To see the other types of publications on this topic, follow the link: Trimesic acid.

Journal articles on the topic 'Trimesic acid'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Trimesic acid.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Fan, Zhen-Zhong, Xin-Hua Li, and Guo-Ping Wang. "Trimesic acid dihydrate." Acta Crystallographica Section E Structure Reports Online 61, no. 6 (2005): o1607—o1608. http://dx.doi.org/10.1107/s1600536805014194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ou, Guangchuan, Qiong Wang, Qiang Zhou, and Xiaofeng Wang. "Phenol Derivatives as Co-Crystallized Templates to Modulate Trimesic-Acid-Based Hydrogen-Bonded Organic Molecular Frameworks." Crystals 11, no. 4 (2021): 409. http://dx.doi.org/10.3390/cryst11040409.

Full text
Abstract:
Five host−guest trimesic-acid-based hydrogen-bonds framework compounds with different guests, namely [(TMA)4·(TMB)3] (1), [(TMA)2·(DMB)1.5] (2), [(TMA)6·(MP)] (3), [(TMA)·(EP)] (4) and [(TMA)·(PP)] (5) (TMA = trimesic acid, TMB = 1,3,5-trimethoxybenzene, DMB = 1,4-dimethoxybenzene, MP = 4-methoxyphenol, EP = 4-ethoxyphenol and PP = 4-propoxyphenol), were obtained through co-crystallization, and were characterized by elemental analysis, infrared spectroscopy analysis, and thermogravimetric analysis. The trimesic acid molecules comprise a hydrogen bonding six-membered cyclic host network that is
APA, Harvard, Vancouver, ISO, and other styles
3

Salamończyk, Grzegorz M. "Synthesis of new dendrimers—trimesic acid derivatives." Tetrahedron Letters 52, no. 1 (2011): 155–58. http://dx.doi.org/10.1016/j.tetlet.2010.11.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Herbstein, F. H., M. Kapon та G. M. Reisner. "Trimesic acid, its hydrates, complexes and polymorphism. VIII. Interstitial complexes of α- and (the hypothetical) γ-trimesic acid". Acta Crystallographica Section B Structural Science 41, № 5 (1985): 348–54. http://dx.doi.org/10.1107/s0108768185002257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Du, Miao, Zhi-Hui Zhang, and Xiao-Jun Zhao. "Cocrystallization of Trimesic Acid and Pyromellitic Acid with Bent Dipyridines." Crystal Growth & Design 5, no. 3 (2005): 1247–54. http://dx.doi.org/10.1021/cg0495680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

HERBSTEIN, F. H. "ChemInform Abstract: 1,3,5-Benzenetricarboxylic Acid (Trimesic Acid) and Some Analogues." ChemInform 28, no. 7 (2010): no. http://dx.doi.org/10.1002/chin.199707311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yan, Linghao, Guowen Kuang, and Nian Lin. "Phase separation and selective guest–host binding in multi-component supramolecular self-assembly on Au(111)." Chemical Communications 54, no. 75 (2018): 10570–73. http://dx.doi.org/10.1039/c8cc04491k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ward, Martin R., and Iain D. H. Oswald. "Hidden Solvates and Transient Forms of Trimesic Acid." Crystals 10, no. 12 (2020): 1098. http://dx.doi.org/10.3390/cryst10121098.

Full text
Abstract:
This article discusses the formation of trimesic acid (TMA) solvates with ethanol, isopropyl alcohol and dimethylformamide via liquid-assisted grinding and slurry experiments. Through the use of X-ray diffraction methods, we highlight the formation of a new ethanol solvate of TMA that completes the series of alcohol solvates observed, a temperature-induced phase transition in the isopropyl alcohol solvate between 233 K and 243 K, and a transient 1:3 solvate with dimethylformamide that mimics a previously identified dimethylsulfoxide solvate. The alcohol structures possess a TMA framework that
APA, Harvard, Vancouver, ISO, and other styles
9

