To see the other types of publications on this topic, follow the link: Yin shi wen hua.

Journal articles on the topic 'Yin shi wen hua'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 16 journal articles for your research on the topic 'Yin shi wen hua.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Fang, Li-Zhi. "Jiang Xiaoyuan ;, Wu Yan . Zijin shan tian wen tai shi gao: Zhongguo tian wen xue xian dai hua ge an. [History of Purplemountain Observatory.] (Zhongguo jin xian dai ke xue ji shu shi yan jiu cong shu.). 219 pp., tables, bibl., index. Jinan: Shandong jiao yu chu ban she [Shandong Education Press], 2004. 29 (paper)." Isis 99, no. 3 (September 2008): 645–46. http://dx.doi.org/10.1086/593267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

YAMANAKA, Akiyoshi, Takehiko FURUHASHI, Ayumi SUGAYA, Hiroshi UMEKAWA, Satoshi MASUZUGAWA, and Yukio KANEKO. "A Case of Bullous Pemphigoid Completely Remitted with Formulation of Seihijoshitsuinkagen (Qing Pi Chu Shi Yin Hua Cai)." Kampo Medicine 60, no. 4 (2009): 449–54. http://dx.doi.org/10.3937/kampomed.60.449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Synthesis and Luminescence Property. "HUANG Jun,SHAO Zhi-meng,REN Yin-bao,ZHAO Qing-er,HONG Jia-dan,WANG Qian,DENG De-gang,YU Hua,XU Shi-qing." Chinese Journal of Luminescence 36, no. 10 (2015): 1126–31. http://dx.doi.org/10.3788/fgxb20153610.1126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Martí-Vargas, José R. "Discussion of “Experimental Investigation of Pullout Behavior of Fiber-Reinforced Polymer Reinforcements in Sand” by Cheng-Cheng Zhang, Hong-Hu Zhu, Bin Shi, Fang-Dong Wu, and Jian-Hua Yin." Journal of Composites for Construction 19, no. 5 (October 2015): 07015004. http://dx.doi.org/10.1061/(asce)cc.1943-5614.0000575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Cheng-Cheng, Hong-Hu Zhu, Bin Shi, Fang-Dong Wu, and Jian-Hua Yin. "Closure to “Experimental Investigation of Pullout Behavior of Fiber-Reinforced Polymer Reinforcements in Sand” by Cheng-Cheng Zhang, Hong-Hu Zhu, Bin Shi, Fang-Dong Wu, and Jian-Hua Yin." Journal of Composites for Construction 19, no. 5 (October 2015): 07015005. http://dx.doi.org/10.1061/(asce)cc.1943-5614.0000593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kuleshova, Nadezhda E., Alexander V. Vvedenskii, Elena V. Bobrinskaya, and Elena В. Rychkova. "Роль структурно-морфологического состояния поверхности платины в кинетических и термодинамических характеристиках процесса адсорбции аниона серина." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, no. 1 (March 6, 2019): 72–83. http://dx.doi.org/10.17308/kcmf.2019.21/718.

Full text
Abstract:
Исследована адсорбция аниона серина на гладком Pt и Pt(Pt)-электроде. Методом кривых заряжения получены стационарные и кинетические изотермы адсорбции. Установлено, что как на гладком, так и Pt(Pt)-электроде, кинетика исследуемых процессов подчиняется уравнению Рогинского-Зельдовича, а стационарное заполнение описывается изотермой Темкина. При этом адсорбция аниона серина на Pt(Pt) сопровождается диссоциацией адсорбата. Найдены основные термодинамические характеристики (константа адсорбционного и изменение свободной энергии Гиббса) процесса адсорбции аниона серина на обоих электродах. ЛИТЕРАТУРА Damaskin B., Petrii A. O., and Batrakar V.Adsorption of Organic Compounds on Electrodes. Plenum Press, New York, 1973. Sobkowski J., Juzkiewics-Herbish M. Metall/Solution Interface: an Experimental Approach, Modern Aspects of Electrochemistry, no. 31. Eds. by J. O¢ Bockris, R. E. White and B. E. Conway. Plenum Press, New York, London, 1997, p. 1. Frumkin A. N. Isbrannie trudi: Electrodnie processi, [Selected Works: Electrode Processes]. Moscow, Nauka Publ., 1987. 336 p. (in Russ.) Delahey P. Dvoinoi sloi i kinetika elektrodnih processov, [Double Layer and Kinetics of Electrode Processes]. Moscow, Mir Publ., 1967, 351 p. (in Russ.) Gileadi E. and Conway B. in:Modern Aspects of Electrochemistry, no. 3 Eds. by J. O’M. Bockris and B. Conway. Butterworths, London, 1964. Electrocatalysis. Ed. by J. Lipkowski, P. N. Ross. Wiley, VCH, New York, Chichester, Weinheim, Brisbake, Singarope, Toronto, 1998, 376 p. Bockris J. O. M., Shahed U. Khan M. Surface Electrochemistry: a Molecular Level Approach. Plenum Press, New York, London, 1993, 1014 p. Applied Infrared Spectroscopy. By A. Lee Smith. Wiley, Chichester, 1979. Gale J. Spectroelectrochemistry: Theory and Practice. Plenum Press, New York, 1988, p. 189. Tehnika eksperimentalnih rabot po electrohimii, korrosii I poverhnostnoi obrabotke metallov [Technique of Experimental Work on Electrochemistry, Corrosion and Surface Treatment of Metals]. Ed. by A. T. Kuna. Saint Petersburg, Khimiya Publ., vol. , 1994, 560 p. (in Russ.) Lasia A. Electrochemical Impedance Spectroscopy and its Application. Modern Aspects of Electrochemistry. Eds. by B. E. Conway, J. O.` Bockris and R. E. White. Kluwer Acad, Plenum Publ., New York, Boston, Dordrecht, London, Moscow, 1999, p. 143. Metodi ismerenii v elektrohimii [Measurement Methods in Electrochemistry]. Ed. by Eger, A. Zalkind. Moscow, Mir Publ., 1997, 585 p. (in Russ.) Theory of Chemisorption. by J. Smith. Berlin, Springer, 1980, 240 p. Horányi G. Electroanalyt. Chem., 1975, vol. 64, iss. 1, pp. 15-19. https://doi.org/10.1016/0368-1874(75)80108-0 Huerta F., Morallon E., Cases F., Rodes A., Vazquez J. L., Aldaz A. Electroanal. Chem., 1997, vol. 421, iss. 1-2, pp. 179-185. https://doi.org/10.1016/s0022-0728(96)04820-6 Huerta F., Morallon E., Cases F., Rodes A., Vazquez J. L., Aldaz A. Electroanal. Chem., 1997, vol. 421, iss. 1-2, pp. 155-164. https://doi.org/10.1016/s0022-0728(97)00542-1 Huerta F., Morallon A., Vazquez J. L, Quijada C., Berlouis L. Electroanal. Chem., 2000, vol. 489, iss. 1-2, pp. 92-95. https://doi.org/10.1016/s0022-0728(00)00202-3 Shi-Gang Sun,Jian-Lin Yao, Qi-Hui Wu, Zhong-Qun Tian. Langmuir, 2002, vol. 18, iss. 16, pp. 6274-6279. https://doi.org/10.1021/la025817f Tumanova E. A., Safonov A. Yu. Elektrokhimiya [Russian Journal of Electrochemistry], 1998, vol. 34, iss. 2, p. 153. (in Russ.) Marangoni D. G., Smith R. S., Roscoe S. G., Marangoni D. G. J. Chem., 1989, vol. 67, iss. 5, pp. 921-926. https://doi.org/10.1139/v89-141 Ogura K., Kobayashi M., Nakayama M., Miho M. Electroanal. Chem., 1998, vol. 449, iss. 1-2, pp. 101-109. https://doi.org/10.1016/s0022-0728(98)00015-1 Gu Y. J., Chen S. P., Sun S. G., Zhou Z. Y. Langmuir, 2003, vol. 19, iss. 23, pp. 9823-9830. https://doi.org/10.1021/la034758i Huerta F., Morallon E., Cases F., Rodes A., Vazquez J. L., Aldaz A. Electroanal. Chem., 1997, vol. 431, iss. 2, pp. 269-275. https://doi.org/10.1016/s0022-0728(97)00212-x Huerta F., Morallon E., Vazquez J. L., Aldaz A. Electroanal. Chem., 1999, vol. 475, iss. 1, pp. 38-45. https://doi.org/10.1016/0022-0728(91)85503-h Horanyi G. Electroanal. Chem., 1991, vol. 304, iss. 1-2, pp. 211-217. https://doi.org/10.1016/s0022-0728(97)00212-x Kong De-Wen, Zhu Tian-Wei, Zeng Dong-Mei, Zhen Chun-Hua, Chen Sheng-Pei, Sun Shi-Gan. J. Chinese Universitie, 2009, vol. 30, no. 10, p. 2040. Safonova T. Y., Hidirov Sh. Sh., Petrii O. A. Elektrokhimiya [Russian Journal of Electrochemistry], 1984, vol. 20, iss. 12, p. 1666. (in Russ.) Kuleshova N. E., Vvedenskyi A. V., Bobrinskaya E. V. Electrokchimiya [Russian Journal of Electrochemistry], 2018, vol. 54, iss. 7, pp. 592-597. https://doi.org/10.1134/s1023193518070042 Frumkin A. N., Podlovchenko B. I. AN SSSR, 1963, vol. 150, iss. 2, p. 349. (in Russ.) Podlovchenko B. I., Iofa Z. A. Journal fisicheskoi himii [Russian Journal of Physical Chemistry A], 1964, vol. 38, no. 1, p. 211. (in Russ.) Damaskin B. B., Petrii O. A., Tsyrlina G. A. Electrokhimiya [Electrochemistry]. Moscow, Khimiya Publ., 2001, 623 p. (in Russ.) Damaskin B. , Petrii O. A., Vvedenie v electrokhimiceskyu kinetiku [Introduction to Electrochemical Kinetics]. Moscow, Vyshaya Shkola Publ., 1983, 399 p. (in Russ.) Frumkin A. N., Bagotskii V. S., Iofa Z. A. Kabanov B. N. Kinetika elektrodnyh processov [Kinetics of Electrode Processes]. Moscow, Izdat. Moskovs.Universiteta Publ., 1952, 319 p. (in Russ.) Bobrinskaya E. V., Vvedenskyi A. V., Kartashova T. V., Krashenko T. G. Korrosia: materialy i zashita [Corrosion: Materials, Protection], 2013, no. 8, pp. 1-8. (in Russ.) Bragin O. V., Liberman A. L. Russian Chemical Reviews, 1970, vol. 39, no. 12, p. 1017. https://doi.org/10.1070/rc1970v039n12abeh002315 Аnderson I. R., Macdonald R. I., Shimoyama Y. Catalysis, 1971, vol. 20, № 2, p. 147. https://doi.org/10.1016/0021-9517(71)90076-5 Levitskii L, Minachev Kh. M. In: Mechanisms of Hydrocarbon Reactions. 1973, Budapest, Academiai Kiado, 1975, Preprint, no. 15, p. 81. Anderson R., Baker B. G. Chemisorption and Reactions on Metallic Films. London, New-York. Acad. Press, 1971, p. 63. Bragin O. V., Preobrazenskii A. V., Liberman A. L., Kazanskii B. A. Kinetica i katalys [Kinetics and Catalysis], 1975, vol. 16, no. 2, p. 472. (in Russ.) Maire G., Corolleur C., Juttard D., Gault F. G. Catalysis, 1971, vol. 21, iss. 2, рp. 250-253. https://doi.org/10.1016/0021-9517(71)90143-6 Corolleur C., Corolleur S., Gault F. G. Catalysis, 1972, vol. 24, iss. 3, pp. 385-400. https://doi.org/10.1016/0021-9517(72)90123-6 Paal Z., Tetenyi P. Chim. Acad. Sci. Hung., 1972, vol. 72, no. 3, p. 277. Barron Y., Maire G., Muller J. M., Gault F. G. Catalysis, 1966, vol. 5, iss. 3, pp. 428-445. https://doi.org/10.1016/s0021-9517(66)80062-3 Muller J. M., Gault F. G. Catalysis, 1972, vol. 24, iss. 2, pp. 361-364. https://doi.org/10.1016/0021-9517(72)90083-8 Contreras A. M., Grunes J., Yan X.-M., Liddle A., Somorjai G. A. Topics in Catalysis. 2006, 39, iss. 3–4, pp. 123-129. https://doi.org/10.1007/s11244-006-0047-0 Khazova A. M., Vasil’ev U. B., Bagotskii V. S. Soviet Electrochemistry, 1967, vol. 3, no. 7, p. 1020. (in Russ.) Podlovchenko B. I., Petuhova R. P.Soviet Electrochemistry, 1972, vol. 8, no. 6, p. 899. (in Russ.)
APA, Harvard, Vancouver, ISO, and other styles
7

Razak, Nurul Nadia, Moh Yasin, Zahriladha Zakaria, Anas A. Latiff, and Sulaiman Wadi Harun. "Q-switched fiber laser with tungsten disulfide saturable absorber prepared by drop casting method." Photonics Letters of Poland 9, no. 3 (September 30, 2017): 103. http://dx.doi.org/10.4302/plp.v9i3.752.

