Topological aspects of quantum chaos." Physical Review Letters 65, no. 25 (1990): 3076–79. http://dx.doi.org/10.1103/physrevlett.65.3076.
Full textStremler, Mark A., and Jie Chen. "Generating topological chaos in lid-driven cavity flow." Physics of Fluids 19, no. 10 (2007): 103602. http://dx.doi.org/10.1063/1.2772881.
Full textWu, Xinxing, Xin Ma, Zhu Zhu, and Tianxiu Lu. "Topological Ergodic Shadowing and Chaos on Uniform Spaces." International Journal of Bifurcation and Chaos 28, no. 03 (2018): 1850043. http://dx.doi.org/10.1142/s0218127418500438.
Full textLi, Jian, and Xiang Dong Ye. "Recent development of chaos theory in topological dynamics." Acta Mathematica Sinica, English Series 32, no. 1 (2015): 83–114. http://dx.doi.org/10.1007/s10114-015-4574-0.
Full textJin, Weifeng, and Fangyue Chen. "Topological chaos of universal elementary cellular automata rule." Nonlinear Dynamics 63, no. 1-2 (2010): 217–22. http://dx.doi.org/10.1007/s11071-010-9798-z.
Full textWang, Hong Qing. "Property of Conjugacy between Two Chaos Maps." Applied Mechanics and Materials 444-445 (October 2013): 771–74. http://dx.doi.org/10.4028/www.scientific.net/amm.444-445.771.
Full textAndres, Jan. "Chaos for Differential Equations with Multivalued Impulses." International Journal of Bifurcation and Chaos 31, no. 07 (2021): 2150113. http://dx.doi.org/10.1142/s0218127421501133.
Full textYin, Zongbin, Yuming Chen, and Shengnan He. "Disjoint Hypercyclicity and Topological Entropy of Composition Operators." International Journal of Bifurcation and Chaos 28, no. 04 (2018): 1850053. http://dx.doi.org/10.1142/s0218127418500530.
Full textYU, PEI, WEIGUANG YAO, and GUANRON CHEN. "ANALYSIS ON TOPOLOGICAL PROPERTIES OF THE LORENZ AND THE CHEN ATTRACTORS USING GCM." International Journal of Bifurcation and Chaos 17, no. 08 (2007): 2791–96. http://dx.doi.org/10.1142/s0218127407018762.
Full text