Bernès, Sylvain, Guadalupe Hernández, Roberto Portillo, and René Gutiérrez. "Trimesic acid dimethyl sulfoxide solvate: space group revision." Acta Crystallographica Section E Structure Reports Online 64, no. 7 (2008): o1366. http://dx.doi.org/10.1107/s1600536808018655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Koltunova, T. K., D. G. Samsonenko, D. N. Dybtsev, and V. P. Fedin. "Lithium carboxylate coordination polymers based on trimesic acid." Journal of Structural Chemistry 58, no. 5 (2017): 1048–55. http://dx.doi.org/10.1134/s0022476617050274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Niluroutu, Nagaraju, Karthika Pichaimuthu, Sudeshna Sarmah, et al. "A copper–trimesic acid metal–organic framework incorporated sulfonated poly(ether ether ketone) based polymer electrolyte membrane for direct methanol fuel cells." New Journal of Chemistry 42, no. 20 (2018): 16758–65. http://dx.doi.org/10.1039/c8nj03459a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Berthelmann, Arne, Johannes Lach, Melissa A. Gräwert, Michael Groll, and Jutta Eichler. "VersatileC3-symmetric scaffolds and their use for covalent stabilization of the foldon trimer." Org. Biomol. Chem. 12, no. 16 (2014): 2606–14. http://dx.doi.org/10.1039/c3ob42251h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

T. N. Ha, Nguyen, Thiruvancheril G. Gopakumar, Nguyen D. C. Yen, et al. "Ester formation at the liquid–solid interface." Beilstein Journal of Nanotechnology 8 (October 12, 2017): 2139–50. http://dx.doi.org/10.3762/bjnano.8.213.

Full text
Abstract:
A chemical reaction (esterification) within a molecular monolayer at the liquid–solid interface without any catalyst was studied using ambient scanning tunneling microscopy. The monolayer consisted of a regular array of two species, an organic acid (trimesic acid) and an alcohol (undecan-1-ol or decan-1-ol), coadsorbed out of a solution of the acid within the alcohol at the interface of highly oriented pyrolytic graphite (HOPG) (0001) substrate. The monoester was observed promptly after reaching a threshold either related to the increased packing density of the adsorbate layer (which can be co
APA, Harvard, Vancouver, ISO, and other styles
14

Baviloliaei, Mahdi Sadeghzadeh, and Lars Diekhöner. "Molecular self-assembly at nanometer scale modulated surfaces: trimesic acid on Ag(111), Cu(111) and Ag/Cu(111)." Phys. Chem. Chem. Phys. 16, no. 23 (2014): 11265–69. http://dx.doi.org/10.1039/c4cp01429d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Behera, Nibedita, Swarna P. Mantry, Biswaranjan D. Mohapatra, Rajesh K. Behera, and Kumar S. K. Varadwaj. "Functional molecule guided evolution of MnOx nanostructure patterns on N-graphene and their oxygen reduction activity." RSC Advances 9, no. 48 (2019): 27945–52. http://dx.doi.org/10.1039/c9ra04677a.

Full text
Abstract:
In this work, we systematically followed the growth of MnO<sub>x</sub> nanostructures on trimesic acid (TMA)/benzoic acid (BA) functionalised nitrogen doped graphene (NG) and studied their electrocatalytic activity towards oxygen reduction reaction (ORR).
APA, Harvard, Vancouver, ISO, and other styles
16

Chen, Jia-Min, Jing-Jia Sun, Wei-Wei Huang, Yan-Ni Lao, and Shi-Ping Yang. "Triethylaminium–trimesate–trimesic acid–water (1/1/1/2)." Acta Crystallographica Section E Structure Reports Online 63, no. 7 (2007): o3053. http://dx.doi.org/10.1107/s1600536807025603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ibenskas, Andrius, Mantas Šimėnas, and Evaldas E. Tornau. "Multiorientation Model for Planar Ordering of Trimesic Acid Molecules." Journal of Physical Chemistry C 122, no. 13 (2018): 7344–52. http://dx.doi.org/10.1021/acs.jpcc.8b01828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Herbstein, F. H., M. Kapon, and G. M. Reisner. "Catenated and non-catenated inclusion complexes of trimesic acid." Journal of Inclusion Phenomena 5, no. 2 (1987): 211–14. http://dx.doi.org/10.1007/bf00655650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Shayeganfar, F. "Columnar organization of stack-assembled trimesic acid on graphene." Journal of Physics: Condensed Matter 26, no. 43 (2014): 435305. http://dx.doi.org/10.1088/0953-8984/26/43/435305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Azizi Vahed, Tahereh, M. Reza Naimi-Jamal, and Leila Panahi. "(Fe)MIL-100-Met@alginate: a hybrid polymer–MOF for enhancement of metformin's bioavailability and pH-controlled release." New Journal of Chemistry 42, no. 13 (2018): 11137–46. http://dx.doi.org/10.1039/c8nj01946k.

