Journal articles on the topic 'Word2Vec embedding'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Word2Vec embedding.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lu, Zihao, Xiaohui Hu, and Yun Xue. "Dual-Word Embedding Model Considering Syntactic Information for Cross-Domain Sentiment Classification." Mathematics 10, no. 24 (2022): 4704. http://dx.doi.org/10.3390/math10244704.
Full textLiu, Ruoyu. "Exploring the Impact of Word2Vec Embeddings Across Neural Network Architectures for Sentiment Analysis." Applied and Computational Engineering 97, no. 1 (2024): 93–98. http://dx.doi.org/10.54254/2755-2721/97/2024melb0085.
Full textLiu, Ruoyu. "Exploring the Impact of Word2Vec Embeddings Across Neural Network Architectures for Sentiment Analysis." Applied and Computational Engineering 94, no. 1 (2024): 106–11. http://dx.doi.org/10.54254/2755-2721/94/2024melb0085.
Full textTahmasebi, Nina. "A Study on Word2Vec on a Historical Swedish Newspaper Corpus." Digital Humanities in the Nordic and Baltic Countries Publications 1, no. 1 (2018): 25–37. http://dx.doi.org/10.5617/dhnbpub.11007.
Full textAkshata, Upadhye. "A Deep Dive into Word2Vec and Doc2Vec Models in Natural Language Processing." Journal of Scientific and Engineering Research 7, no. 3 (2020): 244–49. https://doi.org/10.5281/zenodo.10902940.
Full textLi, Saihan, and Bing Gong. "Word embedding and text classification based on deep learning methods." MATEC Web of Conferences 336 (2021): 06022. http://dx.doi.org/10.1051/matecconf/202133606022.
Full textRomanyuk, Andriy. "Vector Representations of Ukrainian Words." Ukraina Moderna 27, no. 27 (2019): 46–72. http://dx.doi.org/10.30970/uam.2019.27.1062.
Full textAlachram, Halima, Hryhorii Chereda, Tim Beißbarth, Edgar Wingender, and Philip Stegmaier. "Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks." PLOS ONE 16, no. 10 (2021): e0258623. http://dx.doi.org/10.1371/journal.pone.0258623.
Full textJP, Sanjanasri, Vijay Krishna Menon, Soman KP, Rajendran S, and Agnieszka Wolk. "Generation of Cross-Lingual Word Vectors for Low-Resourced Languages Using Deep Learning and Topological Metrics in a Data-Efficient Way." Electronics 10, no. 12 (2021): 1372. http://dx.doi.org/10.3390/electronics10121372.
Full textAhn, Yoonjoo, Eugene Rhee, and Jihoon Lee. "Dual embedding with input embedding and output embedding for better word representation." Indonesian Journal of Electrical Engineering and Computer Science 27, no. 2 (2022): 1091–99. https://doi.org/10.11591/ijeecs.v27.i2.pp1091-1099.
Full textSantana, Isabel N., Raphael S. Oliveira, and Erick G. S. Nascimento. "Text Classification of News Using Transformer-based Models for Portuguese." Journal of Systemics, Cybernetics and Informatics 20, no. 5 (2022): 33–59. http://dx.doi.org/10.54808/jsci.20.05.33.
Full textRaheem, Mafas, and Yi Chien Chong. "E-Commerce Fake Reviews Detection Using LSTM with Word2Vec Embedding." Journal of Computing and Information Technology 32, no. 2 (2024): 65–80. http://dx.doi.org/10.20532/cit.2024.1005803.
Full textSiti Khomsah, Rima Dias Ramadhani, and Sena Wijaya. "The Accuracy Comparison Between Word2Vec and FastText On Sentiment Analysis of Hotel Reviews." Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 6, no. 3 (2022): 352–58. http://dx.doi.org/10.29207/resti.v6i3.3711.
Full textShilpi, Kulshretha, and Lodha Lokesh. "Performance Evaluation of Word Embedding Algorithms." Performance Evaluation of Word Embedding Algorithms 8, no. 12 (2023): 7. https://doi.org/10.5281/zenodo.10443962.