Full text
Abstract:
We experimentally demonstrate a passively Q-switched erbium-doped fiber laser (EDFL) operation by using a saturable absorber (SA) based on tungsten disulfide (WS2). By depositing WS2 thin film layer at the end of optical fiber ferrule, we fabricated a SA device. The SA is incorporated into an Erbium-doped fiber laser (EDFL) cavity to generate a Q-switching pulses train operating at 1559.8 nm. As a result, stable passively Q-switched EDFL pulses with maximum output pulse energy of 123.2 nJ, repetition rate of 104.1 kHz, and pulse width of 9.61 us are achieved when the input pump power is 142.1 mW at the wavelength of 980 nm. Full Text: PDF ReferencesC. Gao, W. Zhao, Y. Wang, S. Zhu, G. Chen, and Y. Wang, "Passive Q-switched fiber laser with SESAM in ytterbium-doped double-clad fiber", in 27th International congress on High-Speed Photography and Photonics (International Society for Optics and Photonics, 2007). CrossRef M. Ahmed, N. Ali, Z. Salleh, A. Rahman, S. Harun, M. Manaf, et al., "Q-switched erbium doped fiber laser based on single and multiple walled carbon nanotubes embedded in polyethylene oxide film as saturable absorber", Optics & Laser Technology 65, 25 (2015). CrossRef M. A. Ismail, F. Ahmad, S. W. Harun, H. Arof and H. Ahmad, "A Q-switched erbium-doped fiber laser with a graphene saturable absorber", Laser Phys. Lett. 10, 025102 (2013). CrossRef G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, K. Librant, M. Zdrojek, L. Lipinska, and K. M. Abramski, "Linearly polarized, Q-switched Er-doped fiber laser based on reduced graphene oxide saturable absorber", Appl. Phys. Lett. 101, 241106 (2012). CrossRef N. H. M. Apandi, F. Ahmad, S. N. F. Zuikafly, M. H. Ibrahim, S. W. Harun, "Bismuth (III) Telluride (Bi2Te3) topological insulator embed in PVA as passive Q-switcher at 2 micron region", Photon. Lett. of Poland 8, 101 (2016). CrossRef J. Bogusławski, G. Soboń, K. Tarnowski, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski and J. Sotor, "All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber", Optical Engineering 55, 081316 (2016). CrossRef Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, "1-, 1.5-, and 2-um fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber", J. Lightwave Technol. 32, 4679 (2014). CrossRef N. N. Razak, A. A. Latiff, Z. Zakaria and S. W. Harun, "Q-switched Erbium-doped Fiber Laser with a Black Phosphorus Saturable Absorber", Photon. Lett. of Poland 9, 72 (2017). CrossRef D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, "WS2 mode-locked ultrafast fiber laser", Sci Rep 5, 7965 (2015). CrossRef K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, "WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers", Optics Express 23, 11453 (2015). CrossRef K. Lau, A. Latif, M. A. Bakar, F. Muhammad, M. Omar, and M. Mahdi, "Mechanically deposited tungsten disulfide saturable absorber for low-threshold Q-switched erbium-doped fiber laser", Applied Physics B 123, 221 (2017). CrossRef H. Chen, Y. Chen, J. Yin, X. Zhang, T. Guo, and P. Yan, "High-damage-resistant tungsten disulfide saturable absorber mirror for passively Q-switched fiber laser", Optics Express 24, 16287 (2016). CrossRef J. Lin, K. Yan, Y. Zhou, L. Xu, C. Gu, and Q. Zhan, "Tungsten disulphide based all fiber Q-switching cylindrical-vector beam generation", Applied Physics Letters 107, 191108 (2015). CrossRef H. Chen, Y. Chen, J. Yin, X. Zhang, T. Guo, and P. Yan, "High-damage-resistant tungsten disulfide saturable absorber mirror for passively Q-switched fiber laser", Optics Express 24, 16287 (2016). CrossRef K. Mohamed, B. Hamida, S. Khan, L. Hussein, M. Ahmat, E. Ismail, N. Kadir, A. Latif, S. Harun, "Q-switched erbium-doped fibre laser based on molybdenum disulfide and tungsten disulfide as saturable absorbers," Ukrainian Journal of Physical Optics, 18 (2017). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
8

Diyaljee, Vishnu. "Discussion of “New Model for Predicting Permanent Strain of Granular Materials in Embankment Subjected to Low Cyclic Loadings” by Wen-Bo Chen, Wei-Qiang Feng, Jian-Hua Yin, Jin-Miao Chen, Lalit Borana, and Ren-Peng Chen." Journal of Geotechnical and Geoenvironmental Engineering 147, no. 11 (November 2021): 07021026. http://dx.doi.org/10.1061/(asce)gt.1943-5606.0002656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Wen-Bo, Wei-Qiang Feng, Jian-Hua Yin, Jin-Miao Chen, Lalit Borana, and Ren-Peng Chen. "Closure to “New Model for Predicting Permanent Strain of Granular Materials in Embankment Subjected to Low Cyclic Loadings” by Wen-Bo Chen, Wei-Qiang Feng, Jian-Hua Yin, Jin-Miao Chen, Lalit Borana, and Ren-Peng Chen." Journal of Geotechnical and Geoenvironmental Engineering 147, no. 11 (November 2021): 07021027. http://dx.doi.org/10.1061/(asce)gt.1943-5606.0002657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fogel, Joshua A. "Chin-tai Jih-pen tsai-Hua wen-hua chi she-hui shih-yeh chih yen-chiu [A Study of Modern Japanese Cultural and Social Enterprises in China]. By Huang Fu-ch'ing. Taipei: Institute of Modern History, Academia Sinica (Monograph Series, no. 45), 1982. v, 324 pp. Bibliography, Index. $7.60 (cloth); $5.80 (paper)." Journal of Asian Studies 44, no. 2 (February 1985): 371–73. http://dx.doi.org/10.2307/2055938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Matysiak, Wiktor, Tomasz Tański, and Weronika Monika Smok. "Morphology and structure characterization of crystalline SnO2 1D nanostructures." Photonics Letters of Poland 12, no. 3 (September 30, 2020): 70. http://dx.doi.org/10.4302/plp.v12i3.1019.

Full text
Abstract:
In recent years, many attempts have been made to improve the sensory properties of SnO2, including design of sensors based on one-dimensional nanostructures of this material, such as nanofibers, nanotubes or nanowires. One of the simpler methods of producing one-dimensional tin oxide nanomaterials is to combine the electrospinning method with a sol-gel process. The purpose of this work was to produce SnO2 nanowires using a hybrid electrospinning method combined with a heat treatment process at the temperature of 600 °C and to analyze the morphology and structure of the one-dimensional nanomaterial produced in this way. Analysis of the morphology of composite one-dimensional tin oxide nanostructures showed that smooth, homogeneous and crystalline nanowires were obtained. Full Text: PDF ReferencesN. Dharmaraj, C.H. Kim, K.W. Kim, H.Y. Kim, E.K. Suh, "Spectral studies of SnO2 nanofibres prepared by electrospinning method", Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 64, (2006) CrossRef N. Gao, H.Y. Li, W. Zhang, Y. Zhang, Y. Zeng, H. Zhixiang, ... & H. Liu, "QCM-based humidity sensor and sensing properties employing colloidal SnO2 nanowires", Sens. Actuators B Chem. 293, (2019), 129-135. CrossRef W. Ge, Y. Chang, V. Natarajan, Z. Feng, J. Zhan, X. Ma, "In2O3-SnO2 hybrid porous nanostructures delivering enhanced formaldehyde sensing performance", J.Alloys and Comp. 746, (2018) CrossRef M. Zhang, Y. Zhen, F. Sun, C. Xu, "Hydrothermally synthesized SnO2-graphene composites for H2 sensing at low operating temperature", Mater. Sci. Eng. B. 209, (2016), 37-44. CrossRef Y. Zhang, X. He, J. Li, Z. Miao, F. Huang, "Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers", Sens. Actuators B Chem. 132, (2008), 67-73. CrossRef W.Q. Li, S.Y. Ma, J. Luo, Y.Z. Mao, L. Cheng, D.J. Gengzang, X.L. Xu, S H. Yan, "Synthesis of hollow SnO2 nanobelts and their application in acetone sensor", Mater. Lett. 132, (2014), 338-341. CrossRef E. Mudra, I. Shepa, O. Milkovic, Z. Dankova, A. Kovalcikova, A. Annusova, E. Majkova, J. Dusza, "Effect of iron doping on the properties of SnO2 nano/microfibers", Appl. Surf. Sci. 480, (2019), 876-881. CrossRef P. Mohanapriya, H. Segawa, K. Watanabe, K. Watanabe, S. Samitsu, T.S. Natarajan, N.V. Jaya, N. Ohashi, "Enhanced ethanol-gas sensing performance of Ce-doped SnO2 hollow nanofibers prepared by electrospinning", Sens. Actuators B Chem. 188, (2013), 872-878. CrossRef W.Q. Li, S.Y. Ma, Y.F. Li, X.B. Li, C.Y. Wang, X.H. Yang, L. Cheng, Y.Z. Mao, J. Luo, D.J. Gengzang, G.X. Wan, X.L. Xu, "Preparation of Pr-doped SnO2 hollow nanofibers by electrospinning method and their gas sensing properties", J.Alloys and Comp. 605, (2014), 80-88. CrossRef X.H. Xu, S.Y. Ma, X.L. Xu, T. Han, S.T. Pei, Y. Tie, P.F. Cao, W.W. Liu, B.J. Wang, R. Zhang, J.L. Zhang, "Ultra-sensitive glycol sensing performance with rapid-recovery based on heterostructured ZnO-SnO2 hollow nanotube", Mater. Lett, 273, (2020), 127967. CrossRef F. Li, X. Gao, R. Wang, T. Zhang, G. Lu, Sens. "Study on TiO2-SnO2 core-shell heterostructure nanofibers with different work function and its application in gas sensor", Actuators B Chem, 248, (2017), 812-819. CrossRef S. Bai, W. Guo, J. Sun, J. Li, Y. Tian, A. Chen, R. Luo, D. Li, "Synthesis of SnO2–CuO heterojunction using electrospinning and application in detecting of CO", Sens Actuators B Chem, 226, (2016), 96-103. CrossRef H. Du, P.J. Yao, Y. Sun, J. Wang, H. Wang, N. Yu, "Electrospinning Hetero-Nanofibers In2O3/SnO2 of Homotype Heterojunction with High Gas Sensing Activity", Sensors, 17, (2017), 1822. CrossRef X. Wang, H. Fan, P. Ren, "Electrospinning derived hollow SnO2 microtubes with highly photocatalytic property", Catal. Commun. 31, (2013), 37-41. CrossRef L. Cheng, S.Y. Ma, T.T. Wang, X.B. Li, J. Luo, W.Q. Li, Y.Z. Mao, D.J Gengzang, "Synthesis and characterization of SnO2 hollow nanofibers by electrospinning for ethanol sensing properties", Mater. Lett. 131, (2014), 23-26. CrossRef P.H. Phuoc, C.M. Hung, N.V. Toan, N.V. Duy, N.D. Hoa, N.V. Hieu, "One-step fabrication of SnO2 porous nanofiber gas sensors for sub-ppm H2S detection", Sens. Actuators A Phys. 303, (2020), 111722. CrossRef A.E. Deniz, H.A. Vural, B. Ortac, T. Uyar, "Gold nanoparticle/polymer nanofibrous composites by laser ablation and electrospinning", Matter. Lett. 65, (2011), 2941-2943. CrossRef S. Sagadevan, J. Podder, "Investigation on Structural, Surface Morphological and Dielectric Properties of Zn-doped SnO2 Nanoparticles", Mater. Res. 19, (2016), 420-425. CrossRef
APA, Harvard, Vancouver, ISO, and other styles
12

Hens, Luc, Nguyen An Thinh, Tran Hong Hanh, Ngo Sy Cuong, Tran Dinh Lan, Nguyen Van Thanh, and Dang Thanh Le. "Sea-level rise and resilience in Vietnam and the Asia-Pacific: A synthesis." VIETNAM JOURNAL OF EARTH SCIENCES 40, no. 2 (January 19, 2018): 127–53. http://dx.doi.org/10.15625/0866-7187/40/2/11107.