Full text
Abstract:
Metformin hydrochloride (Met) was combined with iron(iii) chloride and trimesic acid (1,3,5-benzene tricarboxylic acid, BTC) as an organic linker in a short and simple method, providing a MOF in which the drug is a part of the constituent.
APA, Harvard, Vancouver, ISO, and other styles
21

Mylonas-Margaritis, Ioannis, Júlia Mayans, Wenming Tong, et al. "Synthesis and characterization of new coordination compounds by the use of 2-pyridinemethanol and di- or tricarboxylic acids." CrystEngComm 23, no. 32 (2021): 5489–97. http://dx.doi.org/10.1039/d1ce00659b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Shchyrba, Aneliia, Susanne C. Martens, Christian Wäckerlin, et al. "Covalent assembly of a two-dimensional molecular “sponge” on a Cu(111) surface: confined electronic surface states in open and closed pores." Chem. Commun. 50, no. 57 (2014): 7628–31. http://dx.doi.org/10.1039/c4cc02463j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Wei, Fu-hua, Ding Chen, Zhao Liang, Shuai-qi Zhao, and Yun Luo. "Preparation of Fe-MOFs by microwave-assisted ball milling for reducing Cr(vi) in wastewater." Dalton Transactions 46, no. 47 (2017): 16525–31. http://dx.doi.org/10.1039/c7dt03776g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Cui, Peng, David P. McMahon, Peter R. Spackman, et al. "Mining predicted crystal structure landscapes with high throughput crystallisation: old molecules, new insights." Chemical Science 10, no. 43 (2019): 9988–97. http://dx.doi.org/10.1039/c9sc02832c.

Full text
Abstract:
New crystal forms of two well-studied organic molecules are identified in a computationally targeted way, by combining structure prediction with a robotic crystallisation screen, including a ‘hidden’ porous polymorph of trimesic acid.
APA, Harvard, Vancouver, ISO, and other styles
25

Ibenskas, Andrius, Mantas Šimėnas, and Evaldas E. Tornau. "Modeling the Dimeric Structure of Partly Deprotonated Trimesic Acid Molecules." Journal of Physical Chemistry C 125, no. 13 (2021): 7466–75. http://dx.doi.org/10.1021/acs.jpcc.1c01181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Shayeganfar, Farzaneh. "Electronic Properties of Adsorption of Trimesic Acid Monomer on Graphene." Journal of Physics: Conference Series 640 (September 28, 2015): 012028. http://dx.doi.org/10.1088/1742-6596/640/1/012028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Tothadi, Srinu, Kalipada Koner, Kaushik Dey, Matthew Addicoat, and Rahul Banerjee. "Morphological Evolution of Two-Dimensional Porous Hexagonal Trimesic Acid Framework." ACS Applied Materials & Interfaces 12, no. 13 (2020): 15588–94. http://dx.doi.org/10.1021/acsami.0c01398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Dale, Sophie H., and Mark R. J. Elsegood. "Trimesic acid bis(N,N-dimethylformamide) solvate at 150 K." Acta Crystallographica Section E Structure Reports Online 59, no. 2 (2003): o127—o128. http://dx.doi.org/10.1107/s160053680300076x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kanninen, L., N. Jokinen, H. Ali-Löytty, et al. "Adsorption structure and bonding of trimesic acid on Cu(100)." Surface Science 605, no. 23-24 (2011): 1968–78. http://dx.doi.org/10.1016/j.susc.2011.07.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ye, Yingchun, Wei Sun, Yongfeng Wang, et al. "A Unified Model: Self-Assembly of Trimesic Acid on Gold." Journal of Physical Chemistry C 111, no. 28 (2007): 10138–41. http://dx.doi.org/10.1021/jp072726o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Dmitriev, A., N. Lin, J. Weckesser, J. V. Barth, and K. Kern. "Supramolecular Assemblies of Trimesic Acid on a Cu(100) Surface." Journal of Physical Chemistry B 106, no. 27 (2002): 6907–12. http://dx.doi.org/10.1021/jp014214u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Shayeganfar, F., and A. Rochefort. "Electronic Properties of Self-Assembled Trimesic Acid Monolayer on Graphene." Langmuir 30, no. 32 (2014): 9707–16. http://dx.doi.org/10.1021/la501619b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kolotuchin, Sergei V., Paul A. Thiessen, Edward E. Fenlon, Scott R. Wilson, Colin J. Loweth, and Steven C. Zimmerman. "Self-Assembly of 1,3,5-Benzenetricarboxylic (Trimesic) Acid and Its Analogues." Chemistry - A European Journal 5, no. 9 (1999): 2537–47. http://dx.doi.org/10.1002/(sici)1521-3765(19990903)5:9<2537::aid-chem2537>3.0.co;2-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Barnard, Rachel A., Ananya Dutta, Jennifer K. Schnobrich, Christine N. Morrison, Seokhoon Ahn, and Adam J. Matzger. "Two-Dimensional Crystals from Reduced Symmetry Analogues of Trimesic Acid." Chemistry - A European Journal 21, no. 15 (2015): 5954–61. http://dx.doi.org/10.1002/chem.201406332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Balakrishnan, C., M. Manonmani, S. Rafi Ahamed, G. Vinitha, S. P. Meenakshisundaram, and R. M. Sockalingam. "Supramolecular cocrystals of O—H...O hydrogen-bonded 18-crown-6 with isophthalic acid derivatives: Hirshfeld surface analysis and third-order nonlinear optical properties." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 76, no. 2 (2020): 241–51. http://dx.doi.org/10.1107/s2052520620001821.

