Journal articles on the topic 'Transcriptome data'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Transcriptome data.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Macrander, Jason, Jyothirmayi Panda, Daniel Janies, Marymegan Daly, and Adam M. Reitzel. "Venomix: a simple bioinformatic pipeline for identifying and characterizing toxin gene candidates from transcriptomic data." PeerJ 6 (July 31, 2018): e5361. http://dx.doi.org/10.7717/peerj.5361.
Full textWang, Xinjun, Zhe Sun, Yanfu Zhang, et al. "BREM-SC: a bayesian random effects mixture model for joint clustering single cell multi-omics data." Nucleic Acids Research 48, no. 11 (2020): 5814–24. http://dx.doi.org/10.1093/nar/gkaa314.
Full textOchsner, Scott A., Christopher M. Watkins, Apollo McOwiti, et al. "Transcriptomine, a web resource for nuclear receptor signaling transcriptomes." Physiological Genomics 44, no. 17 (2012): 853–63. http://dx.doi.org/10.1152/physiolgenomics.00033.2012.
Full textYokoi, Kakeru, Takuya Tsubota, Akiya Jouraku, Hideki Sezutsu, and Hidemasa Bono. "Reference Transcriptome Data in Silkworm Bombyx mori." Insects 12, no. 6 (2021): 519. http://dx.doi.org/10.3390/insects12060519.
Full textKordonowy, Lauren L., and Matthew D. MacManes. "Characterization of a male reproductive transcriptome forPeromyscus eremicus(Cactus mouse)." PeerJ 4 (October 27, 2016): e2617. http://dx.doi.org/10.7717/peerj.2617.
Full textNishimura, Yuhei. "Drug discovery using transcriptome data." Folia Pharmacologica Japonica 149, no. 3 (2017): 138. http://dx.doi.org/10.1254/fpj.149.138.
Full textReznikov, Leah R., David K. Meyerholz, Mahmoud Abou Alaiwa, et al. "The vagal ganglia transcriptome identifies candidate therapeutics for airway hyperreactivity." American Journal of Physiology-Lung Cellular and Molecular Physiology 315, no. 2 (2018): L133—L148. http://dx.doi.org/10.1152/ajplung.00557.2017.
Full textCheng, Xuanjin, Junran Yan, Yongxing Liu, Jiahe Wang, and Stefan Taubert. "eVITTA: a web-based visualization and inference toolbox for transcriptome analysis." Nucleic Acids Research 49, W1 (2021): W207—W215. http://dx.doi.org/10.1093/nar/gkab366.
Full textLondin, Eric R., Eleftheria Hatzimichael, Phillipe Loher, et al. "Towards a Reference Human Platelet Transcriptome: Evaluation Of Inter-Individual Correlations and Its Relationship With a Platelet Proteome." Blood 122, no. 21 (2013): 2297. http://dx.doi.org/10.1182/blood.v122.21.2297.2297.
Full textMořkovský, Libor, Jan Pačes, Jakub Rídl, and Radka Reifová. "Scrimer: designing primers from transcriptome data." Molecular Ecology Resources 15, no. 6 (2015): 1415–20. http://dx.doi.org/10.1111/1755-0998.12403.
Full textHan, Henry, and Ying Liu. "Transcriptome marker diagnostics using big data." IET Systems Biology 10, no. 1 (2016): 41–48. http://dx.doi.org/10.1049/iet-syb.2015.0026.
Full textBarral-Arca, Ruth, Alberto Gómez-Carballa, Miriam Cebey-López, Xabier Bello, Federico Martinón-Torres, and Antonio Salas. "A Meta-Analysis of Multiple Whole Blood Gene Expression Data Unveils a Diagnostic Host-Response Transcript Signature for Respiratory Syncytial Virus." International Journal of Molecular Sciences 21, no. 5 (2020): 1831. http://dx.doi.org/10.3390/ijms21051831.
