Journal articles on the topic 'Zermelo-Fraenkel set theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Zermelo-Fraenkel set theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mayberry, John. "Global quantification in Zermelo-Fraenkel set theory." Journal of Symbolic Logic 50, no. 2 (1985): 289–301. http://dx.doi.org/10.2307/2274215.
Full textHinnion, R. "Extensionality in Zermelo-Fraenkel Set Theory." Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 32, no. 1-5 (1986): 51–60. http://dx.doi.org/10.1002/malq.19860320107.
Full textHerman, Ari, and John Caughman. "Probability Axioms and Set Theory Paradoxes." Symmetry 13, no. 2 (2021): 179. http://dx.doi.org/10.3390/sym13020179.
Full textEnayat, Ali, and Mateusz Łełyk. "Categoricity-like Properties in the First Order Realm." Journal for the Philosophy of Mathematics 1 (September 10, 2024): 63–98. http://dx.doi.org/10.36253/jpm-2934.
Full textARAI, TOSHIYASU. "LIFTING PROOF THEORY TO THE COUNTABLE ORDINALS: ZERMELO-FRAENKEL SET THEORY." Journal of Symbolic Logic 79, no. 2 (2014): 325–54. http://dx.doi.org/10.1017/jsl.2014.6.
Full textGabbay, Murdoch. "Equivariant ZFA and the foundations of nominal techniques." Journal of Logic and Computation 30, no. 2 (2020): 525–48. http://dx.doi.org/10.1093/logcom/exz015.
Full textChen, Ray-Ming, and Michael Rathjen. "Lifschitz realizability for intuitionistic Zermelo–Fraenkel set theory." Archive for Mathematical Logic 51, no. 7-8 (2012): 789–818. http://dx.doi.org/10.1007/s00153-012-0299-2.
Full textLÖWE, BENEDIKT, and SOURAV TARAFDER. "GENERALIZED ALGEBRA-VALUED MODELS OF SET THEORY." Review of Symbolic Logic 8, no. 1 (2015): 192–205. http://dx.doi.org/10.1017/s175502031400046x.
Full textBalogun, F., O. A. Wahab, and A. I. Isah. "Axiomatization multisets: a comparative analysis." Dutse Journal of Pure and Applied Sciences 9, no. 3b (2023): 155–63. http://dx.doi.org/10.4314/dujopas.v9i3b.17.
Full textMardanov, Asliddin Khasamiddinovich. "SET THEORY: THE STUDY OF SETS, THEIR OPERATIONS, AND THE RELATIONS BETWEEN THEM." Multidisciplinary Journal of Science and Technology 5, no. 1 (2025): 622–23. https://doi.org/10.5281/zenodo.14816736.
Full textShirahata, Masaru. "A linear conservative extension of Zermelo-Fraenkel set theory." Studia Logica 56, no. 3 (1996): 361–92. http://dx.doi.org/10.1007/bf00372772.
Full textLINNEBO, ØYSTEIN. "THE POTENTIAL HIERARCHY OF SETS." Review of Symbolic Logic 6, no. 2 (2013): 205–28. http://dx.doi.org/10.1017/s1755020313000014.
Full textRathjen, Michael. "The disjunction and related properties for constructive Zermelo-Fraenkel set theory." Journal of Symbolic Logic 70, no. 4 (2005): 1233–54. http://dx.doi.org/10.2178/jsl/1129642124.
Full textWindsteiger, Wolfgang. "An automated prover for Zermelo–Fraenkel set theory in Theorema." Journal of Symbolic Computation 41, no. 3-4 (2006): 435–70. http://dx.doi.org/10.1016/j.jsc.2005.04.013.
Full textBunina, E. I., and V. K. Zakharov. "Canonical form of Tarski sets in Zermelo-Fraenkel set theory." Mathematical Notes 77, no. 3-4 (2005): 297–306. http://dx.doi.org/10.1007/s11006-005-0030-2.
Full textEnayat, Ali. "Leibnizian models of set theory." Journal of Symbolic Logic 69, no. 3 (2004): 775–89. http://dx.doi.org/10.2178/jsl/1096901766.
Full textPallares Vega, Ivonne. "Sets, Properties and Truth Values: A Category-Theoretic Approach to Zermelo’s Axiom of Separation." Athens Journal of Philosophy 1, no. 3 (2022): 135–62. http://dx.doi.org/10.30958/ajphil.1-3-2.