Full text
Abstract:
Two cocrystals of 18-crown-6 with isophthalic acid derivatives, 5-hydroxyisophthalic acid and trimesic acid, have been successfully grown by the slow evaporation solution growth technique. Crystal structures of (18-crown-6)·6(5-hydroxyisophthalic acid)·10(H2O) (I) and (18-crown-6)·2(trimesic acid)·2(H2O) (II) elucidated by single crystal X-ray diffraction reveal that both cocrystals pack the centrosymmetric triclinic space group P{\overline 1}. The molecules are associated by strong/weak hydrogen bonds, π...π and H...H stacking interactions. Powder X-ray diffraction analyses, experimental and
APA, Harvard, Vancouver, ISO, and other styles
36

Mahmood, Ayyaz, Xingming Zeng, Awais Siddique Saleemi, Kum-Yi Cheng, and Shern-Long Lee. "Electric-field-induced supramolecular phase transitions at the liquid/solid interface: cat-assembly from solvent additives." Chemical Communications 56, no. 62 (2020): 8790–93. http://dx.doi.org/10.1039/d0cc01670e.

Full text
Abstract:
The electrically triggered phase transformations of trimesic acid can be efficiently promoted to occur in an environment where trace levels of a highly polar solvent additive are present at the liquid/solid interface, as revealed by STM and DFT simulations.
APA, Harvard, Vancouver, ISO, and other styles
37

Goldberg, Ilana, and Joel Bernstein. "Disruption of the hexagonal networks of trimesic acid (benzene-1,3,5-tricarboxylic acid, TMA) by acetic acid." Chem. Commun., no. 2 (2007): 132–34. http://dx.doi.org/10.1039/b609263b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ye, Ranfeng, Min Ni, Hao Chen, and Shengqing Li. "Synthesis of mesoporous nickel–titanium-trimesic acid inorganic–organic hybrid composite in ionic liquid microemulsions for adsorption of rhodamine B from aqueous solution." Materials Express 10, no. 2 (2020): 251–57. http://dx.doi.org/10.1166/mex.2020.1639.

Full text
Abstract:
For the first time, mesoporous nickel–titanium-trimesic acid (NTT) inorganic–organic hybrid composite was synthesized in water-in-[Bmim]PF6 ionic liquid microemulsions using the trimesic acid (BTC) as the linker. The synthesized NTT was characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) analysis, powder X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) methods, etc. Then, the isotherm and kinetic of adsorption were studied. The experimental data were well fitted with isotherm models of Langmuir and Freundlich (IMLF) at 298 K a
APA, Harvard, Vancouver, ISO, and other styles
39

Sanchez-Sala, Marta, Oriol Vallcorba, Concepción Domingo та José A. Ayllón. "A Flexible Hydrogen Bonded Organic Framework That Reversibly Adsorbs Acetic Acid: γ Trimesic Acid". Crystal Growth & Design 18, № 11 (2018): 6621–26. http://dx.doi.org/10.1021/acs.cgd.8b00858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Seebach, Dieter, Guido F. Herrmann, Urs D. Lengweiler, Beat M. Bachmann, and Walter Amrein. "Synthesis and Enzymatic Degradation of Dendrimers from(R)-3-Hydroxybutanoic Acid and Trimesic Acid." Angewandte Chemie International Edition in English 35, no. 2324 (1996): 2795–97. http://dx.doi.org/10.1002/anie.199627951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Chong, K. C., S. S. Lee, S. O. Lai, H. S. Thiam, P. S. Ho, and W. J. Lau. "Adsorption of Carbon Dioxide by Metal Organic Framework for Indoor Air Quality Enhancement." IOP Conference Series: Materials Science and Engineering 1192, no. 1 (2021): 012024. http://dx.doi.org/10.1088/1757-899x/1192/1/012024.

