Artículos de revistas sobre el tema "3D cell culture, spheroids"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "3D cell culture, spheroids".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Cesarz, Zoe, and Kenichi Tamama. "Spheroid Culture of Mesenchymal Stem Cells." Stem Cells International 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/9176357.
Texto completoSrisongkram, Tarapong, Natthida Weerapreeyakul, and Kanjana Thumanu. "Evaluation of Melanoma (SK-MEL-2) Cell Growth between Three-Dimensional (3D) and Two-Dimensional (2D) Cell Cultures with Fourier Transform Infrared (FTIR) Microspectroscopy." International Journal of Molecular Sciences 21, no. 11 (2020): 4141. http://dx.doi.org/10.3390/ijms21114141.
Texto completoLee, Dongjin, and Chaenyung Cha. "The Combined Effects of Co-Culture and Substrate Mechanics on 3D Tumor Spheroid Formation within Microgels Prepared via Flow-Focusing Microfluidic Fabrication." Pharmaceutics 10, no. 4 (2018): 229. http://dx.doi.org/10.3390/pharmaceutics10040229.
Texto completoShrestha, Sunil, Vinod Kumar Reddy Lekkala, Prabha Acharya, Darshita Siddhpura, and Moo-Yeal Lee. "Recent advances in microarray 3D bioprinting for high-throughput spheroid and tissue culture and analysis." Essays in Biochemistry 65, no. 3 (2021): 481–89. http://dx.doi.org/10.1042/ebc20200150.
Texto completoKitano, Otome, and Kohji Nakazawa. "Neuronal Differentiation of NT2 Cells in Monolayer and Spheroid Cultures." MATEC Web of Conferences 333 (2021): 07008. http://dx.doi.org/10.1051/matecconf/202133307008.
Texto completoKitano, Otome, and Kohji Nakazawa. "Neuronal Differentiation of NT2 Cells in Monolayer and Spheroid Cultures." MATEC Web of Conferences 333 (2021): 07008. http://dx.doi.org/10.1051/matecconf/202133307008.
Texto completoSon, Young-Bum, Dinesh Bharti, Saet-Byul Kim, et al. "Comparison of Pluripotency, Differentiation, and Mitochondrial Metabolism Capacity in Three-Dimensional Spheroid Formation of Dental Pulp-Derived Mesenchymal Stem Cells." BioMed Research International 2021 (July 13, 2021): 1–10. http://dx.doi.org/10.1155/2021/5540877.
Texto completoBorzenok, S. A., I. A. Popov, I. N. Saburina, and P. M. Arbukhanova. "IN VITRO INVESTIGATION OF THE TRANSPLANTATION PROSPECTS OF MULTICELLULAR SPHEROID MICROAGGREGATES OF DONOR RETINAL PIGMENT EPITHELIUM." Russian Journal of Transplantology and Artificial Organs 17, no. 3 (2015): 58–64. http://dx.doi.org/10.15825/1995-1191-2015-3-58-64.
Texto completoKo, J. Y., E. Lee, J. Kim, and G. I. Im. "THU0058 ENHANCEMENT OF CARTILAGE REGENERATION EFFICIENCY WITH HUMAN ADIPOSE STEM CELL THREE-DIMENSIONAL SPHEROID." Annals of the Rheumatic Diseases 79, Suppl 1 (2020): 241.2–241. http://dx.doi.org/10.1136/annrheumdis-2020-eular.4022.
Texto completoLee, Mason A., Kensey N. Bergdorf, Courtney J. Phifer, et al. "Novel three-dimensional cultures provide insights into thyroid cancer behavior." Endocrine-Related Cancer 27, no. 2 (2020): 111–21. http://dx.doi.org/10.1530/erc-19-0374.
Texto completoMin, Tae-Jun, Min Ji Kim, Kyung-Jung Kang, Yeoung Jo Jeoung, Se Heang Oh, and Young-Joo Jang. "3D Spheroid Formation Using BMP-Loaded Microparticles Enhances Odontoblastic Differentiation of Human Dental Pulp Stem Cells." Stem Cells International 2021 (August 23, 2021): 1–12. http://dx.doi.org/10.1155/2021/9326298.
Texto completoIvascu, Andrea, and Manfred Kubbies. "Rapid Generation of Single-Tumor Spheroids for High-Throughput Cell Function and Toxicity Analysis." Journal of Biomolecular Screening 11, no. 8 (2006): 922–32. http://dx.doi.org/10.1177/1087057106292763.