Full textCaurcel, Carlos, Dominik R. Laetsch, Richard Challis, Sujai Kumar, Karim Gharbi, and Mark Blaxter. "MolluscDB: a genome and transcriptome database for molluscs." Philosophical Transactions of the Royal Society B: Biological Sciences 376, no. 1825 (2021): 20200157. http://dx.doi.org/10.1098/rstb.2020.0157.
Full textMeger, Yakov, Ekaterina Vodiasova, and Anastasiya Lantushenko. "Impact of sequencing data filtering on the quality of de novo transcriptome assembly." E3S Web of Conferences 270 (2021): 01014. http://dx.doi.org/10.1051/e3sconf/202127001014.
Full textChakraborty, Sandeep. "RNA-seq assembler artifacts can bias expression counts and differential expression analysis - case study on the chickpea transcriptome emphasizes importance of freely accessible data for reproducibility." F1000Research 5 (December 6, 2016): 2394. http://dx.doi.org/10.12688/f1000research.9667.2.
Full textSalazar, Juan Alfonso, Cristian Vergara-Pulgar, Claudia Jorquera, et al. "De Novo Transcriptome Sequencing in Kiwifruit (Actinidia chinensis var. deliciosa (A Chev) Liang et Ferguson) and Development of Tissue-Specific Transcriptomic Resources." Agronomy 11, no. 5 (2021): 919. http://dx.doi.org/10.3390/agronomy11050919.
Full textMora-Márquez, Fernando, José Luis Vázquez-Poletti, Víctor Chano, Carmen Collada, Álvaro Soto, and Unai López de Heredia. "Hardware Performance Evaluation of De novo Transcriptome Assembly Software in Amazon Elastic Compute Cloud." Current Bioinformatics 15, no. 5 (2020): 420–30. http://dx.doi.org/10.2174/1574893615666191219095817.
Full textZhu, Jiang, Fuhong He, Jing Wang, and Jun Yu. "Modeling Transcriptome Based on Transcript-Sampling Data." PLoS ONE 3, no. 2 (2008): e1659. http://dx.doi.org/10.1371/journal.pone.0001659.
Full textOthman, Roohaida, Afiq Adham Abd Rasib, Mohammad Akhmal Ilias, Suganthi Murthy, Najihah Ismail, and Nursyuhaida Mohd Hanafi. "Transcriptome data of the carrageenophyte Eucheuma denticulatum." Data in Brief 24 (June 2019): 103824. http://dx.doi.org/10.1016/j.dib.2019.103824.
Full textBaek, Dong-Yeob, Jin-Ho Yoo, Youngbok Lee, et al. "ArrayQue: The comprehensive transcriptome data analysis tool." BioChip Journal 6, no. 4 (2012): 314–18. http://dx.doi.org/10.1007/s13206-012-6402-2.
Full textYu, Pingjian, and Wei Lin. "Single-cell Transcriptome Study as Big Data." Genomics, Proteomics & Bioinformatics 14, no. 1 (2016): 21–30. http://dx.doi.org/10.1016/j.gpb.2016.01.005.
Full textTuna, Salih, and Mahesan Niranjan. "Inference from Low Precision Transcriptome Data Representation." Journal of Signal Processing Systems 58, no. 3 (2009): 267–79. http://dx.doi.org/10.1007/s11265-009-0363-2.
Full textShnier, Daniel, Mircea A. Voineagu, and Irina Voineagu. "Persistent homology analysis of brain transcriptome data in autism." Journal of The Royal Society Interface 16, no. 158 (2019): 20190531. http://dx.doi.org/10.1098/rsif.2019.0531.
Full textVan Etten, Julia, Alexander Shumaker, Tali Mass, Hollie M. Putnam, and Debashish Bhattacharya. "Transcriptome analysis provides a blueprint of coral egg and sperm functions." PeerJ 8 (August 18, 2020): e9739. http://dx.doi.org/10.7717/peerj.9739.
Full textBono, Hidemasa, and Kiichi Hirota. "Meta-Analysis of Hypoxic Transcriptomes from Public Databases." Biomedicines 8, no. 1 (2020): 10. http://dx.doi.org/10.3390/biomedicines8010010.