Full text
Abstract:
Abstract Air pollution has become a severe environmental issue among millions of people around the globe. However, the risk of exposure to indoor air pollution is much higher than outdoor air pollution. The most effective way to improve indoor air quality (IAQ) by reducing the indoor CO2 content is by capturing and storing. There are several types of adsorbents used to capture CO2, namely physical adsorbents and chemical adsorbents. Metal-Organic Framework (MOF) is one of the recent interests arising physical adsorbents which possesses high adsorption capability. In this study, MOFs fabricated
APA, Harvard, Vancouver, ISO, and other styles
42

Jikei, Mitsutoshi, Sung-Hyun Chon, Masa-aki Kakimoto, Susumu Kawauchi, Tatsuya Imase, and Junji Watanebe. "Synthesis of Hyperbranched Aromatic Polyamide from Aromatic Diamines and Trimesic Acid." Macromolecules 32, no. 6 (1999): 2061–64. http://dx.doi.org/10.1021/ma980771b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Gu, Kaifeng, Kaizhen Wang, Yong Zhou, and Congjie Gao. "Ion-promoting-penetration phenomenon in the polyethyleneimine/trimesic acid nanofiltration membrane." Separation and Purification Technology 257 (February 2021): 117958. http://dx.doi.org/10.1016/j.seppur.2020.117958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Su, Gui-Jin, Hui-Min Zhang, Li-Jun Wan, Chun-Li Bai, and Thomas Wandlowski. "Potential-Induced Phase Transition of Trimesic Acid Adlayer on Au(111)." Journal of Physical Chemistry B 108, no. 6 (2004): 1931–37. http://dx.doi.org/10.1021/jp035095g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ibenskas, Andrius, Mantas Šimėnas, Kasparas Jonas Kizlaitis, and Evaldas E. Tornau. "Trimesic Acid Molecule in a Hexagonal Pore: Central versus Noncentral Position." Journal of Physical Chemistry C 123, no. 6 (2019): 3552–59. http://dx.doi.org/10.1021/acs.jpcc.8b10704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Nagata, Minoru, Tsuyoshi Kiyotsukuri, Taizou Hasegawa, Naoto Tsutsumi, and Wataru Sakai. "Synthesis and Enzymatic Degradation of Aliphatic Polyesters Copolymerized with Trimesic Acid." Journal of Macromolecular Science, Part A 34, no. 6 (1997): 965–73. http://dx.doi.org/10.1080/10601329708015004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Davies, Kate, Susan A. Bourne, Lars Öhrström, and Clive L. Oliver. "Anionic zinc-trimesic acid MOFs with unusual topologies: Reversible hydration studies." Dalton Transactions 39, no. 11 (2010): 2869. http://dx.doi.org/10.1039/b922690g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

El Garah, Mohamed, Younes Makoudi, Frederic Cherioux, Eric Duverger, and Frank Palmino. "Chemisorption of Trimesic Acid on a Si(111)-7 × 7 Surface." Journal of Physical Chemistry C 114, no. 10 (2010): 4511–14. http://dx.doi.org/10.1021/jp909820t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Shayeganfar, Farzaneh. "Tunable Band Gap in Bilayer Graphene by Trimesic Acid Molecular Doping." Journal of Physical Chemistry C 118, no. 46 (2014): 27157–63. http://dx.doi.org/10.1021/jp508679t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Griessl, Stefan, Markus Lackinger, Michael Edelwirth, Michael Hietschold, and Wolfgang M. Heckl. "Self-Assembled Two-Dimensional Molecular Host-Guest Architectures From Trimesic Acid." Single Molecules 3, no. 1 (2002): 25–31. http://dx.doi.org/10.1002/1438-5171(200204)3:1<25::aid-simo25>3.0.co;2-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!