Full text
Abstract:
Climate change induced sea-level rise (SLR) is on its increase globally. Regionally the lowlands of China, Vietnam, Bangladesh, and islands of the Malaysian, Indonesian and Philippine archipelagos are among the world’s most threatened regions. Sea-level rise has major impacts on the ecosystems and society. It threatens coastal populations, economic activities, and fragile ecosystems as mangroves, coastal salt-marches and wetlands. This paper provides a summary of the current state of knowledge of sea level-rise and its effects on both human and natural ecosystems. The focus is on coastal urban areas and low lying deltas in South-East Asia and Vietnam, as one of the most threatened areas in the world. About 3 mm per year reflects the growing consensus on the average SLR worldwide. The trend speeds up during recent decades. The figures are subject to local, temporal and methodological variation. In Vietnam the average values of 3.3 mm per year during the 1993-2014 period are above the worldwide average. Although a basic conceptual understanding exists that the increasing global frequency of the strongest tropical cyclones is related with the increasing temperature and SLR, this relationship is insufficiently understood. Moreover the precise, complex environmental, economic, social, and health impacts are currently unclear. SLR, storms and changing precipitation patterns increase flood risks, in particular in urban areas. Part of the current scientific debate is on how urban agglomeration can be made more resilient to flood risks. Where originally mainly technical interventions dominated this discussion, it becomes increasingly clear that proactive special planning, flood defense, flood risk mitigation, flood preparation, and flood recovery are important, but costly instruments. Next to the main focus on SLR and its effects on resilience, the paper reviews main SLR associated impacts: Floods and inundation, salinization, shoreline change, and effects on mangroves and wetlands. The hazards of SLR related floods increase fastest in urban areas. This is related with both the increasing surface major cities are expected to occupy during the decades to come and the increasing coastal population. In particular Asia and its megacities in the southern part of the continent are increasingly at risk. The discussion points to complexity, inter-disciplinarity, and the related uncertainty, as core characteristics. An integrated combination of mitigation, adaptation and resilience measures is currently considered as the most indicated way to resist SLR today and in the near future.References Aerts J.C.J.H., Hassan A., Savenije H.H.G., Khan M.F., 2000. Using GIS tools and rapid assessment techniques for determining salt intrusion: Stream a river basin management instrument. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25, 265-273. Doi: 10.1016/S1464-1909(00)00014-9. Alongi D.M., 2002. Present state and future of the world’s mangrove forests. Environmental Conservation, 29, 331-349. Doi: 10.1017/S0376892902000231 Alongi D.M., 2015. The impact of climate change on mangrove forests. Curr. Clim. Change Rep., 1, 30-39. Doi: 10.1007/s404641-015-0002-x. Anderson F., Al-Thani N., 2016. Effect of sea level rise and groundwater withdrawal on seawater intrusion in the Gulf Coast aquifer: Implications for agriculture. Journal of Geoscience and Environment Protection, 4, 116-124. Doi: 10.4236/gep.2016.44015. Anguelovski I., Chu E., Carmin J., 2014. Variations in approaches to urban climate adaptation: Experiences and experimentation from the global South. Global Environmental Change, 27, 156-167. Doi: 10.1016/j.gloenvcha.2014.05.010. Arustienè J., Kriukaitè J., Satkunas J., Gregorauskas M., 2013. Climate change and groundwater - From modelling to some adaptation means in example of Klaipèda region, Lithuania. In: Climate change adaptation in practice. P. Schmidt-Thomé, J. Klein Eds. John Wiley and Sons Ltd., Chichester, UK., 157-169. Bamber J.L., Aspinall W.P., Cooke R.M., 2016. A commentary on “how to interpret expert judgement assessments of twenty-first century sea-level rise” by Hylke de Vries and Roderik S.W. Van de Wal. Climatic Change, 137, 321-328. Doi: 10.1007/s10584-016-1672-7. Barnes C., 2014. Coastal population vulnerability to sea level rise and tropical cyclone intensification under global warming. BSc-thesis. Department of Geography, University of Lethbridge, Alberta Canada. Be T.T., Sinh B.T., Miller F., 2007. Challenges to sustainable development in the Mekong Delta: Regional and national policy issues and research needs. The Sustainable Mekong Research Network, Bangkok, Thailand, 1-210. Bellard C., Leclerc C., Courchamp F., 2014. Impact of sea level rise on 10 insular biodiversity hotspots. Global Ecology and Biogeography, 23, 203-212. Doi: 10.1111/geb.12093. Berg H., Söderholm A.E., Sönderström A.S., Nguyen Thanh Tam, 2017. Recognizing wetland ecosystem services for sustainable rice farming in the Mekong delta, Vietnam. Sustainability Science, 12, 137-154. Doi: 10.1007/s11625-016-0409-x. Bilskie M.V., Hagen S.C., Medeiros S.C., Passeri D.L., 2014. Dynamics of sea level rise and coastal flooding on a changing landscape. Geophysical Research Letters, 41, 927-934. Doi: 10.1002/2013GL058759. Binh T.N.K.D., Vromant N., Hung N.T., Hens L., Boon E.K., 2005. Land cover changes between 1968 and 2003 in Cai Nuoc, Ca Mau penisula, Vietnam. Environment, Development and Sustainability, 7, 519-536. Doi: 10.1007/s10668-004-6001-z. Blankespoor B., Dasgupta S., Laplante B., 2014. Sea-level rise and coastal wetlands. Ambio, 43, 996- 005.Doi: 10.1007/s13280-014-0500-4. Brockway R., Bowers D., Hoguane A., Dove V., Vassele V., 2006. A note on salt intrusion in funnel shaped estuaries: Application to the Incomati estuary, Mozambique.Estuarine, Coastal and Shelf Science, 66, 1-5. Doi: 10.1016/j.ecss.2005.07.014. Cannaby H., Palmer M.D., Howard T., Bricheno L., Calvert D., Krijnen J., Wood R., Tinker J., Bunney C., Harle J., Saulter A., O’Neill C., Bellingham C., Lowe J., 2015. Projected sea level rise and changes in extreme storm surge and wave events during the 21st century in the region of Singapore. Ocean Sci. Discuss, 12, 2955-3001. Doi: 10.5194/osd-12-2955-2015. Carraro C., Favero A., Massetti E., 2012. Investment in public finance in a green, low carbon economy. Energy Economics, 34, S15-S18. Castan-Broto V., Bulkeley H., 2013. A survey ofurban climate change experiments in 100 cities. Global Environmental Change, 23, 92-102. Doi: 10.1016/j.gloenvcha.2012.07.005. Cazenave A., Le Cozannet G., 2014. Sea level rise and its coastal impacts. GeoHealth, 2, 15-34. Doi: 10.1002/2013EF000188. Chu M.L., Guzman J.A., Munoz-Carpena R., Kiker G.A., Linkov I., 2014. A simplified approach for simulating changes in beach habitat due to the combined effects of long-term sea level rise, storm erosion and nourishment. Environmental modelling and software, 52, 111-120. Doi.org/10.1016/j.envcsoft.2013.10.020. Church J.A. et al., 2013. Sea level change. In: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of Intergovernmental Panel on Climate Change. Eds: Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M., Cambridge University Press, Cambridge, UK. Connell J., 2016. Last days of the Carteret Islands? Climate change, livelihoods and migration on coral atolls. Asia Pacific Viewpoint, 57, 3-15. Doi: 10.1111/apv.12118. Dasgupta S., Laplante B., Meisner C., Wheeler, Yan J., 2009. The impact of sea level rise on developing countries: A comparative analysis. Climatic Change, 93, 379-388. Doi: 10.1007/s 10584-008-9499-5. Delbeke J., Vis P., 2015. EU climate policy explained, 136p. Routledge, Oxon, UK. DiGeorgio M., 2015. Bargaining with disaster: Flooding, climate change, and urban growth ambitions in QuyNhon, Vietnam. Public Affairs, 88, 577-597. Doi: 10.5509/2015883577. Do Minh Duc, Yasuhara K., Nguyen Manh Hieu, 2015. Enhancement of coastal protection under the context of climate change: A case study of Hai Hau coast, Vietnam. Proceedings of the 10th Asian Regional Conference of IAEG, 1-8. Do Minh Duc, Yasuhara K., Nguyen Manh Hieu, Lan Nguyen Chau, 2017. Climate change impacts on a large-scale erosion coast of Hai Hau district, Vietnam and the adaptation. Journal of Coastal Conservation, 21, 47-62. Donner S.D., Webber S., 2014. Obstacles to climate change adaptation decisions: A case study of sea level rise; and coastal protection measures in Kiribati. Sustainability Science, 9, 331-345. Doi: 10.1007/s11625-014-0242-z. Driessen P.P.J., Hegger D.L.T., Bakker M.H.N., Van Renswick H.F.M.W., Kundzewicz Z.W., 2016. Toward more resilient flood risk governance. Ecology and Society, 21, 53-61. Doi: 10.5751/ES-08921-210453. Duangyiwa C., Yu D., Wilby R., Aobpaet A., 2015. Coastal flood risks in the Bangkok Metropolitan region, Thailand: Combined impacts on land subsidence, sea level rise and storm surge. American Geophysical Union, Fall meeting 2015, abstract#NH33C-1927. Duarte C.M., Losada I.J., Hendriks I.E., Mazarrasa I., Marba N., 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3, 961-968. Doi: 10.1038/nclimate1970. Erban L.E., Gorelick S.M., Zebker H.A., 2014. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environmental Research Letters, 9, 1-20. Doi: 10.1088/1748-9326/9/8/084010. FAO - Food and Agriculture Organisation, 2007.The world’s mangroves 1980-2005. FAO Forestry Paper, 153, Rome, Italy. Farbotko C., 2010. Wishful sinking: Disappearing islands, climate refugees and cosmopolitan experimentation. Asia Pacific Viewpoint, 51, 47-60. Doi: 10.1111/j.1467-8373.2010.001413.x. Goltermann D., Ujeyl G., Pasche E., 2008. Making coastal cities flood resilient in the era of climate change. Proceedings of the 4th International Symposium on flood defense: Managing flood risk, reliability and vulnerability, 148-1-148-11. Toronto, Canada. Gong W., Shen J., 2011. The response of salt intrusion to changes in river discharge and tidal mixing during the dry season in the Modaomen Estuary, China.Continental Shelf Research, 31, 769-788. Doi: 10.1016/j.csr.2011.01.011. Gosian L., 2014. Protect the world’s deltas. Nature, 516, 31-34. Graham S., Barnett J., Fincher R., Mortreux C., Hurlimann A., 2015. Towards fair outcomes in adaptation to sea-level rise. Climatic Change, 130, 411-424. Doi: 10.1007/s10584-014-1171-7. COASTRES-D-12-00175.1. Güneralp B., Güneralp I., Liu Y., 2015. Changing global patterns of urban expoàsure to flood and drought hazards. Global Environmental Change, 31, 217-225. Doi: 10.1016/j.gloenvcha.2015.01.002. Hallegatte S., Green C., Nicholls R.J., Corfee-Morlot J., 2013. Future flood losses in major coastal cities. Nature Climate Change, 3, 802-806. Doi: 10.1038/nclimate1979. Hamlington B.D., Strassburg M.W., Leben R.R., Han W., Nerem R.S., Kim K.-Y., 2014. Uncovering an anthropogenic sea-level rise signal in the Pacific Ocean. Nature Climate Change, 4, 782-785. Doi: 10.1038/nclimate2307. Hashimoto T.R., 2001. Environmental issues and recent infrastructure development in the Mekong Delta: Review, analysis and recommendations with particular reference to large-scale water control projects and the development of coastal areas. Working paper series (Working paper No. 4). Australian Mekong Resource Centre, University of Sydney, Australia, 1-70. Hibbert F.D., Rohling E.J., Dutton A., Williams F.H., Chutcharavan P.M., Zhao C., Tamisiea M.E., 2016. Coral indicators of past sea-level change: A global repository of U-series dated benchmarks. Quaternary Science Reviews, 145, 1-56. Doi: 10.1016/j.quascirev.2016.04.019. Hinkel J., Lincke D., Vafeidis A., Perrette M., Nicholls R.J., Tol R.S.J., Mazeion B., Fettweis X., Ionescu C., Levermann A., 2014. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proceedings of the National Academy of Sciences, 111, 3292-3297. Doi: 10.1073/pnas.1222469111. Hinkel J., Nicholls R.J., Tol R.S.J., Wang Z.B., Hamilton J.M., Boot G., Vafeidis A.T., McFadden L., Ganapolski A., Klei R.J.Y., 2013. A global analysis of erosion of sandy beaches and sea level rise: An application of DIVA. Global and Planetary Change, 111, 150-158. Doi: 10.1016/j.gloplacha.2013.09.002. Huong H.T.L., Pathirana A., 2013. Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam. Hydrol. Earth Syst. Sci., 17, 379-394. Doi: 10.5194/hess-17-379-2013. Hurlimann A., Barnett J., Fincher R., Osbaldiston N., Montreux C., Graham S., 2014. Urban planning and sustainable adaptation to sea-level rise. Landscape and Urban Planning, 126, 84-93. Doi: 10.1016/j.landurbplan.2013.12.013. IMHEN-Vietnam Institute of Meteorology, Hydrology and Environment, 2011. Climate change vulnerability and risk assessment study for Ca Mau and KienGiang provinces, Vietnam. Hanoi, Vietnam Institute of Meteorology, Hydrology and Environment (IMHEN), 250p. IMHEN-Vietnam Institute of Meteorology, Hydrology and Environment, Ca Mau PPC, 2011. Climate change impact and adaptation study in The Mekong Delta - Part A: Ca Mau Atlas. Hanoi, Vietnam: Institute of Meteorology, Hydrology and Environment (IMHEN), 48p. IPCC-Intergovernmental Panel on Climate Change, 2014. Fifth assessment report. Cambridge University Press, Cambridge, UK. Jevrejeva S., Jackson L.P., Riva R.E.M., Grinsted A., Moore J.C., 2016. Coastal sea level rise with warming above 2°C. Proceedings of the National Academy of Sciences, 113, 13342-13347. Doi: 10.1073/pnas.1605312113. Junk W.J., AN S., Finlayson C.M., Gopal B., Kvet J., Mitchell S.A., Mitsch W.J., Robarts R.D., 2013. Current state of knowledge regarding the world’s wetlands and their future under global climate change: A synthesis. Aquatic Science, 75, 151-167. Doi: 10.1007/s00027-012-0278-z. Jordan A., Rayner T., Schroeder H., Adger N., Anderson K., Bows A., Le Quéré C., Joshi M., Mander S., Vaughan N., Whitmarsh L., 2013. Going beyond two degrees? The risks and opportunities of alternative options. Climate Policy, 13, 751-769. Doi: 10.1080/14693062.2013.835705. Kelly P.M., Adger W.N., 2000. Theory and practice in assessing vulnerability to climate change and facilitating adaptation. Climatic Change, 47, 325-352. Doi: 10.1023/A:1005627828199. Kirwan M.L., Megonigal J.P., 2013. Tidal wetland stability in the face of human impacts and sea-level rice. Nature, 504, 53-60. Doi: 10.1038/nature12856. Koerth J., Vafeidis A.T., Hinkel J., Sterr H., 2013. What motivates coastal households to adapt pro actively to sea-level rise and increased flood risk? Regional Environmental Change, 13, 879-909. Doi: 10.1007/s10113-12-399-x. Kontgis K., Schneider A., Fox J;,Saksena S., Spencer J.H., Castrence M., 2014. Monitoring peri urbanization in the greater Ho Chi Minh City metropolitan area. Applied Geography, 53, 377-388. Doi: 10.1016/j.apgeogr.2014.06.029. Kopp R.E., Horton R.M., Little C.M., Mitrovica J.X., Oppenheimer M., Rasmussen D.J., Strauss B.H., Tebaldi C., 2014. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future, 2, 383-406. Doi: 10.1002/2014EF000239. Kuenzer C., Bluemel A., Gebhardt S., Quoc T., Dech S., 2011. Remote sensing of mangrove ecosystems: A review.Remote Sensing, 3, 878-928. Doi: 10.3390/rs3050878. Lacerda G.B.M., Silva C., Pimenteira C.A.P., Kopp Jr. R.V., Grumback R., Rosa L.P., de Freitas M.A.V., 2013. Guidelines for the strategic management of flood risks in industrial plant oil in the Brazilian coast: Adaptive measures to the impacts of sea level rise. Mitigation and Adaptation Strategies for Global Change, 19, 104-1062. Doi: 10.1007/s11027-013-09459-x. Lam Dao Nguyen, Pham Van Bach, Nguyen Thanh Minh, Pham Thi Mai Thy, Hoang Phi Hung, 2011. Change detection of land use and river bank in Mekong Delta, Vietnam using time series remotely sensed data. Journal of Resources and Ecology, 2, 370-374. Doi: 10.3969/j.issn.1674-764x.2011.04.011. Lang N.T., Ky B.X., Kobayashi H., Buu B.C., 2004. Development of salt tolerant varieties in the Mekong delta. JIRCAS Project, Can Tho University, Can Tho, Vietnam, 152. Le Cozannet G., Rohmer J., Cazenave A., Idier D., Van de Wal R., de Winter R., Pedreros R., Balouin Y., Vinchon C., Oliveros C., 2015. Evaluating uncertainties of future marine flooding occurrence as sea-level rises. Environmental Modelling and Software, 73, 44-56. Doi: 10.1016/j.envsoft.2015.07.021. Le Cozannet G., Manceau J.-C., Rohmer J., 2017. Bounding probabilistic sea-level projections with the framework of the possible theory. Environmental Letters Research, 12, 12-14. Doi.org/10.1088/1748-9326/aa5528.Chikamoto Y., 2014. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Climate Change, 4, 888-892. Doi: 10.1038/nclimate2330. Lovelock C.E., Cahoon D.R., Friess D.A., Gutenspergen G.R., Krauss K.W., Reef R., Rogers K., Saunders M.L., Sidik F., Swales A., Saintilan N., Le Xuan Tuyen, Tran Triet, 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature, 526, 559-563. Doi: 10.1038/nature15538. MA Millennium Ecosystem Assessment, 2005. Ecosystems and human well-being: Current state and trends. Island Press, Washington DC, 266p. Masterson J.P., Fienen M.N., Thieler E.R., Gesch D.B., Gutierrez B.T., Plant N.G., 2014. Effects of sea level rise on barrier island groundwater system dynamics - ecohydrological implications. Ecohydrology, 7, 1064-1071. Doi: 10.1002/eco.1442. McGanahan G., Balk D., Anderson B., 2007. The rising tide: Assessing the risks of climate changes and human settlements in low elevation coastal zones.Environment and urbanization, 19, 17-37. Doi: 10.1177/095624780707960. McIvor A., Möller I., Spencer T., Spalding M., 2012. Reduction of wind and swell waves by mangroves. The Nature Conservancy and Wetlands International, 1-27. Merryn T., Pidgeon N., Whitmarsh L., Ballenger R., 2016. Expert judgements of sea-level rise at the local scale. Journal of Risk Research, 19, 664-685. Doi.org/10.1080/13669877.2015.1043568. Monioudi I.N., Velegrakis A.F., Chatzipavlis A.E., Rigos A., Karambas T., Vousdoukas M.I., Hasiotis T., Koukourouvli N., Peduzzi P., Manoutsoglou E., Poulos S.E., Collins M.B., 2017. Assessment of island beach erosion due to sea level rise: The case of the Aegean archipelago (Eastern Mediterranean). Nat. Hazards Earth Syst. Sci., 17, 449-466. Doi: 10.5194/nhess-17-449-2017. MONRE - Ministry of Natural Resources and Environment, 2016. Scenarios of climate change and sea level rise for Vietnam. Publishing House of Environmental Resources and Maps Vietnam, Hanoi, 188p. Montz B.E., Tobin G.A., Hagelman III R.R., 2017. Natural hazards. Explanation and integration. The Guilford Press, NY, 445p. Morgan L.K., Werner A.D., 2014. Water intrusion vulnerability for freshwater lenses near islands. Journal of Hydrology, 508, 322-327. Doi: 10.1016/j.jhydrol.2013.11.002. Muis S., Güneralp B., Jongman B., Aerts J.C.H.J., Ward P.J., 2015. Science of the Total Environment, 538, 445-457. Doi: 10.1016/j.scitotenv.2015.08.068. Murray N.J., Clemens R.S., Phinn S.R., Possingham H.P., Fuller R.A., 2014. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Frontiers in Ecology and Environment, 12, 267-272. Doi: 10.1890/130260. Neumann B., Vafeidis A.T., Zimmermann J., Nicholls R.J., 2015a. Future coastal population growth and exposure to sea-level rise and coastal flooding. A global assessment. Plos One, 10, 1-22. Doi: 10.1371/journal.pone.0118571. Nguyen A. Duoc, Savenije H. H., 2006. Salt intrusion in multi-channel estuaries: a case study in the Mekong Delta, Vietnam. Hydrology and Earth System Sciences Discussions, European Geosciences Union, 10, 743-754. Doi: 10.5194/hess-10-743-2006. Nguyen An Thinh, Nguyen Ngoc Thanh, Luong Thi Tuyen, Luc Hens, 2017. Tourism and beach erosion: Valuing the damage of beach erosion for tourism in the Hoi An, World Heritage site. Journal of Environment, Development and Sustainability. Nguyen An Thinh, Luc Hens (Eds.), 2018. Human ecology of climate change associated disasters in Vietnam: Risks for nature and humans in lowland and upland areas. Springer Verlag, Berlin.Nguyen An Thinh, Vu Anh Dung, Vu Van Phai, Nguyen Ngoc Thanh, Pham Minh Tam, Nguyen Thi Thuy Hang, Le Trinh Hai, Nguyen Viet Thanh, Hoang Khac Lich, Vu Duc Thanh, Nguyen Song Tung, Luong Thi Tuyen, Trinh Phuong Ngoc, Luc Hens, 2017. Human ecological effects of tropical storms in the coastal area of Ky Anh (Ha Tinh, Vietnam). Environ Dev Sustain, 19, 745-767. Doi: 10.1007/s/10668-016-9761-3. Nguyen Van Hoang, 2017. Potential for desalinization of brackish groundwater aquifer under a background of rising sea level via salt-intrusion prevention river gates in the coastal area of the Red River delta, Vietnam. Environment, Development and Sustainability. Nguyen Tho, Vromant N., Nguyen Thanh Hung, Hens L., 2008. Soil salinity and sodicity in a shrimp farming coastal area of the Mekong Delta, Vietnam. Environmental Geology, 54, 1739-1746. Doi: 10.1007/s00254-007-0951-z. Nguyen Thang T.X., Woodroffe C.D., 2016. Assessing relative vulnerability to sea-level rise in the western part of the Mekong River delta. Sustainability Science, 11, 645-659. Doi: 10.1007/s11625-015-0336-2. Nicholls N.N., Hoozemans F.M.J., Marchand M., Analyzing flood risk and wetland losses due to the global sea-level rise: Regional and global analyses.Global Environmental Change, 9, S69-S87. Doi: 10.1016/s0959-3780(99)00019-9. Phan Minh Thu, 2006. Application of remote sensing and GIS tools for recognizing changes of mangrove forests in Ca Mau province. In Proceedings of the International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Ho Chi Minh City, Vietnam, 9-11 November, 1-17. Reise K., 2017. Facing the third dimension in coastal flatlands.Global sea level rise and the need for coastal transformations. Gaia, 26, 89-93. Renaud F.G., Le Thi Thu Huong, Lindener C., Vo Thi Guong, Sebesvari Z., 2015. Resilience and shifts in agro-ecosystems facing increasing sea-level rise and salinity intrusion in Ben Tre province, Mekong Delta. Climatic Change, 133, 69-84. Doi: 10.1007/s10584-014-1113-4. Serra P., Pons X., Sauri D., 2008. Land cover and land use in a Mediterranean landscape. Applied Geography, 28, 189-209. Shearman P., Bryan J., Walsh J.P., 2013.Trends in deltaic change over three decades in the Asia-Pacific Region. Journal of Coastal Research, 29, 1169-1183. Doi: 10.2112/JCOASTRES-D-12-00120.1. SIWRR-Southern Institute of Water Resources Research, 2016. Annual Report. Ministry of Agriculture and Rural Development, Ho Chi Minh City, 1-19. Slangen A.B.A., Katsman C.A., Van de Wal R.S.W., Vermeersen L.L.A., Riva R.E.M., 2012. Towards regional projections of twenty-first century sea-level change based on IPCC RES scenarios. Climate Dynamics, 38, 1191-1209. Doi: 10.1007/s00382-011-1057-6. Spencer T., Schuerch M., Nicholls R.J., Hinkel J., Lincke D., Vafeidis A.T., Reef R., McFadden L., Brown S., 2016. Global coastal wetland change under sea-level rise and related stresses: The DIVA wetland change model. Global and Planetary Change, 139, 15-30. Doi:10.1016/j.gloplacha.2015.12.018. Stammer D., Cazenave A., Ponte R.M., Tamisiea M.E., 2013. Causes of contemporary regional sea level changes. Annual Review of Marine Science, 5, 21-46. Doi: 10.1146/annurev-marine-121211-172406. Tett P., Mee L., 2015. Scenarios explored with Delphi. In: Coastal zones ecosystems services. Eds., Springer, Berlin, Germany, 127-144. Tran Hong Hanh, 2017. Land use dynamics, its drivers and consequences in the Ca Mau province, Mekong delta, Vietnam. PhD dissertation, 191p. VUBPRESS Brussels University Press, ISBN 9789057186226, Brussels, Belgium. Tran Thuc, Nguyen Van Thang, Huynh Thi Lan Huong, Mai Van Khiem, Nguyen Xuan Hien, Doan Ha Phong, 2016. Climate change and sea level rise scenarios for Vietnam. Ministry of Natural resources and Environment. Hanoi, Vietnam. Tran Hong Hanh, Tran Thuc, Kervyn M., 2015. Dynamics of land cover/land use changes in the Mekong Delta, 1973-2011: A remote sensing analysis of the Tran Van Thoi District, Ca Mau province, Vietnam. Remote Sensing, 7, 2899-2925. Doi: 10.1007/s00254-007-0951-z Van Lavieren H., Spalding M., Alongi D., Kainuma M., Clüsener-Godt M., Adeel Z., 2012. Securing the future of Mangroves. The United Nations University, Okinawa, Japan, 53, 1-56. Water Resources Directorate. Ministry of Agriculture and Rural Development, 2016. Available online: http://www.tongcucthuyloi.gov.vn/Tin-tuc-Su-kien/Tin-tuc-su-kien-tong-hop/catid/12/item/2670/xam-nhap-man-vung-dong-bang-song-cuu-long--2015---2016---han-han-o-mien-trung--tay-nguyen-va-giai-phap-khac-phuc. Last accessed on: 30/9/2016. Webster P.J., Holland G.J., Curry J.A., Chang H.-R., 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844-1846. Doi: 10.1126/science.1116448. Were K.O., Dick O.B., Singh B.R., 2013. Remotely sensing the spatial and temporal land cover changes in Eastern Mau forest reserve and Lake Nakuru drainage Basin, Kenya. Applied Geography, 41, 75-86. Williams G.A., Helmuth B., Russel B.D., Dong W.-Y., Thiyagarajan V., Seuront L., 2016. Meeting the climate change challenge: Pressing issues in southern China an SE Asian coastal ecosystems. Regional Studies in Marine Science, 8, 373-381. Doi: 10.1016/j.rsma.2016.07.002. Woodroffe C.D., Rogers K., McKee K.L., Lovdelock C.E., Mendelssohn I.A., Saintilan N., 2016. Mangrove sedimentation and response to relative sea-level rise. Annual Review of Marine Science, 8, 243-266. Doi: 10.1146/annurev-marine-122414-034025.
APA, Harvard, Vancouver, ISO, and other styles
13