Texto completoChoi, So-Young, Soo Hyun Kang, Su Young Oh, et al. "Differential Angiogenic Potential of 3-Dimension Spheroid of HNSCC Cells in Mouse Xenograft." International Journal of Molecular Sciences 22, no. 15 (2021): 8245. http://dx.doi.org/10.3390/ijms22158245.
Texto completoGrayson, Korie A., Nidhi Jyotsana, Nerymar Ortiz-Otero, and Michael R. King. "Overcoming TRAIL-resistance by sensitizing prostate cancer 3D spheroids with taxanes." PLOS ONE 16, no. 3 (2021): e0246733. http://dx.doi.org/10.1371/journal.pone.0246733.
Texto completoBoyer, Jean Zheng, Gail D. Lewis Phillips, Hiro Nitta, et al. "Activity of trastuzumab emtansine (T-DM1) in 3D cell culture." Breast Cancer Research and Treatment 188, no. 1 (2021): 65–75. http://dx.doi.org/10.1007/s10549-021-06272-x.
Texto completoHerheliuk, Tetiana, Olena Perepelytsina, Natalia Yurchenko, Mykhailo Sydorenko, and Lyudmila Ostapchenko. "EXPRESSION OF TUMOR ASSOSIATED AND EPITHELIAL-MESENCHYMAL TRANSITION MARKERS IN 2D AND 3D CELL CULTURES OF MCF-7." EUREKA: Health Sciences 6 (November 30, 2016): 37–44. http://dx.doi.org/10.21303/2504-5679.2016.00231.
Texto completoLim, Wanyoung, and Sungsu Park. "A Microfluidic Spheroid Culture Device with a Concentration Gradient Generator for High-Throughput Screening of Drug Efficacy." Molecules 23, no. 12 (2018): 3355. http://dx.doi.org/10.3390/molecules23123355.
Texto completoXie, Lili, Mao Mao, Liang Zhou, Lusi Zhang, and Bing Jiang. "Signal Factors Secreted by 2D and Spheroid Mesenchymal Stem Cells and by Cocultures of Mesenchymal Stem Cells Derived Microvesicles and Retinal Photoreceptor Neurons." Stem Cells International 2017 (2017): 1–13. http://dx.doi.org/10.1155/2017/2730472.
Texto completoN’deh, Kaudjhis Patrick Ulrich, Gyeong-Ji Kim, Kang-Hyun Chung, et al. "Surface-Modified Industrial Acrylonitrile Butadiene Styrene 3D Scaffold Fabrication by Gold Nanoparticle for Drug Screening." Nanomaterials 10, no. 3 (2020): 529. http://dx.doi.org/10.3390/nano10030529.
Texto completoRestle, Luciana, Daniela Costa-Silva, Emanuelle Stellet Lourenço, et al. "A 3D OsteoblastIn VitroModel for the Evaluation of Biomedical Materials." Advances in Materials Science and Engineering 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/268930.
Texto completoKaminska, Agnieszka, Aleksandra Wedzinska, Marta Kot, and Anna Sarnowska. "Effect of Long-Term 3D Spheroid Culture on WJ-MSC." Cells 10, no. 4 (2021): 719. http://dx.doi.org/10.3390/cells10040719.
Texto completoFröhlich, Eleonore. "Issues with Cancer Spheroid Models in Therapeutic Drug Screening." Current Pharmaceutical Design 26, no. 18 (2020): 2137–48. http://dx.doi.org/10.2174/1381612826666200218094200.
Texto completoGögele, Clemens, Christina Hoffmann, Jens Konrad, et al. "Cyclically stretched ACL fibroblasts emigrating from spheroids adapt their cytoskeleton and ligament-related expression profile." Cell and Tissue Research 384, no. 3 (2021): 675–90. http://dx.doi.org/10.1007/s00441-021-03416-9.
Texto completoBorzenok, S. A., M. Kh Khubetsova, I. N. Saburina, et al. "Cellular neuroprotection as a modern treatment approach for optic neuropathy." Russian Journal of Transplantology and Artificial Organs 19, no. 1 (2017): 63–73. http://dx.doi.org/10.15825/1995-1191-2017-1-63-73.
Texto completoWassmer, Charles-Henri, Kevin Bellofatto, Lisa Perez, et al. "Engineering of Primary Pancreatic Islet Cell Spheroids for Three-dimensional Culture or Transplantation: A Methodological Comparative Study." Cell Transplantation 29 (January 1, 2020): 096368972093729. http://dx.doi.org/10.1177/0963689720937292.
Texto completoBalmaña, Meritxell, Stefan Mereiter, Francisca Diniz, Tália Feijão, Cristina Barrias, and Celso Reis. "Multicellular Human Gastric Cancer Spheroids Mimic the Glycosylation Phenotype of Gastric Carcinomas." Molecules 23, no. 11 (2018): 2815. http://dx.doi.org/10.3390/molecules23112815.
Texto completoDong, Guoyi, Shengpeng Wang, Yuping Ge, et al. "Serum-Free Culture System for Spontaneous Human Mesenchymal Stem Cell Spheroid Formation." Stem Cells International 2019 (October 15, 2019): 1–12. http://dx.doi.org/10.1155/2019/6041816.
Texto completoNie, Yan, Xun Xu, Weiwei Wang, Nan Ma, and Andreas Lendlein. "Spheroid formation of human keratinocyte: Balancing between cell-substrate and cell-cell interaction." Clinical Hemorheology and Microcirculation 76, no. 2 (2020): 329–40. http://dx.doi.org/10.3233/ch-209217.
Texto completoSvablova, T., N. Ternerova, M. Houdova Megova, P. Busek, and A. Sedo. "P10.01 Effect of mesenchymal cells on infiltration and phenotype of T cells in a 3D glioblastoma spheroid model." Neuro-Oncology 23, Supplement_2 (2021): ii27—ii28. http://dx.doi.org/10.1093/neuonc/noab180.094.
Texto completoHan, Hao-Wei, Shigetaka Asano, and Shan-hui Hsu. "Cellular Spheroids of Mesenchymal Stem Cells and Their Perspectives in Future Healthcare." Applied Sciences 9, no. 4 (2019): 627. http://dx.doi.org/10.3390/app9040627.
Texto completoKozhina, K. V., E. N. Volkova, I. N. Saburina, et al. "The influence of peptide bioregulators on skin aging in 3D culture model." Russian Journal of Skin and Venereal Diseases 19, no. 1 (2016): 58–63. http://dx.doi.org/10.18821/1560-9588-2016-19-1-58-63.
Texto completoSargenti, Azzurra, Francesco Musmeci, Carola Cavallo, et al. "A new method for the study of biophysical and morphological parameters in 3D cell cultures: Evaluation in LoVo spheroids treated with crizotinib." PLOS ONE 16, no. 6 (2021): e0252907. http://dx.doi.org/10.1371/journal.pone.0252907.
Texto completoSchmal, Olga, Jan Seifert, Tilman E. Schäffer, Christina B. Walter, Wilhelm K. Aicher, and Gerd Klein. "Hematopoietic Stem and Progenitor Cell Expansion in Contact with Mesenchymal Stromal Cells in a Hanging Drop Model Uncovers Disadvantages of 3D Culture." Stem Cells International 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/4148093.
Texto completoSt-Georges-Robillard, Amélie, Maxime Cahuzac, Benjamin Péant, et al. "Long-term fluorescence hyperspectral imaging of on-chip treated co-culture tumour spheroids to follow clonal evolution." Integrative Biology 11, no. 4 (2019): 130–41. http://dx.doi.org/10.1093/intbio/zyz012.
Texto completoMišković Špoljarić, Katarina, Marijana Jukić, Teuta Opačak-Bernardi, and Ljubica Glavaš-Obrovac. "3D Cell Technology in Biomedical Research." Collegium antropologicum 44, no. 3 (2020): 171–74. http://dx.doi.org/10.5671/ca.44.3.10.
Texto completoLeary, Elizabeth, Claire Rhee, Benjamin T. Wilks, and Jeffrey R. Morgan. "Quantitative Live-Cell Confocal Imaging of 3D Spheroids in a High-Throughput Format." SLAS TECHNOLOGY: Translating Life Sciences Innovation 23, no. 3 (2018): 231–42. http://dx.doi.org/10.1177/2472630318756058.
Texto completoDubois, Clémence, Pierre Daumar, Corinne Aubel, et al. "The New Synthetic Serum-Free Medium OptiPASS Promotes High Proliferation and Drug Efficacy Prediction on Spheroids from MDA-MB-231 and SUM1315 Triple-Negative Breast Cancer Cell Lines." Journal of Clinical Medicine 8, no. 3 (2019): 397. http://dx.doi.org/10.3390/jcm8030397.
Texto completoLiu, Xiaoli, Huichao Lin, Jiaao Song, et al. "A Novel SimpleDrop Chip for 3D Spheroid Formation and Anti-Cancer Drug Assay." Micromachines 12, no. 6 (2021): 681. http://dx.doi.org/10.3390/mi12060681.
Texto completoIshikawa, Shohei, Kazutoshi Iijima, Kohei Sasaki, Masaaki Kawabe, and Hidenori Otsuka. "Improvement of Hepatic Functions by Spheroids Coculture with Fibroblasts in 3D Silica Nonwoven Fabrics." Journal of Nanoscience and Nanotechnology 19, no. 6 (2019): 3326–33. http://dx.doi.org/10.1166/jnn.2019.16103.
Texto completoMiyamoto, Yoshitaka, Masashi Ikeuchi, Hirofumi Noguchi, Tohru Yagi, and Shuji Hayashi. "Enhanced Adipogenic Differentiation of Human Adipose-Derived Stem Cells in an in vitro Microenvironment: The Preparation of Adipose-Like Microtissues Using a Three-Dimensional Culture." Cell Medicine 9, no. 1-2 (2017): 35–44. http://dx.doi.org/10.3727/215517916x693096.
Texto completoBiałkowska, Kamila, Piotr Komorowski, Maria Bryszewska, and Katarzyna Miłowska. "Spheroids as a Type of Three-Dimensional Cell Cultures—Examples of Methods of Preparation and the Most Important Application." International Journal of Molecular Sciences 21, no. 17 (2020): 6225. http://dx.doi.org/10.3390/ijms21176225.
Texto completoEroğlu, Erdal. "In vitro 3D Spheroid Culture Developed on the Parafilm Surface Using HEK-293 Cells." Academic Perspective Procedia 3, no. 1 (2020): 220–27. http://dx.doi.org/10.33793/acperpro.03.01.48.
Texto completoUchida, Satoshi, Kayoko Yanagihara, Akitsugu Matsui, Kazunori Kataoka, and Keiji Itaka. "mRNA as a Tool for Gene Transfection in 3D Cell Culture for Future Regenerative Therapy." Micromachines 11, no. 4 (2020): 426. http://dx.doi.org/10.3390/mi11040426.
Texto completoXie, Bailu, Jan Hänsel, Vanessa Mundorf, et al. "Pseudopterosin and O-Methyltylophorinidine Suppress Cell Growth in a 3D Spheroid Co-Culture Model of Pancreatic Ductal Adenocarcinoma." Bioengineering 7, no. 2 (2020): 57. http://dx.doi.org/10.3390/bioengineering7020057.
Texto completoBartosh, Thomas J., and Joni H. Ylostalo. "Efficacy of 3D Culture Priming is Maintained in Human Mesenchymal Stem Cells after Extensive Expansion of the Cells." Cells 8, no. 9 (2019): 1031. http://dx.doi.org/10.3390/cells8091031.
Texto completoOtt, Lindsey M., Karthik Ramachandran, and Lisa Stehno-Bittel. "An Automated Multiplexed Hepatotoxicity and CYP Induction Assay Using HepaRG Cells in 2D and 3D." SLAS DISCOVERY: Advancing the Science of Drug Discovery 22, no. 5 (2017): 614–25. http://dx.doi.org/10.1177/2472555217701058.
Texto completoNguyen, Lam-Huyen. "ID:2051 Generation of Microtumors Using 3D Hanging drop culture system and breast cancer cell MCF7 for testing anticancer drug response." Biomedical Research and Therapy 4, S (2017): 81. http://dx.doi.org/10.15419/bmrat.v4is.285.
Texto completoSim, Jooyoung, Hyun Jung Lee, Byeongmoon Jeong, and Min Hee Park. "Poly(Ethylene Glycol)-Poly(l-Alanine)/Hyaluronic Acid Complex as a 3D Platform for Understanding Cancer Cell Migration in the Tumor Microenvironment." Polymers 13, no. 7 (2021): 1042. http://dx.doi.org/10.3390/polym13071042.
Texto completoZhang, Xuan, Ming-Gen Hu, Ke Pan, Chong-Hui Li, and Rong Liu. "3D Spheroid Culture Enhances the Expression of Antifibrotic Factors in Human Adipose-Derived MSCs and Improves Their Therapeutic Effects on Hepatic Fibrosis." Stem Cells International 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/4626073.
Texto completoHundsberger, Harald, Anna Stierschneider, Victoria Sarne, et al. "Concentration-Dependent Pro- and Antitumor Activities of Quercetin in Human Melanoma Spheroids: Comparative Analysis of 2D and 3D Cell Culture Models." Molecules 26, no. 3 (2021): 717. http://dx.doi.org/10.3390/molecules26030717.
Texto completo