Full textUzquiano, Gabriel. "Models of Second-Order Zermelo Set Theory." Bulletin of Symbolic Logic 5, no. 3 (1999): 289–302. http://dx.doi.org/10.2307/421182.
Full textBoulabiar, Karim. "Lattice and Algebra Homomorphisms onC(X) in Zermelo-Fraenkel Set Theory." Quaestiones Mathematicae 38, no. 6 (2015): 835–39. http://dx.doi.org/10.2989/16073606.2014.981741.
Full textSwan, Andrew W. "A class of higher inductive types in Zermelo‐Fraenkel set theory." Mathematical Logic Quarterly 68, no. 1 (2022): 118–27. http://dx.doi.org/10.1002/malq.202100040.
Full textHeidema, Johannes. "An axiom schema of comprehension of zermelo–fraenkel–skolem set theory." History and Philosophy of Logic 11, no. 1 (1990): 59–65. http://dx.doi.org/10.1080/01445349008837157.
Full textRathjen, Michael. "Constructive Zermelo–Fraenkel set theory and the limited principle of omniscience." Annals of Pure and Applied Logic 165, no. 2 (2014): 563–72. http://dx.doi.org/10.1016/j.apal.2013.08.001.
Full textDihoum, Eman, and Michael Rathjen. "Preservation of choice principles under realizability." Logic Journal of the IGPL 27, no. 5 (2019): 746–65. http://dx.doi.org/10.1093/jigpal/jzz002.
Full textHoward, Paul. "Unions of well-ordered sets." Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 56, no. 1 (1994): 117–24. http://dx.doi.org/10.1017/s1446788700034753.
Full textFarah, Ilijas, and Ilan Hirshberg. "Simple nuclear C*-algebras not isomorphic to their opposites." Proceedings of the National Academy of Sciences 114, no. 24 (2017): 6244–49. http://dx.doi.org/10.1073/pnas.1619936114.
Full textALEXANDRU, ANDREI, and GABRIEL CIOBANU. "Uniformly supported sets and fixed points properties." Carpathian Journal of Mathematics 36, no. 3 (2020): 351–64. http://dx.doi.org/10.37193/cjm.2020.03.03.
Full textBunina, E. I., and V. K. Zakharov. "A canonical form for supertransitive standard models in Zermelo-Fraenkel set theory." Russian Mathematical Surveys 58, no. 4 (2003): 782–83. http://dx.doi.org/10.1070/rm2003v058n04abeh000646.
Full textKanovei and Katz. "A Positive Function with Vanishing Lebesgue Integral in Zermelo–Fraenkel Set Theory." Real Analysis Exchange 42, no. 2 (2017): 385. http://dx.doi.org/10.14321/realanalexch.42.2.0385.
Full textLewis, Alain A. "On the independence of core-equivalence results from Zermelo-Fraenkel set theory." Mathematical Social Sciences 19, no. 1 (1990): 55–95. http://dx.doi.org/10.1016/0165-4896(90)90038-9.
Full textRathjen, Michael. "Replacement versus collection and related topics in constructive Zermelo–Fraenkel set theory." Annals of Pure and Applied Logic 136, no. 1-2 (2005): 156–74. http://dx.doi.org/10.1016/j.apal.2005.05.010.
Full textPincus, David. "The dense linear ordering principle." Journal of Symbolic Logic 62, no. 2 (1997): 438–56. http://dx.doi.org/10.2307/2275540.
Full textAwodey, Steve, Carsten Butz, Alex Simpson, and Thomas Streicher. "Relating First-Order Set Theories and Elementary Toposes." Bulletin of Symbolic Logic 13, no. 3 (2007): 340–58. http://dx.doi.org/10.2178/bsl/1186666150.
Full textVÄÄNÄNEN, JOUKO. "AN EXTENSION OF A THEOREM OF ZERMELO." Bulletin of Symbolic Logic 25, no. 2 (2019): 208–12. http://dx.doi.org/10.1017/bsl.2019.15.
Full textVan, Der Poll John Andrew Andrew, Paula Kotzé, and Willem Labuschagne. "Automated Support for Enterprise Information Systems." JUCS - Journal of Universal Computer Science 10, no. (11) (2004): 1519–39. https://doi.org/10.3217/jucs-010-11-1519.