Huu Tho, Nguyen, Trang Thanh Tu, Trac Minh Nhan, Pham Hong Cam, and Pham Thi Thi. "The Geometries and Stabilities of Neutral and Anionic Vanadium Doped Germanium Clusters VGen0/-( n = 9 - 13): Density Functional Theory Investigations." VNU Journal of Science: Natural Sciences and Technology 35, no. 1 (March 26, 2019). http://dx.doi.org/10.25073/2588-1140/vnunst.4827.

Full text
Abstract:
The geometries, stabilities of VGen0/- (n = 9 - 13) clusters were systematically studied by the density functional theory (DFT) using the BP86 functional and LANL2DZ basis set. Several possible multiplicities of each cluster were tested to determine the most stable structure among the isomers. The average binding energy per atom, fragmentation energy, second order energy difference and HOMO-LUMO gaps were evaluated. The results indicated that the neutral and anionic clusters possess higher stability when n = 10 and 12. The vertical detachment energy (VDE) and adiabatic detachment energy (ADE) were also calculated for anionic cluster to investigate their stabilities. Among neutral clusters, VGe10 had both the highest vertical ionization potential (VIP) and chemical hardness. Keywords BP86/LANL2DZ, binding energy, VGen0/- clusters, structure of clusters References [1] Shunping Shi, Yiliang Liu, Chuanyu Zhang, Banglin Deng, Gang Jiang (2015). A Computational Investigation of Aluminum-doped Germanium Clusters by Density Functional Theory Study. Computational and Theoretical Chemistry, 1054, pp. 8-15[2] Wen-Jie Zhao, Yuan-Xu Wang (2009). Geometries, stabilities, and Magnetic Properties of MnGen (n = 2 – 16) Clusters: Density-functional Theory Investigations. Journal of Molecular Structure: THEOCHEM, 901 (1–3), pp. 18-23.[3] Shi Shun-Ping, Liu Yi-Liang, Deng Bang-Lin, Zhang Chuan-Yu, and Jiang Gang (2016). Density Functional Theory Study of The Geometrical and Electronic Structures of (n = 1 - 9) clusters. World Scientific Publishing Company, 30, pp. 1750022-1750039.[4] J.Stato, H.Kobayashi, K. Ikarashi, N.Saito, H.Nishiyama, and Y. Inoue (2004). Photocatalitic Activity for Water Decomposition of RuO2-Dispersed Zn2GeO4 with d10 Configuration. The Journal of Physical Chemistry B, 108 (14), pp. 4369-4375.[5] Daoxin Dai, Molly Piels, and John E. Bowers (2014). Monolithic Germanium/Silicon Photodetectors With Decoupled Structures: Resonant APDs and UTC Photodiodes. IEEE Journal of Selected Topics in Quantum Electronics, 20 (6), pp. 3802214-3802227.[6] Chia-Yun Chou, Gyeong S. Hwang (2014). On The Origin of The Significant Difference in Lithiation Behavior Between Silicon and Germanium. Journal of Power Sources, 263, pp. 252-258.[7] Siwen Zhang, Bosi Yin, Yang Jiao, Yang Liu, Xu Zhang, Fengyu Qu, Ahmad Umar, Xiang Wu (2014). Ultra-long Germanium Oxide Nanowires: Structures and Optical Properties. Journal of Alloys and Compounds, 606, pp. 149-153.[8] T. Herrmannsdörfer, V. Heera, O. Ignatchik, M. Uhlarz, A. Mücklich, M. Posselt, H. Reuther, B. Schmidt, K.-H. Heinig, W. Skorupa, M. Voelskow, C. Wündisch, R. Skrotzki, M. Helm, and J. Wosnitza (2009).Superconducting State in a Gallium-Doped Germanium Layer at Low Temperatures. Physical Review Letters, 102, pp. 217003-217006.[9] Vijay Kumar, and Yoshiyuki Kawazoe (2002). Metal-Encapsulated Caged Clusters of Germanium with Large Gaps and Different Growth Behavior than Silicon. Physical Review Letters, 88, pp. 235504-235507.[10] Xiao-Jiao Deng, Xiang-Yu Kong, Hong-Guang Xu, Xi-Ling Xu, Gang Feng, and Wei-Jun Zheng (2015). Photoelectron Spectroscopy and Density Functional Calculations of VGen- (n = 3 − 12) Clusters. The Journal of Physical Chemistry C, 119 (20), pp. 11048-11055.[11] John P. Perdew, Kieron Burke, and Matthias Ernzerhof (1996).Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, pp. 3865-3868.[12] Chaouki Siouani, Sofiane Mahtout, Sofiane Safer, and Franck Rabilloud (2017).Structure, Stability and Electronic and Magnetic Properties of VGen (n = 1 - 19) Clusters. The Journal of Physical Chemistry A, 121 (18), pp. 3540-3554.[13] Jin Wang, and Ju-Guang Han (2006).A Theoretical Study on Growth Patterns of Ni-Doped Germanium Clusters.The Journal of Physical Chemistry B, 110 (15), pp. 7820-7827.[14] Debashis Bandyopadhyay and Prasenjit Sen (2010). Density Functional Investigation of Structure and Stability of Gen and GenNi (n = 1 − 20) Clusters: Validity of the Electron Counting Rule. The Journal of Physical Chemistry A, 114 (4), pp. 1835-1842[15] Soumaia Djaadi, Kamal Eddine Aiadi, and Sofiane Mahtout (2018). Frist Principles Study of Structural, electronic and magnetic properties of (n = 1 - 17) clusters. Journal of Semiconductors, 39 (4), pp. 42001-420013.[16] İskender Muz,Mustafa Kurban,Kazım Şanlıc (2018). Analysis of the Geometrical Properties and Electronic Structure of Arsenide Doped Boron Cluster: Ab-initio approach. Inorganica Chimica Acta, 474, pp. 66-72.[17] Axel D. Becke (1988). Density-functional exchange - energy approximation with correct asymptotic behavior.Physical Review A, 38, pp. 3098-3100.[18] Willard R. Wadt, P. Jeffrey Hay (1985). Ab initio effective core potentials for molecular calculations.Potentials for main group elements Na to Bi.The Journal of Chemical Physics, 82 (1), pp. 284-298.[19] Willard R. Wadt, P. Jeffrey Hay (1985). Ab initio effective core potentials for molecular calculations.Potentials for K to Au including the outermost core orbitals.The Journal of Chemical Physics, 82 (1), pp. 299-310.[20] Willard R. Wadt, P. Jeffrey Hay (1985). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics, 82 (1), pp. 270-283.[21] Gabriele Manca, Samia Kahla, Jean-Yves Saillard, Rémi Marchal, Jean-François Halet (2017). Small Ligated Organometallic Pdn Clusters (n = 4 - 12): A DFT Investigation. Journal of Cluster Science, 28 (2), pp. 853-868.[22] Tran Dieu Hang, Huynh Minh Hung, Lam Ngoc Thiem. Hue M. T. Nguyen (2015). Electronic structure and thermochemical properties of neutral and anionic rhodium clusters Rhn, n = 2 – 13. Evolution of structures and stabilities of binary clusters RhmM (M = Fe, Co, Ni; m = 1 – 6). Computational and Theoretical Chemistry, 1068, pp. 30–41.[23] Michael J. Frisch, et al. (2010). Gaussian 09, Revision C.01.Gaussian, Inc., Wallingford CT.
APA, Harvard, Vancouver, ISO, and other styles
14

"The Wooden Man's Bride [Yan shen]. Produced by Ying-Hsiang Wang; Executive Producers Yu Shi and Li Xudong; directed by Huang Jianxin; screenplay by Yang Zhengguang. 1994; color; 114 minutes. Chinese with English subtitles. Distributor: Arrow Entertainment, 1 Rockefeller Plaza, 16th Floor, New York, N.Y 10020 (212) 332-8140, Farewell My Concubine [Bawang bie ji]. Produced by Feng Hsu; directed by Chen Kaige; screenplay by Lillian Lee and Wei Lu. 1993; color; 157 minutes. Chinese with English subtitles. Distributor: Miramax Films, The Blue Kite [Lan Fengzheng]. Directed by Tian Zhuangzhuang. 1994; color; 138 minutes. Chinese with English subtitles. Distributor: Kino International, 333 W 39th Street, New York, N.Y 10018 (800) 562-3330 and To Live [Huo zhe]. Directed by Zhang Yimou; screenplay by Yu Hua and Wei Lu; produced by Fusheng Chin, Funhong Kow, and Christophe Tseng. 1994; color; 129 minutes. Chinese with English subtitles. Distributor: Samuel Goldwyn Company." American Historical Review, October 1995. http://dx.doi.org/10.1086/ahr/100.4.1212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wang, Jing. "The Coffee/Café-Scape in Chinese Urban Cities." M/C Journal 15, no. 2 (May 2, 2012). http://dx.doi.org/10.5204/mcj.468.