Full textFan, Yadan, Serguei Pakhomov, Reed McEwan, Wendi Zhao, Elizabeth Lindemann, and Rui Zhang. "Using word embeddings to expand terminology of dietary supplements on clinical notes." JAMIA Open 2, no. 2 (2019): 246–53. http://dx.doi.org/10.1093/jamiaopen/ooz007.
Full textKamath, S., K. G. Karibasappa, Anvitha Reddy, Arati M. Kallur, B. B. Priyanka, and B. P. Bhagya. "Improving the Relation Classification Using Convolutional Neural Network." IOP Conference Series: Materials Science and Engineering 1187, no. 1 (2021): 012004. http://dx.doi.org/10.1088/1757-899x/1187/1/012004.
Full textKim, Jeongin, Taekeun Hong, and Pankoo Kim. "Replacing Out-of-Vocabulary Words with an Appropriate Synonym Based on Word2VnCR." Mobile Information Systems 2021 (July 16, 2021): 1–7. http://dx.doi.org/10.1155/2021/5548426.
Full textAdrian, Muhammad Ghifari, Sri Suryani Prasetyowati, and Yuliant Sibaroni. "Effectiveness of Word Embedding GloVe and Word2Vec within News Detection of Indonesian uUsing LSTM." JURNAL MEDIA INFORMATIKA BUDIDARMA 7, no. 3 (2023): 1180. http://dx.doi.org/10.30865/mib.v7i3.6411.
Full textPrasetyo, Teguh, Arya Adhyaksa Waskita, and Taswanda Taryo. "Analisis Sentimen Pengguna Mobil Listrik di Media Sosial Twitter Menggunakan Metode Klasifikasi Naïve Bayes, K-Nearest Neighbor (KNN), dan Decision Tree." Jurnal SISKOM-KB (Sistem Komputer dan Kecerdasan Buatan) 8, no. 2 (2025): 108–17. https://doi.org/10.47970/siskom-kb.v8i1.783.
Full textNurdin, Arliyanti, Bernadus Anggo Seno Aji, Anugrayani Bustamin, and Zaenal Abidin. "PERBANDINGAN KINERJA WORD EMBEDDING WORD2VEC, GLOVE, DAN FASTTEXT PADA KLASIFIKASI TEKS." Jurnal Tekno Kompak 14, no. 2 (2020): 74. http://dx.doi.org/10.33365/jtk.v14i2.732.
Full textXie, Zhongwei, Ling Liu, Yanzhao Wu, Luo Zhong, and Lin Li. "Learning Text-image Joint Embedding for Efficient Cross-modal Retrieval with Deep Feature Engineering." ACM Transactions on Information Systems 40, no. 4 (2022): 1–27. http://dx.doi.org/10.1145/3490519.
Full textKang, Hyungsuc, and Janghoon Yang. "Performance Comparison of Word2vec and fastText Embedding Models." Journal of Digital Contents Society 21, no. 7 (2020): 1335–43. http://dx.doi.org/10.9728/dcs.2020.21.7.1335.
Full textAdewumi, Tosin, Foteini Liwicki, and Marcus Liwicki. "Word2Vec: Optimal hyperparameters and their impact on natural language processing downstream tasks." Open Computer Science 12, no. 1 (2022): 134–41. http://dx.doi.org/10.1515/comp-2022-0236.
Full textChen, Xi. "Performance analysis of robustness of BERT model under attack." Journal of Physics: Conference Series 2580, no. 1 (2023): 012022. http://dx.doi.org/10.1088/1742-6596/2580/1/012022.
Full textMaslennikova, Yulia, and Vladimir Bochkarev. "Evaluation of word embedding models used for diachronic semantic change analysis." Journal of Physics: Conference Series 2701, no. 1 (2024): 012082. http://dx.doi.org/10.1088/1742-6596/2701/1/012082.
Full textKalogeropoulos, Nikitas-Rigas, Dimitris Ioannou, Dionysios Stathopoulos, and Christos Makris. "On Embedding Implementations in Text Ranking and Classification Employing Graphs." Electronics 13, no. 10 (2024): 1897. http://dx.doi.org/10.3390/electronics13101897.