Full textEsser, Olivier. "An Interpretation of the Zermelo-Fraenkel Set Theory and the Kelley-Morse Set Theory in a Positive Theory." Mathematical Logic Quarterly 43, no. 3 (1997): 369–77. http://dx.doi.org/10.1002/malq.19970430309.
Full textZieliński, Marcin. "Cardinality of the sets of all bijections, injections and surjections." Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia 11 (February 5, 2020): 143–51. http://dx.doi.org/10.24917/20809751.11.8.
Full textDEISER, OLIVER. "AN AXIOMATIC THEORY OF WELL-ORDERINGS." Review of Symbolic Logic 4, no. 2 (2011): 186–204. http://dx.doi.org/10.1017/s1755020310000390.
Full textBurns, R. G., John Lawrence, and Frank Okoh. "On the number of normal subgroups of an uncountable group." Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 41, no. 3 (1986): 343–51. http://dx.doi.org/10.1017/s1446788700033802.
Full textACZEL, PETER, HAJIME ISHIHARA, TAKAKO NEMOTO, and YASUSHI SANGU. "Generalized geometric theories and set-generated classes." Mathematical Structures in Computer Science 25, no. 7 (2014): 1466–83. http://dx.doi.org/10.1017/s0960129513000236.
Full textNescolarde-Selva, Josué-Antonio, José-Luis Usó-Doménech, Lorena Segura-Abad, Kristian Alonso-Stenberg, and Hugh Gash. "Solutions of Extension and Limits of Some Cantorian Paradoxes." Mathematics 8, no. 4 (2020): 486. http://dx.doi.org/10.3390/math8040486.
Full textZheng, Yaming. "The continuum hypothesis: Its independence from Zermelo-Fraenkel set theory and impact on mathematical foundations." Theoretical and Natural Science 13, no. 1 (2023): 293–97. http://dx.doi.org/10.54254/2753-8818/13/20240865.
Full textDalen, Dirk Van, and Heinz-Dieter Ebbinghaus. "Zermelo and the Skolem Paradox." Bulletin of Symbolic Logic 6, no. 2 (2000): 145–61. http://dx.doi.org/10.2307/421203.
Full textSieg, Wilfried. "The Cantor–Bernstein theorem: how many proofs?" Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2140 (2019): 20180031. http://dx.doi.org/10.1098/rsta.2018.0031.
Full textSchrittesser, David, and Asger Törnquist. "The Ramsey property implies no mad families." Proceedings of the National Academy of Sciences 116, no. 38 (2019): 18883–87. http://dx.doi.org/10.1073/pnas.1906183116.
Full textSONPANOW, NATTAPON, and PIMPEN VEJJAJIVA. "A FINITE-TO-ONE MAP FROM THE PERMUTATIONS ON A SET." Bulletin of the Australian Mathematical Society 95, no. 2 (2016): 177–82. http://dx.doi.org/10.1017/s0004972716000757.
Full textBunina, E. I., and V. K. Zakharov. "Formula-inaccessible cardinals and a characterization of all natural models of Zermelo-Fraenkel set theory." Izvestiya: Mathematics 71, no. 2 (2007): 219–45. http://dx.doi.org/10.1070/im2007v071n02abeh002356.
Full textGregoriades, Vassilios. "A recursion theoretic characterization of the Topological Vaught Conjecture in the Zermelo-Fraenkel set theory." Mathematical Logic Quarterly 63, no. 6 (2017): 544–51. http://dx.doi.org/10.1002/malq.201600094.
Full textFarah, Ilijas, and Saharon Shelah. "RIGIDITY OF CONTINUOUS QUOTIENTS." Journal of the Institute of Mathematics of Jussieu 15, no. 1 (2014): 1–28. http://dx.doi.org/10.1017/s1474748014000218.
Full textAsselmeyer-Maluga, Torsten, and Jerzy Król. "Local External/Internal Symmetry of Smooth Manifolds and Lack of Tovariance in Physics." Symmetry 11, no. 12 (2019): 1429. http://dx.doi.org/10.3390/sym11121429.
Full textAlexandru, Andrei, and Gabriel Ciobanu. "Soft Sets with Atoms." Mathematics 10, no. 12 (2022): 1956. http://dx.doi.org/10.3390/math10121956.
Full text