Full textKim, Hani Jieun, Yingxin Lin, Thomas A. Geddes, Jean Yee Hwa Yang, and Pengyi Yang. "CiteFuse enables multi-modal analysis of CITE-seq data." Bioinformatics 36, no. 14 (2020): 4137–43. http://dx.doi.org/10.1093/bioinformatics/btaa282.
Full textChakraborty, Sandeep. "RNA-seq assembler artifacts can bias expression counts and differential expression analysis - application of YeATS on the chickpea transcriptome." F1000Research 5 (September 27, 2016): 2394. http://dx.doi.org/10.12688/f1000research.9667.1.
Full textZheng, Yi, and Fangqing Zhao. "Visualization of circular RNAs and their internal splicing events from transcriptomic data." Bioinformatics 36, no. 9 (2020): 2934–35. http://dx.doi.org/10.1093/bioinformatics/btaa033.
Full textTang, Shizhen, Aron S. Buchman, Philip L. De Jager, David A. Bennett, Michael P. Epstein, and Jingjing Yang. "Novel Variance-Component TWAS method for studying complex human diseases with applications to Alzheimer’s dementia." PLOS Genetics 17, no. 4 (2021): e1009482. http://dx.doi.org/10.1371/journal.pgen.1009482.
Full textAlbrecht, Daniela, Olaf Kniemeyer, Axel A. Brakhage, Matthias Berth, and Reinhard Guthke. "Integration of Transcriptome and Proteome Data from Human-Pathogenic Fungi by Using a Data Warehouse." Journal of Integrative Bioinformatics 4, no. 1 (2007): 51–63. http://dx.doi.org/10.1515/jib-2007-52.
Full textGonzalez-Ibeas, Daniel, Pedro J. Martinez-Garcia, Randi A. Famula, et al. "Assessing the Gene Content of the Megagenome: Sugar Pine (Pinus lambertiana)." G3 Genes|Genomes|Genetics 6, no. 12 (2016): 3787–802. http://dx.doi.org/10.1534/g3.116.032805.
Full textRychel, Kevin, Katherine Decker, Anand V. Sastry, Patrick V. Phaneuf, Saugat Poudel, and Bernhard O. Palsson. "iModulonDB: a knowledgebase of microbial transcriptional regulation derived from machine learning." Nucleic Acids Research 49, no. D1 (2020): D112—D120. http://dx.doi.org/10.1093/nar/gkaa810.
Full textPetegrosso, Raphael, Zhuliu Li, and Rui Kuang. "Machine learning and statistical methods for clustering single-cell RNA-sequencing data." Briefings in Bioinformatics 21, no. 4 (2019): 1209–23. http://dx.doi.org/10.1093/bib/bbz063.
Full textMukhin, A. M., M. A. Genaev, D. A. Rasskazov, S. A. Lashin, and D. A. Afonnikov. "RDBMS and NOSQL Based Hybrid Technology for Transcriptome Data Structuring and Processing." Mathematical Biology and Bioinformatics 15, no. 2 (2020): 455–70. http://dx.doi.org/10.17537/2020.15.455.
Full textKaisers, Wolfgang, Johannes Ptok, Holger Schwender, and Heiner Schaal. "Validation of Splicing Events in Transcriptome Sequencing Data." International Journal of Molecular Sciences 18, no. 6 (2017): 1110. http://dx.doi.org/10.3390/ijms18061110.
Full textGalbraith, S. J., L. M. Tran, and J. C. Liao. "Transcriptome network component analysis with limited microarray data." Bioinformatics 22, no. 15 (2006): 1886–94. http://dx.doi.org/10.1093/bioinformatics/btl279.
Full textHack, C. J. "Integrated transcriptome and proteome data: The challenges ahead." Briefings in Functional Genomics and Proteomics 3, no. 3 (2004): 212–19. http://dx.doi.org/10.1093/bfgp/3.3.212.
Full textNothnagel, Michael, Andreas Wolf, Alexander Herrmann, et al. "Statistical inference of allelic imbalance from transcriptome data." Human Mutation 32, no. 1 (2010): 98–106. http://dx.doi.org/10.1002/humu.21396.