Full text
Abstract:
IntroductionIn this article, I set out to accomplish two tasks. The first is to map coffee and cafés in Mainland China in different historical periods. The second is to focus on coffee and cafés in the socio-cultural milieu of contemporary China in order to understand the symbolic value of the emerging coffee/café-scape. Cafés, rather than coffee, are at the centre of this current trend in contemporary Chinese cities. With instant coffee dominating as a drink, the Chinese have developed a cultural and social demand for cafés, but have not yet developed coffee palates. Historical Coffee Map In 1901, coffee was served in a restaurant in the city of Tianjin. This restaurant, named Kiessling, was run by a German chef, a former solider who came to China with the eight-nation alliance. At that time, coffee was reserved mostly for foreign politicians and military officials as well as wealthy businessmen—very few ordinary Chinese drank it. (For more history of Kiessling, including pictures and videos, see Kiessling). Another group of coffee consumers were from the cultural elites—the young revolutionary intellectuals and writers with overseas experience. It was almost a fashion among the literary elite to spend time in cafés. However, this was negatively judged as “Western” and “bourgeois.” For example, in 1932, Lu Xun, one of the most important twentieth century Chinese writers, commented on the café fashion during 1920s (133-36), and listed the reasons why he would not visit one. He did not drink coffee because it was “foreigners’ food”, and he was too busy writing for the kind of leisure enjoyed in cafés. Moreover, he did not, he wrote, have the nerve to go to a café, and particularly not the Revolutionary Café that was popular among cultural celebrities at that time. He claimed that the “paradise” of the café was for genius, and for handsome revolutionary writers (who he described as having red lips and white teeth, whereas his teeth were yellow). His final complaint was that even if he went to the Revolutionary Café, he would hesitate going in (Lu Xun 133-36). From Lu Xun’s list, we can recognise his nationalism and resistance to what were identified as Western foods and lifestyles. It is easy to also feel his dissatisfaction with those dilettante revolutionary intellectuals who spent time in cafés, talking and enjoying Western food, rather than working. In contrast to Lu Xun’s resistance to coffee and café culture, another well-known writer, Zhang Ailing, frequented cafés when she lived in Shanghai from the 1920s to 1950s. She wrote about the smell of cakes and bread sold in Kiessling’s branch store located right next to her parents’ house (Yuyue). Born into a wealthy family, exposed to Western culture and food at a very young age, Zhang Ailing liked to spend her social and writing time in cafés, ordering her favourite cakes, hot chocolate, and coffee. When she left Shanghai and immigrated to the USA, coffee was an important part of her writing life: the smell and taste reminding her of old friends and Shanghai (Chunzi). However, during Zhang’s time, it was still a privileged and elite practice to patronise a café when these were located in foreign settlements with foreign chefs, and served mainly foreigners, wealthy businessmen, and cultural celebrities. After 1949, when the Chinese Communist Party established the People’s Republic of China, until the late 1970s, there were no coffee shops in Mainland China. It was only when Deng Xiaoping suggested neo-liberalism as a so-called “reform-and-open-up” economic policy that foreign commerce and products were again seen in China. In 1988, ten years after the implementation of Deng Xiaoping’s policy, the Nestlé coffee company made the first inroads into the mainland market, featuring homegrown coffee beans in Yunnan province (China Beverage News; Dong; ITC). Nestlé’s bottled instant coffee found its way into the Chinese market, avoiding a direct challenge to the tea culture. Nestlé packaged its coffee to resemble health food products and marketed it as a holiday gift suitable for friends and relatives. As a symbol of modernity and “the West”, coffee-as-gift meshed with the traditional Chinese cultural custom that values gift giving. It also satisfied a collective desire for foreign products (and contact with foreign cultures) during the economic reform era. Even today, with its competitively low price, instant coffee dominates coffee consumption at home, in the workplace, and on Chinese airlines. While Nestlé aimed their product at native Chinese consumers, the multinational companies who later entered China’s coffee market, such as Sara Lee, mainly targeted international hotels such as IHG, Marriott, and Hyatt. The multinationals also favoured coffee shops like Kommune in Shanghai that offered more sophisticated kinds of coffee to foreign consumers and China’s upper class (Byers). If Nestlé introduced coffee to ordinary Chinese families, it was Starbucks who introduced the coffee-based “third space” to urban life in contemporary China on a signficant scale. Differing from the cafés before 1949, Starbucks stores are accessible to ordinary Chinese citizens. The first in Mainland China opened in Beijing’s China World Trade Center in January 1999, targeting mainly white-collar workers and foreigners. Starbucks coffee shops provide a space for informal business meetings, chatting with friends, and relaxing and, with its 500th store opened in 2011, dominate the field in China. Starbucks are located mainly in the central business districts and airports, and the company plans to have 1,500 sites by 2015 (Starbucks). Despite this massive presence, Starbucks constitutes only part of the café-scape in contemporary Chinese cities. There are two other kinds of cafés. One type is usually located in universities or residential areas and is frequented mainly by students or locals working in cultural professions. A representative of this kind is Sculpting in Time Café. In November 1997, two years before the opening of the first Starbucks in Beijing, two newlywed college graduates opened the first small Sculpting in Time Café near Beijing University’s East Gate. This has been expanded into a chain, and boasts 18 branches on the Mainland. (For more about its history, see Sculpting in Time Café). Interestingly, both Starbucks and Sculpting in Time Café acquired their names from literature, Starbucks from Moby Dick, and Sculpting in Time from the Russian filmmaker Andrei Tarkovsky’s film diary of the same name. For Chinese students of literature and the arts, drinking coffee is less about acquiring more energy to accomplish their work, and more about entering a sensual world, where the aroma of coffee mixes with the sounds from the coffee machine and music, as well as the lighting of the space. More importantly, cafés with this ambience become, in themselves, cultural sites associated with literature, films, and music. Owners of this kind of café are often lovers of foreign literatures, films, and cultures, and their cafés host various cultural events, including forums, book clubs, movie screenings, and music clubs. Generally speaking, coffee served in this kind of café is simpler than in the kind discussed below. This third type of café includes those located in tourist and entertainment sites such as art districts, bar areas, and historical sites, and which are frequented by foreign and native tourists, artists and other cultural workers. If Starbucks cultivates a fast-paced business/professional atmosphere, and Sculpting in Time Cafés an artsy and literary atmosphere, this third kind of café is more like an upscale “bar” with trained baristas serving complicated coffees and emphasising their flavour. These coffee shops are more expensive than the other kinds, with an average price three times that of Starbucks. Currently, cafés of this type are found only in “first-tier” cities and usually located in art districts and tourist areas—such as Beijing’s 798 Art District and Nanluo Guxiang, Shanghai’s Tai Kang Road (a.k.a. “the art street”), and Hangzhou’s Westlake area. While Nestlé and Starbucks use coffee beans grown in Yunnan provinces, these “art cafés” are more inclined to use imported coffee beans from suppliers like Sara Lee. Coffee and Cafés in Contemporary China After just ten years, there are hundreds of cafés in Chinese cities. Why has there been such a demand for coffee or, more accurately, cafés, in such a short period of time? The first reason is the lack of “third space” environments in Mainland China. Before cafés appeared in the late 1990s, stores like KFC (which opened its first store in 1987) and McDonald’s (with its first store opened in 1990) filled this role for urban residents, providing locations where customers could experience Western food, meet friends, work, or read. In fact, KFC and McDonald’s were once very popular with college students looking for a place to study. Both stores had relatively clean food environments and good lighting. They also had air conditioning in the summer and heating in the winter, which are not provided in most Chinese university dormitories. However, since neither chain was set up to be a café and customers occupying seats for long periods while ordering minimal amounts of food or drink affected profits, staff members began to indirectly ask customers to leave after dining. At the same time, as more people were able to afford to eat at KFC and McDonald’s, their fast foods were also becoming more and more popular, especially among young people. As a consequence, both types of chain restaurant were becoming noisy and crowded and, thus, no longer ideal for reading, studying, or meeting with friends. Although tea has been a traditional drink in Chinese culture, traditional teahouses were expensive places more suitable for business meetings or for the cultural or intellectual elite. Since almost every family owns a tea set and can readily purchase tea, friends and family would usually make and consume tea at home. In recent years, however, new kinds of teahouses have emerged, similar in style to cafés, targeting the younger generation with more affordable prices and a wider range of choices, so the lack of a “third space” does not fully explain the café boom. Another factor affecting the popularity of cafés has been the development and uptake of Internet technology, including the increasing use of laptops and wireless Internet in recent years. The Internet has been available in China since the late 1990s, while computers and then laptops entered ordinary Chinese homes in the early twenty-first century. The IT industry has created not only a new field of research and production, but has also fostered new professions and demands. Particularly, in recent years in Mainland China, a new socially acceptable profession—freelancing in such areas as graphic design, photography, writing, film, music, and the fashion industry—has emerged. Most freelancers’ work is computer- and Internet-based. Cafés provide suitable working space, with wireless service, and the bonus of coffee that is, first of all, somatically stimulating. In addition, the emergence of the creative and cultural industries (which are supported by the Chinese government) has created work for these freelancers and, arguably, an increasing demand for café-based third spaces where such people can meet, talk and work. Furthermore, the flourishing of cafés in first-tier cities is part of the “aesthetic economy” (Lloyd 24) that caters to the making and selling of lifestyle experience. Alongside foreign restaurants, bars, galleries, and design firms, cafés contribute to city branding, and link a city to the global urban network. Cafés, like restaurants, galleries and bars, provide a space for the flow of global commodities, as well as for the human flow of tourists, travelling artists, freelancers, and cultural specialists. Finally, cafés provide a type of service that contributes to friendly owner/waiter-customer relations. During the planned-economy era, most stores and hotels in China were State-owned, staff salaries were not related to individual performance, and indifferent (and even unfriendly) service was common. During the economic reform era, privately owned stores and shops began to replace State-owned ones. At the same time, a large number of people from the countryside flowed into the cities seeking opportunities. Most had little if any professional training and so could only find work in factories or in the service industry. However, most café employees are urban, with better educational backgrounds, and many were already familiar with coffee culture. In addition, café owners, particularly those of places like Sculpting in Time Cafe, often invest in creating a positive, community atmosphere, learning about their customers and sharing personal experiences with their regular clients. This leads to my next point—the generation of the 1980s’ need for a social community. Cafés’ Symbolic Value—Community A demand for a sense of community among the generation of the 1980s is a unique socio-cultural phenomenon in China, which paradoxically co-exists with their desire for individualism. Mao Zedong started the “One Child Policy” in 1979 to slow the rapid population growth in China, and the generations born under this policy are often called “the lonely generations,” with both parents working full-time. At the same time, they are “the generation of me,” labelled as spoiled, self-centred, and obsessed with consumption (de Kloet; Liu; Rofel; Wang). The individuals of this generation, now aged in their 20s and 30s, constitute the primary consumers of coffee in China. Whereas individualism is an important value to them, a sense of community is also desirable in order to compensate for their lack of siblings. Furthermore, the 1980s’ generation has also benefitted from the university expansion policy implemented in 1999. Since then, China has witnessed a surge of university students and graduates who not only received scientific and other course-based knowledge, but also had a better chance to be exposed to foreign cultures through their books, music, and movies. With this interesting tension between individualism and collectivism, the atmosphere provided by cafés has fostered a series of curious temporary communities built on cultural and culinary taste. Interestingly, it has become an aspiration of many young college students and graduates to open a community-space style café in a city. One of the best examples is the new Henduoren’s (Many People’s) Café. This was a project initiated by Wen Erniu, a recent college graduate who wanted to open a café in Beijing but did not have sufficient funds to do so. She posted a message on the Internet, asking people to invest a minimum of US$316 to open a café with her. With 78 investors, the café opened in September 2011 in Beijing (see pictures of Henduoren’s Café). In an interview with the China Daily, Wen Erniu stated that, “To open a cafe was a dream of mine, but I could not afford it […] We thought opening a cafe might be many people’s dream […] and we could get together via the Internet to make it come true” (quoted in Liu 2011). Conclusion: Café Culture and (Instant) Coffee in China There is a Chinese saying that, if you hate someone—just persuade him or her to open a coffee shop. Since cafés provide spaces where one can spend a relatively long time for little financial outlay, owners have to increase prices to cover their expenses. This can result in fewer customers. In retaliation, cafés—particularly those with cultural and literary ambience—host cultural events to attract people, and/or they offer food and wine along with coffee. The high prices, however, remain. In fact, the average price of coffee in China is often higher than in Europe and North America. For example, a medium Starbucks’ caffè latte in China averaged around US$4.40 in 2010, according to the price list of a Starbucks outlet in Shanghai—and the prices has recently increased again (Xinhua 2012). This partially explains why instant coffee is still so popular in China. A bag of instant Nestlé coffee cost only some US$0.25 in a Beijing supermarket in 2010, and requires only hot water, which is accessible free almost everywhere in China, in any restaurant, office building, or household. As an habitual, addictive treat, however, coffee has not yet become a customary, let alone necessary, drink for most Chinese. Moreover, while many, especially those of the older generations, could discern the quality and varieties of tea, very few can judge the quality of the coffee served in cafés. As a result, few Mainland Chinese coffee consumers have a purely somatic demand for coffee—craving its smell or taste—and the highly sweetened and creamed instant coffee offered by companies like Nestlé or Maxwell has largely shaped the current Chinese palate for coffee. Ben Highmore has proposed that “food spaces (shops, restaurants and so on) can be seen, for some social agents, as a potential space where new ‘not-me’ worlds are encountered” (396) He continues to expand that “how these potential spaces are negotiated—the various affective registers of experience (joy, aggression, fear)—reflect the multicultural shapes of a culture (its racism, its openness, its acceptance of difference)” (396). Cafés in contemporary China provide spaces where one encounters and constructs new “not-me” worlds, and more importantly, new “with-me” worlds. While café-going communicates an appreciation and desire for new lifestyles and new selves, it can be hoped that in the near future, coffee will also be appreciated for its smell, taste, and other benefits. Of course, it is also necessary that future Chinese coffee consumers also recognise the rich and complex cultural, political, and social issues behind the coffee economy in the era of globalisation. References Byers, Paul [former Managing Director, Sara Lee’s Asia Pacific]. Pers. comm. Apr. 2012. China Beverage News. “Nestlé Acquires 70% Stake in Chinese Mineral Water Producer.” (2010). 31 Mar. 2012 ‹http://chinabevnews.wordpress.com/2010/02/21/nestle-acquires-70-stake-in-chinese-mineral-water-producer›. Chunzi. 张爱玲地图[The Map of Eileen Chang]. 汉语大词典出版 [Hanyu Dacidian Chubanshe], 2003. de Kloet, Jeroen. China with a Cut: Globalization, Urban Youth and Popular Music. Amsterdam: Amsterdam UP, 2010. Dong, Jonathan. “A Caffeinated Timeline: Developing Yunnan’s Coffee Cultivation.” China Brief (2011): 24-26. Highmore, Ben. “Alimentary Agents: Food, Cultural Theory and Multiculturalism.” Journal of Intercultural Studies, 29.4 (2008): 381-98. ITC (International Trade Center). The Coffee Sector in China: An Overview of Production, Trade And Consumption, 2010. Liu, Kang. Globalization and Cultural Trends in China. Honolulu: University of Hawai’i Press, 2004. Liu, Zhihu. “From Virtual to Reality.” China Daily (Dec. 2011) 31 Mar. 2012 ‹http://www.chinadaily.com.cn/life/2011-12/26/content_14326490.htm›. Lloyd, Richard. Neobohemia: Art and Commerce in the Postindustrial City. London: Routledge, 2006. Lu, Xun. “Geming Kafei Guan [Revolutionary Café]”. San Xian Ji. Taibei Shi: Feng Yun Shi Dai Chu Ban Gong Si: Fa Xing Suo Xue Wen Hua Gong Si, Mingguo 78 (1989): 133-36. Rofel, Lisa. Desiring China: Experiments in Neoliberalism, Sexuality, and Public Culture. Durham and London: Duke UP, 2007: 1-30. “Starbucks Celebrates Its 500th Store Opening in Mainland China.” Starbucks Newsroom (Oct. 2011) 31 Mar. 2012. ‹http://news.starbucks.com/article_display.cfm?article_id=580›. Wang, Jing. High Culture Fever: Politics, Aesthetics, and Ideology in Deng’s China. Berkeley, Los Angeles, London: U of California P, 1996. Xinhua. “Starbucks Raises Coffee Prices in China Stores.” Xinhua News (Jan. 2012). 31 Mar. 2012 ‹http://news.xinhuanet.com/english/china/2012-01/31/c_131384671.htm›. Yuyue. Ed. “On the History of the Western-Style Restaurants: Aileen Chang A Frequent Customer of Kiessling.” China.com.cn (2010). 31 Mar. 2012 ‹http://www.china.com.cn/culture/txt/2010-01/30/content_19334964.htm›.
APA, Harvard, Vancouver, ISO, and other styles
16