Full textAlkaabi, Hussein, Ali Kadhim Jasim, and Ali Darroudi. "From Static to Contextual: A Survey of Embedding Advances in NLP." PERFECT: Journal of Smart Algorithms 2, no. 2 (2025): 57–66. https://doi.org/10.62671/perfect.v2i2.77.
Full textKaryaeva, Maria S., Pavel I. Braslavski, and Valery A. Sokolov. "Word Embedding for Semantically Relative Words: an Experimental Study." Modeling and Analysis of Information Systems 25, no. 6 (2018): 726–33. http://dx.doi.org/10.18255/1818-1015-2018-6-726-733.
Full textPertiwi, Ayu, Azhari Azhari, and Sri Mulyana. "Fast2Vec, a modified model of FastText that enhances semantic analysis in topic evolution." PeerJ Computer Science 11 (May 19, 2025): e2862. https://doi.org/10.7717/peerj-cs.2862.
Full textCahyana, Nur Heri, Yuli Fauziah, Wisnalmawati Wisnalmawati, Agus Sasmito Aribowo, and Shoffan Saifullah. "The Evaluation of Effects of Oversampling and Word Embedding on Sentiment Analysis." JURNAL INFOTEL 17, no. 1 (2025): 54–67. https://doi.org/10.20895/infotel.v17i1.1077.
Full textAyo-Soyemi, Olusola. "Market Sentiment Analysis Using NLP: Understanding Trends and Buyer Preferences in Real Estate and Environmental Sectors." Technix International Journal for Engineering Research 12, no. 3 (2025): 974–88. https://doi.org/10.5281/zenodo.15120636.
Full textArif, Md Ariful Islam, Md Mahbubur Rahman, Md Golam Rabiul Alam, and M. Akhtaruzzaman. "Analyzing the Performance of Deep Learning Models for Detecting Hate Speech on Social Media Platforms." MIST INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY 12 (December 26, 2024): 39–52. https://doi.org/10.47981/j.mijst.12(02)2024.466(39-52).
Full textSusanty, Meredita, and Sahrul Sukardi. "Perbandingan Pre-trained Word Embedding dan Embedding Layer untuk Named-Entity Recognition Bahasa Indonesia." Petir 14, no. 2 (2021): 247–57. http://dx.doi.org/10.33322/petir.v14i2.1164.
Full textZou, Zhuo. "Performance analysis of using multimodal embedding and word embedding transferred to sentiment classification." Applied and Computational Engineering 5, no. 1 (2023): 417–22. http://dx.doi.org/10.54254/2755-2721/5/20230610.
Full textKim, Harang, and Hyun Min Song. "Lightweight IDS Framework Using Word Embeddings for In-Vehicle Network Security." Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications 15, no. 2 (2022): 1–13. http://dx.doi.org/10.58346/jowua.2024.i2.001.
Full textPahendra, Muhammad Agung Maugi, Siska Anraeni, and Lutfi Budi Ilmawan. "Perbandingan Kinerja Word Embedding dalam Analisis Sentimen Ulasan Pengguna Aplikasi Perjalanan." Jurnal Teknik Informatika dan Sistem Informasi 11, no. 1 (2025): 49–62. https://doi.org/10.28932/jutisi.v11i1.9681.
Full textLumbantoruan, Rosni, Maria Puspita Sari Nababan, and Letare Aiglien Saragih. "Analisis Perbandingan FastText dan Word2Vec pada Sistem Temu Balik Informasi." PROSIDING SEMINAR NASIONAL SAINS DATA 4, no. 1 (2024): 1033–41. https://doi.org/10.33005/senada.v4i1.416.
Full textLee, Jin-Hyeok, and Sang-Tae Han. "A study on a fake news identification model based on word embedding method." Korean Data Analysis Society 26, no. 6 (2024): 1847–53. https://doi.org/10.37727/jkdas.2024.26.6.1847.