Full textYonekura-Sakakibara, Keiko, Atsushi Fukushima, and Kazuki Saito. "Transcriptome data modeling for targeted plant metabolic engineering." Current Opinion in Biotechnology 24, no. 2 (2013): 285–90. http://dx.doi.org/10.1016/j.copbio.2012.10.018.
Full textSseruwagi, Peter, James Wainaina, Joseph Ndunguru, et al. "The first transcriptomes from field-collected individual whiteflies (Bemisia tabaci, Hemiptera: Aleyrodidae)." Gates Open Research 1 (December 28, 2017): 16. http://dx.doi.org/10.12688/gatesopenres.12783.1.
Full textSseruwagi, Peter, James Wainaina, Joseph Ndunguru, et al. "The first transcriptomes from field-collected individual whiteflies (Bemisia tabaci, Hemiptera: Aleyrodidae)." Gates Open Research 1 (February 13, 2018): 16. http://dx.doi.org/10.12688/gatesopenres.12783.2.
Full textSseruwagi, Peter, James Wainaina, Joseph Ndunguru, et al. "The first transcriptomes from field-collected individual whiteflies (Bemisia tabaci, Hemiptera: Aleyrodidae): a case study of the endosymbiont composition." Gates Open Research 1 (March 8, 2018): 16. http://dx.doi.org/10.12688/gatesopenres.12783.3.
Full textWu, Wenjing, Zhiqiang Li, Shijun Zhang, Yunling Ke, and Yahui Hou. "Transcriptome response to elevated atmospheric CO2concentration in the Formosan subterranean termite,Coptotermes formosanusShiraki (Isoptera: Rhinotermitidae)." PeerJ 4 (October 4, 2016): e2527. http://dx.doi.org/10.7717/peerj.2527.
Full textKroll, Jose E., Jihoon Kim, Lucila Ohno-Machado, and Sandro J. de Souza. "Splicing Express: a software suite for alternative splicing analysis using next-generation sequencing data." PeerJ 3 (November 19, 2015): e1419. http://dx.doi.org/10.7717/peerj.1419.
Full textHynst, Jakub, Karla Plevova, Lenka Radova, Vojtech Bystry, Karol Pal, and Sarka Pospisilova. "Bioinformatic pipelines for whole transcriptome sequencing data exploitation in leukemia patients with complex structural variants." PeerJ 7 (June 12, 2019): e7071. http://dx.doi.org/10.7717/peerj.7071.
Full textXu, Zhongneng, and Shuichi Asakawa. "Physiological RNA dynamics in RNA-Seq analysis." Briefings in Bioinformatics 20, no. 5 (2018): 1725–33. http://dx.doi.org/10.1093/bib/bby045.
Full textOrtiz, Randy, Priyanka Gera, Christopher Rivera, and Juan C. Santos. "Pincho: A Modular Approach to High Quality De Novo Transcriptomics." Genes 12, no. 7 (2021): 953. http://dx.doi.org/10.3390/genes12070953.
Full textDargahi, Daryanaz, Richard D. Swayze, Leanna Yee, et al. "A Pan-Cancer Analysis of Alternative Splicing Events Reveals Novel Tumor-Associated Splice Variants of Matriptase." Cancer Informatics 13 (January 2014): CIN.S19435. http://dx.doi.org/10.4137/cin.s19435.
Full textRydenfelt, Mattias, Bertram Klinger, Martina Klünemann, and Nils Blüthgen. "SPEED2: inferring upstream pathway activity from differential gene expression." Nucleic Acids Research 48, W1 (2020): W307—W312. http://dx.doi.org/10.1093/nar/gkaa236.
Full textMercatelli, Daniele, Nicola Balboni, Francesca De Giorgio, Emanuela Aleo, Caterina Garone, and Federico Manuel Giorgi. "The Transcriptome of SH-SY5Y at Single-Cell Resolution: A CITE-Seq Data Analysis Workflow." Methods and Protocols 4, no. 2 (2021): 28. http://dx.doi.org/10.3390/mps4020028.
Full text