Kuang, Lanlan. "Staging the Silk Road Journey Abroad: The Case of Dunhuang Performative Arts." M/C Journal 19, no. 5 (October 13, 2016). http://dx.doi.org/10.5204/mcj.1155.

Full text
Abstract:
The curtain rose. The howling of desert wind filled the performance hall in the Shanghai Grand Theatre. Into the center stage, where a scenic construction of a mountain cliff and a desert landscape was dimly lit, entered the character of the Daoist priest Wang Yuanlu (1849–1931), performed by Chen Yizong. Dressed in a worn and dusty outfit of dark blue cotton, characteristic of Daoist priests, Wang began to sweep the floor. After a few moments, he discovered a hidden chambre sealed inside one of the rock sanctuaries carved into the cliff.Signaled by the quick, crystalline, stirring wave of sound from the chimes, a melodious Chinese ocarina solo joined in slowly from the background. Astonished by thousands of Buddhist sūtra scrolls, wall paintings, and sculptures he had just accidentally discovered in the caves, Priest Wang set his broom aside and began to examine these treasures. Dawn had not yet arrived, and the desert sky was pitch-black. Priest Wang held his oil lamp high, strode rhythmically in excitement, sat crossed-legged in a meditative pose, and unfolded a scroll. The sound of the ocarina became fuller and richer and the texture of the music more complex, as several other instruments joined in.Below is the opening scene of the award-winning, theatrical dance-drama Dunhuang, My Dreamland, created by China’s state-sponsored Lanzhou Song and Dance Theatre in 2000. Figure 1a: Poster Side A of Dunhuang, My Dreamland Figure 1b: Poster Side B of Dunhuang, My DreamlandThe scene locates the dance-drama in the rock sanctuaries that today are known as the Dunhuang Mogao Caves, housing Buddhist art accumulated over a period of a thousand years, one of the best well-known UNESCO heritages on the Silk Road. Historically a frontier metropolis, Dunhuang was a strategic site along the Silk Road in northwestern China, a crossroads of trade, and a locus for religious, cultural, and intellectual influences since the Han dynasty (206 B.C.E.–220 C.E.). Travellers, especially Buddhist monks from India and central Asia, passing through Dunhuang on their way to Chang’an (present day Xi’an), China’s ancient capital, would stop to meditate in the Mogao Caves and consult manuscripts in the monastery's library. At the same time, Chinese pilgrims would travel by foot from China through central Asia to Pakistan, India, Nepal, Bangladesh, and Sri Lanka, playing a key role in the exchanges between ancient China and the outside world. Travellers from China would stop to acquire provisions at Dunhuang before crossing the Gobi Desert to continue on their long journey abroad. Figure 2: Dunhuang Mogao CavesThis article approaches the idea of “abroad” by examining the present-day imagination of journeys along the Silk Road—specifically, staged performances of the various Silk Road journey-themed dance-dramas sponsored by the Chinese state for enhancing its cultural and foreign policies since the 1970s (Kuang).As ethnomusicologists have demonstrated, musicians, choreographers, and playwrights often utilise historical materials in their performances to construct connections between the past and the present (Bohlman; Herzfeld; Lam; Rees; Shelemay; Tuohy; Wade; Yung: Rawski; Watson). The ancient Silk Road, which linked the Mediterranean coast with central China and beyond, via oasis towns such as Samarkand, has long been associated with the concept of “journeying abroad.” Journeys to distant, foreign lands and encounters of unknown, mysterious cultures along the Silk Road have been documented in historical records, such as A Record of Buddhist Kingdoms (Faxian) and The Great Tang Records on the Western Regions (Xuanzang), and illustrated in classical literature, such as The Travels of Marco Polo (Polo) and the 16th century Chinese novel Journey to the West (Wu). These journeys—coming and going from multiple directions and to different destinations—have inspired contemporary staged performance for audiences around the globe.Home and Abroad: Dunhuang and the Silk RoadDunhuang, My Dreamland (2000), the contemporary dance-drama, staged the journey of a young pilgrim painter travelling from Chang’an to a land of the unfamiliar and beyond borders, in search for the arts that have inspired him. Figure 3: A scene from Dunhuang, My Dreamland showing the young pilgrim painter in the Gobi Desert on the ancient Silk RoadFar from his home, he ended his journey in Dunhuang, historically considered the northwestern periphery of China, well beyond Yangguan and Yumenguan, the bordering passes that separate China and foreign lands. Later scenes in Dunhuang, My Dreamland, portrayed through multiethnic music and dances, the dynamic interactions among merchants, cultural and religious envoys, warriors, and politicians that were making their own journey from abroad to China. The theatrical dance-drama presents a historically inspired, re-imagined vision of both “home” and “abroad” to its audiences as they watch the young painter travel along the Silk Road, across the Gobi Desert, arriving at his own ideal, artistic “homeland”, the Dunhuang Mogao Caves. Since his journey is ultimately a spiritual one, the conceptualisation of travelling “abroad” could also be perceived as “a journey home.”Staged more than four hundred times since it premiered in Beijing in April 2000, Dunhuang, My Dreamland is one of the top ten titles in China’s National Stage Project and one of the most successful theatrical dance-dramas ever produced in China. With revenue of more than thirty million renminbi (RMB), it ranks as the most profitable theatrical dance-drama ever produced in China, with a preproduction cost of six million RMB. The production team receives financial support from China’s Ministry of Culture for its “distinctive ethnic features,” and its “aim to promote traditional Chinese culture,” according to Xu Rong, an official in the Cultural Industry Department of the Ministry. Labeled an outstanding dance-drama of the Chinese nation, it aims to present domestic and international audiences with a vision of China as a historically multifaceted and cosmopolitan nation that has been in close contact with the outside world through the ancient Silk Road. Its production company has been on tour in selected cities throughout China and in countries abroad, including Austria, Spain, and France, literarily making the young pilgrim painter’s “journey along the Silk Road” a new journey abroad, off stage and in reality.Dunhuang, My Dreamland was not the first, nor is it the last, staged performances that portrays the Chinese re-imagination of “journeying abroad” along the ancient Silk Road. It was created as one of many versions of Dunhuang bihua yuewu, a genre of music, dance, and dramatic performances created in the early twentieth century and based primarily on artifacts excavated from the Mogao Caves (Kuang). “The Mogao Caves are the greatest repository of early Chinese art,” states Mimi Gates, who works to increase public awareness of the UNESCO site and raise funds toward its conservation. “Located on the Chinese end of the Silk Road, it also is the place where many cultures of the world intersected with one another, so you have Greek and Roman, Persian and Middle Eastern, Indian and Chinese cultures, all interacting. Given the nature of our world today, it is all very relevant” (Pollack). As an expressive art form, this genre has been thriving since the late 1970s contributing to the global imagination of China’s “Silk Road journeys abroad” long before Dunhuang, My Dreamland achieved its domestic and international fame. For instance, in 2004, The Thousand-Handed and Thousand-Eyed Avalokiteśvara—one of the most representative (and well-known) Dunhuang bihua yuewu programs—was staged as a part of the cultural program during the Paralympic Games in Athens, Greece. This performance, as well as other Dunhuang bihua yuewu dance programs was the perfect embodiment of a foreign religion that arrived in China from abroad and became Sinicized (Kuang). Figure 4: Mural from Dunhuang Mogao Cave No. 45A Brief History of Staging the Silk Road JourneysThe staging of the Silk Road journeys abroad began in the late 1970s. Historically, the Silk Road signifies a multiethnic, cosmopolitan frontier, which underwent incessant conflicts between Chinese sovereigns and nomadic peoples (as well as between other groups), but was strongly imbued with the customs and institutions of central China (Duan, Mair, Shi, Sima). In the twentieth century, when China was no longer an empire, but had become what the early 20th-century reformer Liang Qichao (1873–1929) called “a nation among nations,” the long history of the Silk Road and the colourful, legendary journeys abroad became instrumental in the formation of a modern Chinese nation of unified diversity rooted in an ancient cosmopolitan past. The staged Silk Road theme dance-dramas thus participate in this formation of the Chinese imagination of “nation” and “abroad,” as they aestheticise Chinese history and geography. History and geography—aspects commonly considered constituents of a nation as well as our conceptualisations of “abroad”—are “invariably aestheticized to a certain degree” (Bakhtin 208). Diverse historical and cultural elements from along the Silk Road come together in this performance genre, which can be considered the most representative of various possible stagings of the history and culture of the Silk Road journeys.In 1979, the Chinese state officials in Gansu Province commissioned the benchmark dance-drama Rain of Flowers along the Silk Road, a spectacular theatrical dance-drama praising the pure and noble friendship which existed between the peoples of China and other countries in the Tang dynasty (618-907 C.E.). While its plot also revolves around the Dunhuang Caves and the life of a painter, staged at one of the most critical turning points in modern Chinese history, the work as a whole aims to present the state’s intention of re-establishing diplomatic ties with the outside world after the Cultural Revolution. Unlike Dunhuang, My Dreamland, it presents a nation’s journey abroad and home. To accomplish this goal, Rain of Flowers along the Silk Road introduces the fictional character Yunus, a wealthy Persian merchant who provides the audiences a vision of the historical figure of Peroz III, the last Sassanian prince, who after the Arab conquest of Iran in 651 C.E., found refuge in China. By incorporating scenes of ethnic and folk dances, the drama then stages the journey of painter Zhang’s daughter Yingniang to Persia (present-day Iran) and later, Yunus’s journey abroad to the Tang dynasty imperial court as the Persian Empire’s envoy.Rain of Flowers along the Silk Road, since its debut at Beijing’s Great Hall of the People on the first of October 1979 and shortly after at the Theatre La Scala in Milan, has been staged in more than twenty countries and districts, including France, Italy, Japan, Thailand, Russia, Latvia, Hong Kong, Macao, Taiwan, and recently, in 2013, at the Lincoln Center for the Performing Arts in New York.