Academic literature on the topic 'Vacuolar acidification'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vacuolar acidification.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Vacuolar acidification"

1

Yamashiro, C. T., P. M. Kane, D. F. Wolczyk, R. A. Preston, and T. H. Stevens. "Role of vacuolar acidification in protein sorting and zymogen activation: a genetic analysis of the yeast vacuolar proton-translocating ATPase." Molecular and Cellular Biology 10, no. 7 (1990): 3737–49. http://dx.doi.org/10.1128/mcb.10.7.3737-3749.1990.

Full text
Abstract:
Vacuolar acidification has been proposed to play a key role in a number of cellular processes, including protein sorting, zymogen activation, and maintenance of intracellular pH. We investigated the significance of vacuolar acidification by cloning and mutagenizing the gene for the yeast vacuolar proton-translocating ATPase 60-kilodalton subunit (VAT2). Cells carrying a vat2 null allele were viable; however, these cells were severely defective for growth in medium buffered at neutral pH. Vacuoles isolated from cells bearing the vat2 null allele were completely devoid of vacuolar ATPase activit
APA, Harvard, Vancouver, ISO, and other styles
2

Yamashiro, C. T., P. M. Kane, D. F. Wolczyk, R. A. Preston, and T. H. Stevens. "Role of vacuolar acidification in protein sorting and zymogen activation: a genetic analysis of the yeast vacuolar proton-translocating ATPase." Molecular and Cellular Biology 10, no. 7 (1990): 3737–49. http://dx.doi.org/10.1128/mcb.10.7.3737.

Full text
Abstract:
Vacuolar acidification has been proposed to play a key role in a number of cellular processes, including protein sorting, zymogen activation, and maintenance of intracellular pH. We investigated the significance of vacuolar acidification by cloning and mutagenizing the gene for the yeast vacuolar proton-translocating ATPase 60-kilodalton subunit (VAT2). Cells carrying a vat2 null allele were viable; however, these cells were severely defective for growth in medium buffered at neutral pH. Vacuoles isolated from cells bearing the vat2 null allele were completely devoid of vacuolar ATPase activit
APA, Harvard, Vancouver, ISO, and other styles
3

Morano, K. A., and D. J. Klionsky. "Differential effects of compartment deacidification on the targeting of membrane and soluble proteins to the vacuole in yeast." Journal of Cell Science 107, no. 10 (1994): 2813–24. http://dx.doi.org/10.1242/jcs.107.10.2813.

Full text
Abstract:
Lysosomal/vacuolar protein targeting is dependent on compartment acidification. In yeast, sorting of soluble vacuolar proteins such as carboxypeptidase Y is sensitive to acute changes in vacuolar pH. In contrast, the vacuolar membrane protein alkaline phosphatase is missorted only under conditions of chronic deacidification. We have undertaken a temporal analysis to define further the relationship between compartment acidification and sorting of soluble and membrane vacuolar proteins. Depletion of either the Vma3p or Vma4p subunits of the yeast vacuolar ATPase over time resulted in loss of vac
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Shuliang, Maureen Tarsio, Patricia M. Kane, and Miriam L. Greenberg. "Cardiolipin Mediates Cross-Talk between Mitochondria and the Vacuole." Molecular Biology of the Cell 19, no. 12 (2008): 5047–58. http://dx.doi.org/10.1091/mbc.e08-05-0486.

Full text
Abstract:
Cardiolipin (CL) is an anionic phospholipid with a dimeric structure predominantly localized in the mitochondrial inner membrane, where it is closely associated with mitochondrial function, biogenesis, and genome stability ( Daum, 1985 ; Janitor and Subik, 1993 ; Jiang et al., 2000 ; Schlame et al., 2000 ; Zhong et al., 2004 ). Previous studies have shown that yeast mutant cells lacking CL due to a disruption in CRD1, the structural gene encoding CL synthase, exhibit defective colony formation at elevated temperature even on glucose medium ( Jiang et al., 1999 ; Zhong et al., 2004 ), suggestin
APA, Harvard, Vancouver, ISO, and other styles
5

Raymond, C. K., I. Howald-Stevenson, C. A. Vater, and T. H. Stevens. "Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants." Molecular Biology of the Cell 3, no. 12 (1992): 1389–402. http://dx.doi.org/10.1091/mbc.3.12.1389.

Full text
Abstract:
The collection of vacuolar protein sorting mutants (vps mutants) in Saccharomyces cerevisiae comprises of 41 complementation groups. The vacuoles in these mutant strains were examined using immunofluorescence microscopy. Most of the vps mutants were found to possess vacuolar morphologies that differed significantly from wild-type vacuoles. Furthermore, mutants representing independent vps complementation groups were found to share aberrant morphological features. Six distinct classes of vacuolar morphology were observed. Mutants from eight vps complementation groups were defective both for vac
APA, Harvard, Vancouver, ISO, and other styles
6

Raymond, C. K., P. J. O'Hara, G. Eichinger, J. H. Rothman, and T. H. Stevens. "Molecular analysis of the yeast VPS3 gene and the role of its product in vacuolar protein sorting and vacuolar segregation during the cell cycle." Journal of Cell Biology 111, no. 3 (1990): 877–92. http://dx.doi.org/10.1083/jcb.111.3.877.

Full text
Abstract:
vps3 mutants of the yeast Saccharomyces cerevisiae are impaired in the sorting of newly synthesized soluble vacuolar proteins and in the acidification of the vacuole (Rothman, J. H., and T. H. Stevens. Cell. 47:1041-1051; Rothman, J. H., C. T. Yamashiro, C. K. Raymond, P. M. Kane, and T. H. Stevens. 1989. J. Cell Biol. 109:93-100). The VPS3 gene, which was cloned using a novel selection procedure, encodes a low abundance, hydrophilic protein of 117 kD that most likely resides in the cytoplasm. Yeast strains bearing a deletion of the VPS3 gene (vps3-delta 1) are viable, yet their growth rate is
APA, Harvard, Vancouver, ISO, and other styles
7

Rothman, J. H., C. T. Yamashiro, C. K. Raymond, P. M. Kane, and T. H. Stevens. "Acidification of the lysosome-like vacuole and the vacuolar H+-ATPase are deficient in two yeast mutants that fail to sort vacuolar proteins." Journal of Cell Biology 109, no. 1 (1989): 93–100. http://dx.doi.org/10.1083/jcb.109.1.93.

Full text
Abstract:
Organelle acidification plays a demonstrable role in intracellular protein processing, transport, and sorting in animal cells. We investigated the relationship between acidification and protein sorting in yeast by treating yeast cells with ammonium chloride and found that this lysosomotropic agent caused the mislocalization of a substantial fraction of the newly synthesized vacuolar (lysosomal) enzyme proteinase A (PrA) to the cell surface. We have also determined that a subset of the vpl mutants, which are deficient in sorting of vacuolar proteins (Rothman, J. H., and T. H. Stevens. 1986. Cel
APA, Harvard, Vancouver, ISO, and other styles
8

Klionsky, D. J., H. Nelson, N. Nelson, and D. S. Yaver. "Mutations in the yeast vacuolar ATPase result in the mislocalization of vacuolar proteins." Journal of Experimental Biology 172, no. 1 (1992): 83–92. http://dx.doi.org/10.1242/jeb.172.1.83.

Full text
Abstract:
The vacuolar ATPase of the yeast Saccharomyces cerevisiae acidifies the vacuolar lumen and generates an electrochemical gradient across the vacuole membrane. We have investigated the role of compartment acidification of the vacuolar system in the sorting of vacuolar proteins. Strains with chromosomal disruptions of genes (delta vat) encoding the A (69 x 10(3) M(r)), B (57 x 10(3) M(r)) or c (16 x 10(3) M(r)) subunits of the vacuolar ATPase accumulate and secrete precursor forms of the soluble vacuolar hydrolases carboxypeptidase Y and proteinase A. A kinetic analysis suggests that these precur
APA, Harvard, Vancouver, ISO, and other styles
9

Banta, L. M., J. S. Robinson, D. J. Klionsky, and S. D. Emr. "Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting." Journal of Cell Biology 107, no. 4 (1988): 1369–83. http://dx.doi.org/10.1083/jcb.107.4.1369.

Full text
Abstract:
Yeast vacuole protein targeting (vpt) mutants exhibit defects in the sorting and processing of multiple vacuolar hydrolases. To evaluate the impact these vpt mutations have on the biogenesis and functioning of the lysosome-like vacuole, we have used light and electron microscopic techniques to analyze the vacuolar morphology in the mutants. These observations have permitted us to assign the vpt mutants to three distinct classes. The class A vpt mutants (26 complementation groups) contain 1-3 large vacuoles that are morphologically indistinguishable from those in the parental strain, suggesting
APA, Harvard, Vancouver, ISO, and other styles
10

Steele-Mortimer, Olivia, Maryse St-Louis, Martin Olivier, and B. Brett Finlay. "Vacuole Acidification Is Not Required for Survival ofSalmonella enterica Serovar Typhimurium within Cultured Macrophages and Epithelial Cells." Infection and Immunity 68, no. 9 (2000): 5401–4. http://dx.doi.org/10.1128/iai.68.9.5401-5404.2000.

Full text
Abstract:
ABSTRACT Phagosome acidification is an important component of the microbicidal response by infected eukaryotic cells. Thus, intracellular pathogens that reside within phagosomes must either block phagosome acidification or be able to survive at low pH. In this work, we studied the effect of phagosomal acidification on the survival of intracellular Salmonella enterica serovar Typhimurium in different cell types. Bafilomycin A1, a specific inhibitor of the vacuolar proton-ATPases, was used to block acidification of salmonella-containing vacuoles. We found that in several epithelial cell lines, t
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!