Full textLiaquathali, Shaheetha, and Vadivazhagan Kadirvelu. "Integration of natural language processing methods and machine learning model for malicious webpage detection based on web contents." IAES International Journal of Robotics and Automation (IJRA) 14, no. 1 (2025): 47. https://doi.org/10.11591/ijra.v14i1.pp47-57.
Full textMoudhich, Ihab, and Abdelhadi Fennan. "Evaluating sentiment analysis and word embedding techniques on Brexit." IAES International Journal of Artificial Intelligence (IJ-AI) 13, no. 1 (2024): 695–702. https://doi.org/10.11591/ijai.v13.i1.pp695-702.
Full textYulianti, Evi, Nicholas Pangestu, and Meganingrum Arista Jiwanggi. "Enhanced TextRank using weighted word embedding for text summarization." International Journal of Electrical and Computer Engineering (IJECE) 13, no. 5 (2023): 5472. http://dx.doi.org/10.11591/ijece.v13i5.pp5472-5482.
Full textYulianti, Evi, Nicholas Pangestu, and Jiwanggi Meganingrum Arista. "Enhanced TextRank using weighted word embedding for text summarization." International Journal of Electrical and Computer Engineering (IJECE) 13, no. 5 (2023): 5472–82. https://doi.org/10.11591/ijece.v13i5.pp5472-5482.
Full textMahbub, Mahir, Suravi Akhter, Ahmedul Kabir, and Zerina Begum. "Context-based Bengali Next Word Prediction: A Comparative Study of Different Embedding Methods." Dhaka University Journal of Applied Science and Engineering 7, no. 2 (2023): 8–15. http://dx.doi.org/10.3329/dujase.v7i2.65088.
Full textAphrodite, Tan Tamarine Myrna. "AUGMENTING ABUSIVE WORD IN SOCIAL MEDIA WITH WORD EMBEDDING." Proxies : Jurnal Informatika 8, no. 1 (2024): 34–43. http://dx.doi.org/10.24167/proxies.v8i1.12476.
Full textLassner, David, Stephanie Brandl, Anne Baillot, and Shinichi Nakajima. "Domain-Specific Word Embeddings with Structure Prediction." Transactions of the Association for Computational Linguistics 11 (March 27, 2023): 320–35. http://dx.doi.org/10.1162/tacl_a_00538.
Full textAnil, Kumar Jadon, and Suresh Kumar. "Emotion detection using Word2Vec and convolution neural networks." Indonesian Journal of Electrical Engineering and Computer Science 33, no. 3 (2024): 1812–19. https://doi.org/10.11591/ijeecs.v33.i3.pp1812-1819.
Full textKadermyatova, Leysan Maratovna, and Elena Victorovna Tutubalina. "Analysis of Word Embeddings for Semantic Role Labeling of Russian Texts." Russian Digital Libraries Journal 23, no. 5 (2020): 1026–43. http://dx.doi.org/10.26907/1562-5419-2020-23-5-1026-1043.
Full textNadia Ristya Dewi, Eva Yulia Puspaningrum, and Hendra Maulana. "Analisis Sentimen Tweet Vaksinasi Covid-19 Menggunakan RNN Dengan Metode TF-IDF Dan Word2Vec." Jurnal Informatika dan Sistem Informasi 3, no. 1 (2022): 56–65. http://dx.doi.org/10.33005/jifosi.v3i1.449.
Full textDesai, Antonio, Aurora Zumbo, Mauro Giordano, et al. "Word2vec Word Embedding-Based Artificial Intelligence Model in the Triage of Patients with Suspected Diagnosis of Major Ischemic Stroke: A Feasibility Study." International Journal of Environmental Research and Public Health 19, no. 22 (2022): 15295. http://dx.doi.org/10.3390/ijerph192215295.
Full textS, Sushma, Sasmita Kumari Nayak, and M. Vamsi Krishna. "Enhanced toxic comment detection model through Deep Learning models using Word embeddings and transformer architectures." Future Technology 4, no. 3 (2025): 76–84. https://doi.org/10.55670/fpll.futech.4.3.8.
Full text