“The Road”: Staging the Journey TodayWithin the contemporary context of global interdependencies, performing arts have been used as strategic devices for social mobilisation and as a means to represent and perform modern national histories and foreign policies (Davis, Rees, Tian, Tuohy, Wong, David Y. H. Wu). The Silk Road has been chosen as the basis for these state-sponsored, extravagantly produced, and internationally staged contemporary dance programs. In 2008, the welcoming ceremony and artistic presentation at the Olympic Games in Beijing featured twenty apsara dancers and a Dunhuang bihua yuewu dancer with long ribbons, whose body was suspended in mid-air on a rectangular LED extension held by hundreds of performers; on the giant LED screen was a depiction of the ancient Silk Road.In March 2013, Chinese president Xi Jinping introduced the initiatives “Silk Road Economic Belt” and “21st Century Maritime Silk Road” during his journeys abroad in Kazakhstan and Indonesia. These initiatives are now referred to as “One Belt, One Road.” The State Council lists in details the policies and implementation plans for this initiative on its official web page, www.gov.cn. In April 2013, the China Institute in New York launched a yearlong celebration, starting with "Dunhuang: Buddhist Art and the Gateway of the Silk Road" with a re-creation of one of the caves and a selection of artifacts from the site. In March 2015, the National Development and Reform Commission (NDRC), China’s top economic planning agency, released a new action plan outlining key details of the “One Belt, One Road” initiative. Xi Jinping has made the program a centrepiece of both his foreign and domestic economic policies. One of the central economic strategies is to promote cultural industry that could enhance trades along the Silk Road.Encouraged by the “One Belt, One Road” policies, in March 2016, The Silk Princess premiered in Xi’an and was staged at the National Centre for the Performing Arts in Beijing the following July. While Dunhuang, My Dreamland and Rain of Flowers along the Silk Road were inspired by the Buddhist art found in Dunhuang, The Silk Princess, based on a story about a princess bringing silk and silkworm-breeding skills to the western regions of China in the Tang Dynasty (618-907) has a different historical origin. The princess's story was portrayed in a woodblock from the Tang Dynasty discovered by Sir Marc Aurel Stein, a British archaeologist during his expedition to Xinjiang (now Xinjiang Uygur autonomous region) in the early 19th century, and in a temple mural discovered during a 2002 Chinese-Japanese expedition in the Dandanwulike region. Figure 5: Poster of The Silk PrincessIn January 2016, the Shannxi Provincial Song and Dance Troupe staged The Silk Road, a new theatrical dance-drama. Unlike Dunhuang, My Dreamland, the newly staged dance-drama “centers around the ‘road’ and the deepening relationship merchants and travellers developed with it as they traveled along its course,” said Director Yang Wei during an interview with the author. According to her, the show uses seven archetypes—a traveler, a guard, a messenger, and so on—to present the stories that took place along this historic route. Unbounded by specific space or time, each of these archetypes embodies the foreign-travel experience of a different group of individuals, in a manner that may well be related to the social actors of globalised culture and of transnationalism today. Figure 6: Poster of The Silk RoadConclusionAs seen in Rain of Flowers along the Silk Road and Dunhuang, My Dreamland, staging the processes of Silk Road journeys has become a way of connecting the Chinese imagination of “home” with the Chinese imagination of “abroad.” Staging a nation’s heritage abroad on contemporary stages invites a new imagination of homeland, borders, and transnationalism. Once aestheticised through staged performances, such as that of the Dunhuang bihua yuewu, the historical and topological landscape of Dunhuang becomes a performed narrative, embodying the national heritage.The staging of Silk Road journeys continues, and is being developed into various forms, from theatrical dance-drama to digital exhibitions such as the Smithsonian’s Pure Land: Inside the Mogao Grottes at Dunhuang (Stromberg) and the Getty’s Cave Temples of Dunhuang: Buddhist Art on China's Silk Road (Sivak and Hood). They are sociocultural phenomena that emerge through interactions and negotiations among multiple actors and institutions to envision and enact a Chinese imagination of “journeying abroad” from and to the country.ReferencesBakhtin, M.M. The Dialogic Imagination: Four Essays. Austin, Texas: University of Texas Press, 1982.Bohlman, Philip V. “World Music at the ‘End of History’.” Ethnomusicology 46 (2002): 1–32.Davis, Sara L.M. Song and Silence: Ethnic Revival on China’s Southwest Borders. New York: Columbia University Press, 2005.Duan, Wenjie. “The History of Conservation of Mogao Grottoes.” International Symposium on the Conservation and Restoration of Cultural Property: The Conservation of Dunhuang Mogao Grottoes and the Related Studies. Eds. Kuchitsu and Nobuaki. Tokyo: Tokyo National Research Institute of Cultural Properties, 1997. 1–8.Faxian. A Record of Buddhistic Kingdoms. Translated by James Legge. New York: Dover Publications, 1991.Herzfeld, Michael. Ours Once More: Folklore, Ideology, and the Making of Modern Greece. Austin: University of Texas Press, 1985.Kuang, Lanlan. Dunhuang bi hua yue wu: "Zhongguo jing guan" zai guo ji yu jing zhong de jian gou, chuan bo yu yi yi (Dunhuang Performing Arts: The Construction and Transmission of “China-scape” in the Global Context). Beijing: She hui ke xue wen xian chu ban she, 2016.Lam, Joseph S.C. State Sacrifice and Music in Ming China: Orthodoxy, Creativity and Expressiveness. New York: State University of New York Press, 1998.Mair, Victor. T’ang Transformation Texts: A Study of the Buddhist Contribution to the Rise of Vernacular Fiction and Drama in China. Cambridge, Mass.: Council on East Asian Studies, 1989.Pollack, Barbara. “China’s Desert Treasure.” ARTnews, December 2013. Sep. 2016 <http://www.artnews.com/2013/12/24/chinas-desert-treasure/>.Polo, Marco. The Travels of Marco Polo. Translated by Ronald Latham. Penguin Classics, 1958.Rees, Helen. Echoes of History: Naxi Music in Modern China. Oxford: Oxford University Press, 2000.Shelemay, Kay Kaufman. “‘Historical Ethnomusicology’: Reconstructing Falasha Liturgical History.” Ethnomusicology 24 (1980): 233–258.Shi, Weixiang. Dunhuang lishi yu mogaoku yishu yanjiu (Dunhuang History and Research on Mogao Grotto Art). Lanzhou: Gansu jiaoyu chubanshe, 2002.Sima, Guang 司马光 (1019–1086) et al., comps. Zizhi tongjian 资治通鉴 (Comprehensive Mirror for the Aid of Government). Beijing: Guji chubanshe, 1957.Sima, Qian 司马迁 (145-86? B.C.E.) et al., comps. Shiji: Dayuan liezhuan 史记: 大宛列传 (Record of the Grand Historian: The Collective Biographies of Dayuan). Beijing: Zhonghua shuju, 1959.Sivak, Alexandria and Amy Hood. “The Getty to Present: Cave Temples of Dunhuang: Buddhist Art on China’s Silk Road Organised in Collaboration with the Dunhuang Academy and the Dunhuang Foundation.” Getty Press Release. Sep. 2016 <http://news.getty.edu/press-materials/press-releases/cave-temples-dunhuang-buddhist-art-chinas-silk-road>.Stromberg, Joseph. “Video: Take a Virtual 3D Journey to Visit China's Caves of the Thousand Buddhas.” Smithsonian, December 2012. Sep. 2016 <http://www.smithsonianmag.com/smithsonian-institution/video-take-a-virtual-3d-journey-to-visit-chinas-caves-of-the-thousand-buddhas-150897910/?no-ist>.Tian, Qing. “Recent Trends in Buddhist Music Research in China.” British Journal of Ethnomusicology 3 (1994): 63–72.Tuohy, Sue M.C. “Imagining the Chinese Tradition: The Case of Hua’er Songs, Festivals, and Scholarship.” Ph.D. Dissertation. Indiana University, Bloomington, 1988.Wade, Bonnie C. Imaging Sound: An Ethnomusicological Study of Music, Art, and Culture in Mughal India. Chicago: University of Chicago Press, 1998.Wong, Isabel K.F. “From Reaction to Synthesis: Chinese Musicology in the Twentieth Century.” Comparative Musicology and Anthropology of Music: Essays on the History of Ethnomusicology. Eds. Bruno Nettl and Philip V. Bohlman. Chicago: University of Chicago Press, 1991. 37–55.Wu, Chengen. Journey to the West. Tranlsated by W.J.F. Jenner. Beijing: Foreign Languages Press, 2003.Wu, David Y.H. “Chinese National Dance and the Discourse of Nationalization in Chinese Anthropology.” The Making of Anthropology in East and Southeast Asia. Eds. Shinji Yamashita, Joseph Bosco, and J.S. Eades. New York: Berghahn, 2004. 198–207.Xuanzang. The Great Tang Dynasty Record of the Western Regions. Hamburg: Numata Center for Buddhist Translation & Research, 1997.Yung, Bell, Evelyn S. Rawski, and Rubie S. Watson, eds. Harmony and Counterpoint: Ritual Music in Chinese Context. Stanford: Stanford University Press, 1996.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography