Siga este enlace para ver otros tipos de publicaciones sobre el tema: Actin filaments.

Tesis sobre el tema "Actin filaments"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores tesis para su investigación sobre el tema "Actin filaments".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Niedermayer, Thomas. "On the depolymerization of actin filaments". Phd thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2013/6360/.

Texto completo
Resumen
Actin is one of the most abundant and highly conserved proteins in eukaryotic cells. The globular protein assembles into long filaments, which form a variety of different networks within the cytoskeleton. The dynamic reorganization of these networks - which is pivotal for cell motility, cell adhesion, and cell division - is based on cycles of polymerization (assembly) and depolymerization (disassembly) of actin filaments. Actin binds ATP and within the filament, actin-bound ATP is hydrolyzed into ADP on a time scale of a few minutes. As ADP-actin dissociates faster from the filament ends than ATP-actin, the filament becomes less stable as it grows older. Recent single filament experiments, where abrupt dynamical changes during filament depolymerization have been observed, suggest the opposite behavior, however, namely that the actin filaments become increasingly stable with time. Several mechanisms for this stabilization have been proposed, ranging from structural transitions of the whole filament to surface attachment of the filament ends. The key issue of this thesis is to elucidate the unexpected interruptions of depolymerization by a combination of experimental and theoretical studies. In new depolymerization experiments on single filaments, we confirm that filaments cease to shrink in an abrupt manner and determine the time from the initiation of depolymerization until the occurrence of the first interruption. This duration differs from filament to filament and represents a stochastic variable. We consider various hypothetical mechanisms that may cause the observed interruptions. These mechanisms cannot be distinguished directly, but they give rise to distinct distributions of the time until the first interruption, which we compute by modeling the underlying stochastic processes. A comparison with the measured distribution reveals that the sudden truncation of the shrinkage process neither arises from blocking of the ends nor from a collective transition of the whole filament. Instead, we predict a local transition process occurring at random sites within the filament. The combination of additional experimental findings and our theoretical approach confirms the notion of a local transition mechanism and identifies the transition as the photo-induced formation of an actin dimer within the filaments. Unlabeled actin filaments do not exhibit pauses, which implies that, in vivo, older filaments become destabilized by ATP hydrolysis. This destabilization can be identified with an acceleration of the depolymerization prior to the interruption. In the final part of this thesis, we theoretically analyze this acceleration to infer the mechanism of ATP hydrolysis. We show that the rate of ATP hydrolysis is constant within the filament, corresponding to a random as opposed to a vectorial hydrolysis mechanism.
Aktin ist eines der am häufigsten vorkommenden und am stärksten konservierten Proteine in eukaryotischen Zellen. Dieses globuläre Protein bildet lange Filamente, die zu einer großen Vielfalt von Netzwerken innerhalb des Zellskeletts führen. Die dynamische Reorganisation dieser Netzwerke, die entscheidend für Zellbewegung, Zelladhäsion, und Zellteilung ist, basiert auf der Polymerisation (dem Aufbau) und der Depolymerisation (dem Abbau) von Aktinfilamenten. Aktin bindet ATP, welches innerhalb des Filaments auf einer Zeitskala von einigen Minuten in ADP hydrolysiert wird. Da ADP-Aktin schneller vom Filamentende dissoziiert als ATP-Aktin, sollte ein Filament mit der Zeit instabiler werden. Neuere Experimente, in denen abrupte dynamische Änderungen während der Filamentdepolymerisation beobachtet wurden, deuten jedoch auf ein gegenteiliges Verhalten hin: Die Aktinfilamente werden mit der Zeit zunehmend stabiler. Mehrere Mechanismen für diese Stabilisierung wurden bereits vorgeschlagen, von strukturellen Übergängen des gesamten Filaments bis zu Wechselwirkungen der Filamentenden mit dem experimentellen Aufbau. Das zentrale Thema der vorliegenden Dissertation ist die Aufklärung der unerwarteten Unterbrechungen der Depolymerisation. Dies geschieht durch eine Kombination von experimentellen und theoretischen Untersuchungen. Mit Hilfe neuer Depolymerisationexperimente mit einzelnen Filamenten bestätigen wir zunächst, dass die Filamente plötzlich aufhören zu schrumpfen und bestimmen die Zeit, die von der Einleitung der Depolymerisation bis zum Auftreten der ersten Unterbrechung vergeht. Diese Zeit unterscheidet sich von Filament zu Filament und stellt eine stochastische Größe dar. Wir untersuchen daraufhin verschiedene hypothetische Mechanismen, welche die beobachteten Unterbrechungen verursachen könnten. Die Mechanismen können experimentell nicht direkt unterschieden werden, haben jedoch verschiedene Verteilungen für die Zeit bis zur ersten Unterbrechung zur Folge. Wir berechnen die jeweiligen Verteilungen, indem wir die zugrundeliegenden stochastischen Prozesse modellieren. Ein Vergleich mit der gemessenen Verteilung zeigt, dass der plötzliche Abbruch des Depolymerisationsprozesses weder auf eine Blockade der Enden, noch auf einen kollektiven strukturellen Übergang des gesamten Filaments zurückzuführen ist. An Stelle dessen postulieren wir einen lokalen Übergangsprozess, der an zufälligen Stellen innerhalb des Filaments auftritt. Die Kombination von weiteren experimentellen Ergebnissen und unserem theoretischen Ansatz bestätigt die Vorstellung eines lokalen Übergangsmechanismus und identifiziert den Übergang als die photo-induzierte Bildung eines Aktindimers innerhalb des Filaments. Nicht fluoreszenzmarkierte Aktinfilamente zeigen keine Unterbrechungen, woraus folgt, dass ältere Filamente in vivo durch die ATP-Hydrolyse destabilisiert werden. Die Destabilisierung zeigt sich durch die Beschleunigung der Depolymerisation vor der Unterbrechung. Im letzten Teil der vorliegenden Arbeit untersuchen wir diese Beschleunigung mit theoretischen Methoden, um auf den Mechanismus der ATP-Hydrolyse zu schließen. Wir zeigen, dass die Hydrolyserate von ATP innerhalb des Filaments konstant ist, was dem sogenannten zufälligen Hydrolysemechanismus entspricht und im Gegensatz zum sogenannten vektoriellen Mechanismus steht.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Murtagh, Michael Stephen. "Electron microscopy of actin and thin filaments". Thesis, University of Leeds, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.421969.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Strehle, Dan. "Bundles of Semi-flexible Cytoskeletal Filaments". Doctoral thesis, Universitätsbibliothek Leipzig, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-144750.

Texto completo
Resumen
Schaut man durch ein Mikroskop auf eine biologische Zelle mit angefärbten Zytoskelett, so erblickt man lange, mehr oder minder gerade Objekte. Mit ziemlicher Sicherheit gehören diese zu einer von drei Arten von Zytoskelettfilamenten -- Aktin- oder Mikrofilamente, Intermediärfilamente und Mikrotubuli. Schon seit mehreren Jahrzehnten versucht man die mechanischen Eigenschaften lebender Zellen nicht nur zu beschreiben, sondern ihr Verhalten von zwei tieferen Ebenen ausgehend zu verstehen: Inwiefern beschreiben die Eigenschaften von Filamentnetzwerken und -gelen die Zellmechanik und, noch tiefgreifender, wie bestimmen eigentlich die einzelnen Filamente die Netzwerkmechanik. Das Verständnis der Mechanik homogener und isotroper, verhedderter als auch quervernetzter Gele ist dabei erstaunlich detailreich, ohne jedoch vollständig dem jüngeren Verständnis von Zellen als glassartige Systeme zu entsprechen. In den letzten Jahren sind daher anisotrope Strukturen mehr und mehr in den Fokus gerückt, die die Bandbreite möglichen mechanischen Verhaltens enorm bereichern. Die vorliegende Arbeit beschäftigt sich mit solch einem hochgradig anisotropen System -- nämlich Aktinbündeln -- unter drei Gesichtspunkten. Mit Hilfe von aktiven Biegedeformationen wird ein funktionales Modul, das eine differentielle Antwort auf verschiedenen Zeitskalen liefert, identifiziert. Es handelt sich um Aktinfilamente, die durch transiente Quervernetzer gebündelt werden. Während sich das System nach kurz anhaltenden Deformation völlig elastisch verhält, sorgt eine Restrukturierung der Quervernetzer während langanhaltender Deformationen für eine plastische Verformung des Bündels. In einem weiteren Aspekt widmet sich die Arbeit der frequenz- und längenabhängigen Biegesteifigkeit. Die Methode des Bündel-Wigglings, das Induzieren von \"Seilwellen\", wird dabei genutzt, um aus der Wellenform die Biegesteifigkeit zu berechnen. Bündel von Aktinbündeln zeigen dabei ein Verhalten, das vom klassischen Worm-like-chain-Modell abweicht und stattdessen durch das Worm-like-bundle-Modell beschrieben werden kann. Der letzte Aspekt dieser Arbeit untersucht den Musterbildungsprozess bei der Entstehung von Aktinbündeln. Gänzlich unerwartet entstehen quasi-isotrope Strukturen mit langreichweitiger Ordnung, wenn der Bündelungsprozess erst nach der Polymerisation von Filamenten frei von zusätzlichen mechanischen Einwirkungen einsetzt. Da dieser Zustand nicht von der klassischen Flüssigkristalltheorie vorhergesagt wird, soll eine Simulation eine Hypothese zum Entstehungsmechanismus testen. Die Annahme einer lateralen Kondensation von Filamenten zu Bündeln reicht demnach aus, um die beobachteten Strukturen zu erzeugen. Diese Arbeit leistet somit einen Beitrag zum Verständnis hochgradig anisotroper Strukturen und deren Überstrukturen, wie sie auch in lebendigen Zellen reichlich vorhanden sind
Being the most basic unit of living organisms, the cell is a complex entity comprising thousands of different proteins. Yet only very few of which are considered to play a leading part in the cell’s mechanical integrity. The biopolymers actin, intermediate filaments and microtubules constitute the so-called cytoskeleton – a highly dynamic, constantly restructuring scaffold endowing the cell not only with integrity to sustain mechanical perturbations but also with the ability to rapidly reorganize or even drive directed motion. Actin has been regarded to be the protagonist and tremendous efforts have been made to understand passive actin networks using concepts from polymer rheology and statistical mechanics. In bottom-up approaches isotropic, homogeneous actin-gels are well-characterized with rheological methods that measure elastic and viscous properties on different time scales. Cells, however, are not exclusively isotropic networks of any of the mentioned filaments. Rather, actin alone can already be organized into heterogeneous and highly anisotropic structures like bundles. These heterogeneous structures have only come into focus recently with theoretical work addressing bundle networks. and, in the case of the worm-like bundle theory, individual bundles. This work aims at characterizing bundles and bundle-crosslinker systems mechanically in two complementary approaches – in the time as well as in the frequency domain. In addition, it illuminates a bundle formation mechanism that leads to bundle networks displaying higher ordering
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Saeed, Mezida Bedru. "Nanoscale rearrangements in cortical actin filaments at lytic immunological synapses". Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/nanoscale-rearrangements-in-cortical-actin-filaments-at-lytic-immunological-synapses(8d00dd58-7b1a-435b-ad6c-016b12ff34d9).html.

Texto completo
Resumen
Lytic effector function of Natural Killer (NK) cells and CD8+ T cells occurs through discrete and regulated cell biological steps triggered by recognition of diseased cells. Recent studies of the NK cell synapse support the idea that dynamic nanoscale rearrangements in cortical filamentous (F)-actin are a critical cell biological checkpoint for lytic granule access to NK cell membrane. Loss of function mutations in the LYST gene, a well-characterised cause of Chediak- Hegashi syndrome (CHS), result in the formation of giant lysosomal organelles including lytic granules. Here, we report a mismatch between the extent of cortical F-actin remodelling and enlarged lytic granules that limits the functionality of LYST- deficient NK cells in a human model of CHS. Using super-resolution stimulated emission depletion (STED) microscopy we found that LYST-deficient NK cells had nanoscale rearrangements in the organisation of cortical actin filaments that were indistinguishable from control cells- despite a 2.5-fold increase in the size of polarised granules. Importantly, treatment of LYST-deficient NK cells with actin depolymerising drugs increased the formation of small secretory domains at the synapse and restored their ability to lyse target cells. These data establish that sub-synaptic F-actin is the major factor limiting the release of enlarged lytic granules from CHS NK cells, and reveal a novel target for therapeutic interventions. While the importance of cortical actin filaments in NK cell cytotoxicity have been established, its persistence at the early stages of T cell synapse formation is disputed. We studied the organisation of cortical actin filaments in synapses formed by primary human T cells using STED microscopy and detected intact cortical actin filaments in key T cell effector subsets including memory CD8+ T cells as early as 5-minutes post-activation. Quantitative analysis revealed that activation specific rearrangements in cortical actin filaments at both CD4+ and CD8+ T cell synapses serve to increase the space between filaments. Additionally, comparison of cytolytic T cells with freshly isolated and IL-2 activated primary NK cells revealed that rapid maturation of the cortical actin meshwork is a specific feature of CD8+ T cell lytic synapses. Using chemical inhibition of actin nucleators, we show that increased cortical relaxation is mediated primarily by the activity of actin related proteins (Arp) -2/3. Taken together, these data establish the critical requirement for dynamic rearrangements in cortical actin filaments at lytic synapses but underscore cell-specific differences in its regulation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Wisanpitayakorn, Pattipong. "Understanding Mechanical Properties of Bio-filaments through Curvature". Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-dissertations/584.

Texto completo
Resumen
Cells are dynamic systems that generate and respond to forces through the complex interplay between biochemical and mechanical regulations. Since cellular processes often happen at the molecular level and are challenging to be observed under in vivo conditions due to limitations in optical microscopy, multiple analysis tools have been developed to gain insight into those processes. One of the ways to characterize these mechanical properties is by measuring their persistence length, the average length over which filaments stay straight. There are several approaches in the literature for measuring the persistence length of the filaments, including Fourier analysis of images obtained using fluorescence microscopy. Here, we show how curvature can be used to quantify local deformations of cell shape and cellular components. We develop a novel technique, called curvature analysis, to measure the stiffness of bio-filaments from fluorescent images. We test our predictions with Monte-Carlo generated filaments. We also apply our approach to microtubules and actin filaments obtained from in vitro gliding assay experiments with high densities of non-functional motors. The presented curvature analysis is significantly more accurate compared to existing approaches for small data sets. To study the effect of motors on filament deformations and velocities observed in gliding assays with functional and non-functional motors, we developed Langevin dynamics simulations of on glass and lipid surfaces. We found that generally the gliding velocity increases with an increase in motor density and a decrease in diffusion coefficient, and that motor density and diffusion coefficient have no clear effect on filament curvatures, except at a very low diffusion coefficients. Finally, we provide an ImageJ plugin to make curvature and persistence length measurements more accessible to everyone.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Niedermayer, Thomas Verfasser] y Reinhard [Akademischer Betreuer] [Lipowsky. "On the depolymerization of actin filaments / Thomas Niedermayer. Betreuer: Reinhard Lipowsky". Potsdam : Universitätsbibliothek der Universität Potsdam, 2013. http://d-nb.info/1030155208/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Fulzele, Keertik S. "ROLE OF ACTIN CYTOSKELETON FILAMENTS IN MECHANOTRANSDUCTION OF CYCLIC HYDROSTATIC PRESSURE". MSSTATE, 2004. http://sun.library.msstate.edu/ETD-db/theses/available/etd-07122004-171347/.

Texto completo
Resumen
This research examines the role of actin cytoskeleton filaments in chondroinduction by cyclic hydrostatic pressurization. A chondroinductive hydrostatic pressurization system was developed and characterized. A pressure of 5 MPa at 1 Hz frequency, applied for 7200 cycles (4 hours intermittent) per day, induced chondrogenic differentiation in C3H10T1/2 cells while 1800 cycles (1 hour intermittent) did not induce chondrogenesis. Quantitative analysis of chondrogenesis was determined as sulfated glycosaminoglycan synthesis and rate of collagen synthesis while qualitative analysis was obtained as Alcian Blue staining and collagen type II immunostaining. Actin disruption using 2 uM Cytochalasin D inhibited the enhanced sGAG synthesis in the chondroinductive hydrostatic pressurization environment and significantly inhibited rate of collagen synthesis to the mean level lower than that of the non-pressurized group. These results suggest an involvement of actin cytoskeleton filaments in mechanotransduction of cyclic hydrostatic pressure.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Niedermayer, Thomas [Verfasser] y Reinhard [Akademischer Betreuer] Lipowsky. "On the depolymerization of actin filaments / Thomas Niedermayer. Betreuer: Reinhard Lipowsky". Potsdam : Universitätsbibliothek der Universität Potsdam, 2013. http://d-nb.info/1030155208/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Lui, John. "The stoichiometry of caldesmon and actin in chicken gizzard thin filaments". Thesis, Boston University, 1988. https://hdl.handle.net/2144/38067.

Texto completo
Resumen
Thesis (M.A.)--Boston University
PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you.
Regulation of smooth muscle contraction has been known to inovlve two distinct mechanisms. The role of myosin phosphorylation and dephosphorylation in the control of vertebrate smooth muscle contraction has been well documented. Recent evidence also suggests the existence of a thin filament-linked regulatory system in smooth muscle. Dual regulation of smooth muscle contraction may allow smooth muscle to vary tension output over a wide range of stretch and to maintain developed tension at low energy cost. Since the discovery of caldesmon in chicken gizzard smooth muscles, this protein was subsequently shown to be an actin and calmodulin binding protein. Since this protein was shown to be present in the thin filaments of smooth muscle in relatively large amounts, it has been proposed that caldesmon may be involved in thin filament linked regulation of smooth muscle contraction. While caldesmon has been shown to inhibit actin-activated myosin ATPase activity and to crosslink F-actin filaments in vitro, the precise function and action of caldesmon in vivo is uncertain. One approach to understand the mechanism of caldesmon mediated effects in smooth muscle is to construct a thin filament structural model. A model of thin filaments may provide insight on how contractile proteins interact during contraction and how thin filament associated proteins, possibily caldesmon may regulate this process. In this study, the stoichiometry of thin filament components of chicken gizzard smooth muscles is evaluated by quantitative gel densitometry. This showed an actin:tropomyosin:caldesmon ratio of 28:4:1. Together with results obtained from electron microscopic and biochemical studies, the stoichiometry obtained in this study will be used to formulate possible model of smooth muscle thin filaments.
2031-01-01
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Gressin, Laurène. "Désassemblage de réseaux de filaments d'actine : rôle de l'architecture et du confinement". Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY068/document.

Texto completo
Resumen
Le cytosquelette est un assemblage de protéines intracellulaires qui assure le maintien de la forme des cellules et la production de force. Ce cytosquelette est formé de trois types de polymères, dont les filaments d'actine qui sont impliqués dans des fonctions essentielles telles que la motilité cellulaire, la division cellulaire ou encore la morphogénèse. Les filaments d'actine s'agencent en structures organisées dont la dynamique est assurée par la polymérisation et le désassemblage des filaments, contrôlés spatio-temporellement. La plupart des structures d'actine sont dans un état stationnaire dynamique où l'assemblage est compensé par le désassemblage, ce qui permet de maintenir une concentration de monomères intracellulaire élevée. En effet, le réservoir d'actine in vivo est limité et la formation de nouvelles structures de filaments d'actine est dépendante d'un désassemblage efficace des structures les plus âgées. Le but de ma thèse a été d'étudier comment l'organisation architecturale des structures d'actine influence le désassemblage par la machinerie protéique composée de l'ADF/cofiline et d'un de ses cofacteurs Aip1.J'ai d'abord pu montrer que l'efficacité du désassemblage dépendait de l'agencement des filaments d'actine. Quand les réseaux branchés ne requièrent que l'action de l'ADF/cofiline pour être désassemblés efficacement, les faisceaux de filaments d'actine ont besoin de la présence simultanée de l'ADF/cofiline et de l'Aip1. Une étude à l'échelle moléculaire a ensuite été menée pour comprendre le mécanisme du désassemblage des filaments d'actine par ces deux protéines au niveau du filament individuel.Dans un second temps, j'ai développé un système expérimental composé de micropuits de taille comparable à la cellule. Cette technologie nous a permis de réaliser des expériences en milieu confiné, dans lequel le réservoir d'actine était limité de la même manière que le réservoir d'actine cellulaire. J'ai mis ce système a profit pour reconstituer le turnover d'une comète d'actine, un réseau branché formé à la surface d'une bille recouverte de nucléateurs de l'actine.Ce travail de thèse a permis d’établir des lois fondamentales contrôlant la dynamique de l’actine et plus particulièrement comment l’architecture de l’actine et l’environnement peuvent influencer le désassemblage de structures complexes
The actin cytoskeleton is a major component of the internal architecture of eukaryotic cells. Actin filaments are organized into different structures, the dynamics of which is spatially and temporally controlled by the polymerization and disassembly of filaments. Most actin structures are in a dynamic steady state regime where the assembly is balanced by the disassembly, which maintains a high concentration of intracellular actin monomers. In vivo the pool of actin monomers is limited and the formation of new actin filament structures is dependent on an effective disassembly of the older structures. The goal of my thesis was to study the influence of different architectures of actin by the disassembly machinery made of ADF/cofilin and its cofactor Aip1.Firstly, I showed that the efficiency of the disassembly was dependent on the architecture of actin filaments organizations. Although the branched networks need only ADF/cofilin to be efficiently disassembled, the actin cables require the simultaneous action of ADF/cofilin and Aip1. Further investigations at the molecular scale indicate that the cooperation between ADF/cofilin and Aip1 is optimal above a certain threshold of molecules of ADF/cofilin bound to actin filaments. During my PhD I demonstrated that although ADF/cofilin is able to dismantle selectively branched networks through severing and debranching, the stochastic disassembly of actin filaments by ADF/cofilin and Aip1 represents an efficient alternative pathway for the full disassembly of all actin networks. We propose a model in which the binding of ADF/cofilin is required to trigger a structural change of the actin filaments, as a prerequisite for their disassembly by Aip1.Secondly, I developed an experimental system made of cell-sized microwells. This technology allowed us to develop experiments in a closed environment in which the actin pool is limited in the same way as the cellular environment. I used this experimental system to study how a limited pool of components limits both the assembly and the disassembly of a branched network.This thesis highlights the importance of developing new tools to obtain more “physiological” reconstituted systems in vitro to establish some of the general principles governing actin dynamics
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Dinic, Jelena. "Plasma membrane order; the role of cholesterol and links to actin filaments". Doctoral thesis, Stockholms universitet, Wenner-Grens institut, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-62279.

Texto completo
Resumen
The connection between T cell activation, plasma membrane order and actin filament dynamics was the main focus of this study. Laurdan and di-4-ANEPPDHQ, membrane order sensing probes, were shown to report only on lipid packing rather than being influenced by the presence of membrane-inserted peptides justifying their use in membrane order studies. These dyes were used to follow plasma membrane order in live cells at 37°C. Disrupting actin filaments had a disordering effect while stabilizing actin filaments had an ordering effect on the plasma membrane, indicating there is a basal level of ordered domains in resting cells. Lowering PI(4,5)P2 levels decreased the proportion of ordered domains strongly suggesting that the connection of actin filaments to the plasma membrane is responsible for the maintaining the level of ordered membrane domains. Membrane blebs, which are detached from the underlying actin filaments, contained a low fraction of ordered domains. Aggregation of membrane components resulted in a higher proportion of ordered plasma membrane domains and an increase in cell peripheral actin polymerization. This strongly suggests that the attachment of actin filaments to the plasma membrane induces the formation of ordered domains. Limited cholesterol depletion with methyl-beta-cyclodextrin triggered peripheral actin polymerization. Cholesterol depleted cells showed an increase in plasma membrane order as a result of actin filament accumulation underneath the membrane. Moderate cholesterol depletion also induced membrane domain aggregation and activation of T cell signaling events. The T cell receptor (TCR) aggregation caused redistribution of domains resulting in TCR patches of higher order and the bulk membrane correspondingly depleted of ordered domains. This suggests the preexistence of small ordered membrane domains in resting T cells that aggregate upon cell activation. Increased actin polymerization at the TCR aggregation sites showed that actin polymerization is strongly correlated with the changes in the distribution of ordered domains. The distribution of the TCR in resting cells and its colocalization with actin filaments is cell cycle dependent. We conclude that actin filament attachment to the plasma membrane, which is regulated via PI(4,5)P2, plays a crucial role in the formation of ordered domains.
At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Submitted. Paper 4: Manuscript.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Hilpelä, Pirta. "SWAP-70 identifies a transitional subset of actin filaments in motile cells". [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=971853312.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Kerleau, Mikaël. "Régulation biochimique et mécanique de l'assemblage de filaments d'actine par la formine". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS583/document.

Texto completo
Resumen
Pour la cellule, l’assemblage du cytosquelette d’actine joue un rôle central dans son déplacement, sa division ou sa morphogenèse. Cette réorganisation est orchestrée par des protéines régulatrices et des contraintes mécaniques. Savoir comment les combinaisons de ces actions biochimiques et physiques régulent les différentes architectures d’actine reste un véritable défi.La formine protéine est un régulateur essentiel de l’actine. Ancrée à la membrane, elle assemble les filaments d’actine (nucléation et élongation) présents dans des architectures linéaires et non branchées. La formine est impliquée notamment dans la génération de filopodes, protrusions guidant la locomotion cellulaire.Une propriété remarquable est sa capacité à suivre processivement le bout barbé d’un filament qu’elle allonge, tout en stimulant son élongation en présence de profiline. La régulation de cette processivité de la formine est encore à clarifier. C’est une caractéristique importante, intervenant dans le contrôle de la longueur des filaments, dont les connaissances sont à approfondir.L’étude de cette processivité est facilitée par l’utilisation d’un outil microfluidique novateur pour l’étude de la dynamique de multiples filaments individuels d’actine in vitro. Au sein d’une chambre en PDMS, les filaments sont ancrés à la surface par un seul bout, le reste s’alignant avec le flux. Nous pouvons précisément y changer l’environnement biochimique,tandis que la friction visqueuse sur les filaments permet d’exercer une tension contrôlée sur chacun d’entre eux.Simultanément à l’action de la formine au bout barbé, j’étudie l’effet d’autres protéines ou de la vitesse d’élongation sur sa processivité, en mesurant son taux de détachement. Par ailleurs nous pouvons reproduire l’ancrage membranaire cellulaire en attachant spécifiquement nos formines à la surface. Dans la chambre, par l’intermédiaire du filament qu’elle allonge, nous pouvons alors exercer des forces et en étudier l’effet sur la formine.Premièrement, j’ai étudié l’impact de la protéine de coiffe (CP) sur l’activité de la formine au bout barbé. La liaison de ces deux protéines aubout barbé a jusqu’ici été considérée mutuellement exclusive. Nous avons observé qu’elles peuvent toutefois se retrouver simultanément liées au bout barbé, au sein d’un complexe à courte durée de vie. Ce complexe ternaire est capable de stopper l’activité du bout barbé même si l’affinité d’une protéine est réduite par la présence de l’autre. Nous proposons qu’une compétition entre la protéine de coiffe et la formine régule la dynamique du bout barbé dans des architectures où les longueurs doivent être hautement contrôlées.J’ai ensuite étudié l’influence de divers facteurs sur la processivité. La processivité est très sensible à la présence du sel et à la fraction demarquage fluorescent utilisée dans nos expériences. Nous avons également observé l’effet de la vitesse d’élongation, qui peut être modifiée en changeant la concentration en actine ou en profiline. D’une part, l’actine réduit la processivité, à n’importe quelle concentration de profiline. D’autre part, la concentration en profiline augmente cette processivité,indépendamment du taux d’élongation. Cela suggère qu’une incorporation de monomère diminue la processivité, tandis que la profiline, par sa présence au bout barbé, l’augmente.Enfin, la tension exercée sur les formines abaisse fortement la processivité : quelques piconewtons réduisent la processivité de plusieurs ordres de grandeurs. Cet effet, purement mécanique, prédomine sur les facteurs biochimiques. Ces résultats nous indiquent que les contraintes mécaniques de tension joueraient un rôle prédominant dans le contexte cellulaire. Cette étude nous aide à construire un modèle plus complet de l’élongation processive par les formines.En conclusion, ce projet permet de mieux comprendre le fonctionnement moléculaire de la formine, en particulier le mécanisme de l’élongation processive et de sa régulation
Actin filament assembly plays a pivotal role in cellular processes such as cell motility, morphogenis or division. Elucidating how the actin cytoskeleton is globally controlled remains a complex challenge. We know that it is orchestrated both by actin regulatory proteins and mechanical constraints.The formin protein is an essential actin regulator. Anchored to the cell membrane, it is responsible for the assembly (nucleation and elongation) of actin filaments found in linear and unbranched architectures. It is notably involved in the generation of filopodia protrusions at the leading edge of a motile cell. One important feature is that it processively tracks the barbed end of an actin filament, while stimulating its polymerization in the presence of profilin.Formin processivity and its regulation is not yet completely understood. As an important factor determining the length of the resulting filament, it must be investigated further.A perfect assay to look at formin processivity in vitro is an innovative microfuidics assay coupled to TIRF microscopy, pioneered by the team, to simultaneously track tens of individual filaments. In a designed chamber,filaments are anchored to the surface by one end, and aligned with the solution flow. We can precisely control the biochemical environment of the filaments. Moreover, we can exert and modulate forces on filaments, due to the viscous drag of flowing solutions. By varying chemical conditions during formin action at the barbed end, I investigated how others proteins or the elongation rate can modulate formin processivity, by looking at the detachment rate of formins.Moreover, we can mimic the membrane anchoring in the cell by specifically attaching formins at the surface. In our chamber, through the filament they elongate, we can apply force to formins.In complement to biochemical studies, we then investigate the effect oftension on their processivity.I first investigated the impact of a capping protein on formin action at the barbed end. Their barbed end binding is thought to be mutually exclusive.We measured that the affinity of one protein is reduced by the presence of the other. However we observed they both can bind simultaneously the barbed end, in a transient complex, which block barbed end elongation.Competition of formin and CP would regulate barbed end dynamics in a cell situation where length is tightly controlled.I next studied formin processivity dependence on various parameters. We show that processivity is sensitive to salt and labelling fraction used in our solutions. We also looked at how processivity is affected by the elongation rate, which can either be varied by actin or profilin concentration. On one hand, actin concentration reduces processivity, at any given concentrationsof profilin. On the other hand, raising the concentration of profilin increasesprocessivity, regardless of the elongation rate. This indicates that theincorporation of actin monomers decreases processivity while in contrast,the presence of the profilin at the barbed end increases it.Moreover, tension exerted on formin was observed to largely favor its detachment. In a quantitative matter, the effect of tension prevails over anyothers biochemical factor on processivity : only a few piconewtons decreaseit by several orders of magnitude. This important effect helps us build amore complete model of processive elongation. These results indicate thatmechanical stress is likely to play an important role in a cellular context.In conclusion, this project brings insights into the molecular properties offormin and helps to decipher the mechanism of processive elongation and its regulation
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Richard, Mathieu. "Activité motrice de myosines dans des réseaux de filaments d’actine d’architecture contrôlée in vitro". Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCB054/document.

Texto completo
Resumen
Les moteurs moléculaires permettent le transport actif de molécules et d’organelles le long de filaments polaires du cytosquelette de la cellule eucaryote. Les filaments peuvent s’organiser en réseaux parallèles, antiparallèles, ou désordonnés. Malgré son importance, l’influence de l’architecture du cytosquelette sur le transport de cargos par des moteurs moléculaires est souvent ignorée. Dans ce travail de thèse, nous avons utilisé des patrons surfaciques de nucléation pour contrôler la géométrie de polymérisation de filaments d’actine. Cette approche permet de reproduire in vitro les trois types de réseaux qui sont observés in vivo. En adsorbant des moteurs moléculaires purifiés à la surface de nano-billes fluorescentes (diamètre 200 nm), nous avons étudié le transport de ces cargos dans des réseaux antiparallèles émergeant de deux lignes de nucléation parallèles. Nous avons observé que les billes recouvertes de moteurs processifs HMM-V (Heavy Mero-Myosine V) génèrent des mouvements dirigés en direction du milieu du réseau où la polarité moyenne des filaments est nulle et où les billes s’accumulent. De plus, la distribution de positions des billes à l’état stationnaire peut être déduite des profils de vitesse et de diffu-sion des billes, indiquant que le transport actif suit un processus de convection-diffusion. Les billes recouvertes de moteurs non-processifs HMM-II (Heavy Mero-Myosine II) dé-montrent des comportements similaires. Cependant, bien que le gradient de vitesse des billes HMM-II soit plus important que pour les billes HMM-V au centre du réseau, le coeffi-cient de diffusion l’est bien davantage. Le centrage de ces billes est ainsi moins précis qu’avec la HMM V. A notre surprise, nous avons observé que la précision du centrage ne dépend pas de l’espacement entre les deux lignes de nucléation, donc de la taille du sys-tème. Le comportement des billes est décrit par un modèle à trois états dans lequel la bille sonde localement la polarité nette du réseau en se détachant et en se rattachant fré-quemment aux filaments. Une séquence stochastique de déplacements dirigés dans un état attaché aux filaments et d’explorations diffusives dans un état détaché, conduit à une marche aléatoire biaisée avec un coefficient de diffusion et une vitesse effectifs. Notre description physique indique que la précision du positionnement des billes dépend du gra-dient de polarité nette du réseau de filaments ainsi que de la distance moyenne de par-cours des billes dans l’état attaché à l’actine. Nos résultats démontrent ainsi le rôle clef que joue l’architecture du réseau de filaments sur les propriétés du transport. Dans la cellule, les moteurs moléculaires permettent également la réorganisation des filaments du cytosquelette. En ajoutant nos moteurs moléculaires en solution, nous avons observé qu’un réseau de filaments d’actine parallèles, polymérisés in vitro à partir d’une ligne ou d’un disque de nucléation, peut former spontanément des faisceaux oscil-lants. Ces oscillations ressemblent aux battements du flagelle du spermatozoïde. En parti-culier, le système génère des ondes de déformation transverses se propageant de la base à l’apex du faisceau oscillant à une vitesse de 0,5 µm/s. Au cours du temps, les faisceaux d’actine s’épaississent, ce qui conduit à un ralentissement de l’oscillation avec une période qui croît de 25 s à 40 s. De plus, nous avons observé que des faisceaux d’actine voisins sont capables de se synchroniser, comme c’est le cas entre les deux flagelles de l’algue Chlamydomonas. Notre système acto-myosine minimal permet donc d’imiter le battement de flagelles, bien que la nature des moteurs moléculaires et des filaments en jeu soit com-plètement différente. Ainsi, ce système fournit un nouvel outil pour étudier les propriétés physiques génériques du battement flagellaire
Molecular motors navigate the cytoskeleton to position vesicles and organelles at specific locations in the cell. Cytoskeletal filaments assemble into parallel, antiparallel or disordered networks, providing a complex environment that constrains active transport properties. Using surface micro-patterns of nucleation-promoting factors to control the geometry of actin polymerization, we studied in vitro the interplay between the actin-network architec-ture and cargo transport by small myosin assemblies. With two parallel nucleation lines, we produced an antiparallel network of overlapping filaments. We found that 200nm beads coated with processive myosin V motors displayed directed movements towards the mid-line of the pattern, where the net polarity of the actin network was null, and accumulated there. The bead distribution was dictated by the spatial profiles of bead velocity and diffu-sion coefficient, indicating that a diffusion-drift process was at work. Interestingly, beads coated with skeletal heavy mero-myosin II motors showed a similar behavior. However, although velocity gradients were sharper with myosin II, the much larger bead diffusion observed with this non-processive motor resulted in less precise positioning. Strikingly, bead positioning did not depend on the spacing between the nucleation lines. Our observa-tions are well described by a three-state model of bead transport, in which active beads locally sense the net polarity of the filament network by frequently detaching from and re-attaching to the filaments. A stochastic sequence of processive runs and diffusive search-es results in a biased random walk with an effective drift velocity and diffusion coefficient. Positioning relies on spatial gradients of the net actin polarity, as well as on the run length of the cargo in the attached state. Altogether, our results on a minimal acto-myosin system demonstrate the key role played by the actin-network architecture on motor transport. Molecular motors can also deform and reorganize the cytoskeleton. Adding heavy mero-myosin II or V in bulk, we observed that parallel networks of actin filaments emerg-ing from a nucleation line or disk can self-assemble into bundles that beat periodically like the flagellum of the spermatozoid. In a preliminary analysis, we observed waves of defor-mation travelling from the base to the tip of the bundle at a speed of 0,5 µm/s. As time went by, the bundles grew thicker, resulting in an increase of the beating period (range: 25-40 s). In addition, neighboring actin ‘flagella’ were able to synchronize, as observed in vivo for instance with the the two flagella of the algae Chlamydomonas. Our minimal acto-myosin system thus mimicked key properties of microtubule-based flagellar beating, de-spite the different nature of the motors and cytoskeletal filaments involved. This system thus provides a new tool to study the generic physical properties of flagellar beating
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Mannoubi, Soumaya. "Caractérisation de MamK et Mamk-like les "actins-like" responsables de l'alignement des magnétosomes chez Magnetsirillum magneticum AMB-1". Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4004.

Texto completo
Resumen
Les bactéries magnétotactiques (MTB) ont la capacité de s'orienter dans un champ magnétique grâce à un organite procaryote constitué d'un nanocristal magnétique biominéralisé et entouré d'une membrane biologique : le magnétosome. La synthèse de cet organite est un processus complexe contrôlé génétiquement par une série de gènes spécifiques aux MTB (les gènes mam) qui sont regroupés sur le chromosome bactérien. Chez la souche modèle Magnetospirillum magneticum AMB-1 cet ensemble de gènes forme un îlot génomique (MAI) auquel s'ajoute un second groupe distinct de 7 gènes homologues aux gènes mam (gènes mam-like) récemment identifié dont le rôle physiologique est très peu caractérisé. Parmi les produits des gènes mam, MamK est impliqué dans l'alignement des magnétosomes. Cette « actin-like » prokaryote qui forme des filaments selon un processus ATP-dépendant a été caractérisée ces dernières années. Dans le MIS de AMB-1, un gène homologue mamK-like a été identifié. Ainsi différentes approches pluridisciplinaires ont été mises en place pour comprendre le rôle de MamK et MamK-like. L'expression des gènes du MIS a été quantifiée. Les souches dépourvues des gènes mamK et mamK-like ainsi que le double mutant ont été obtenues puis phénotypées par différentes techniques d'imagerie. Les interactions entre les deux protéines ont été également testées. Enfin, les deux protéines ont été et leurs propriétés biochimiques caractérisées. L'ensemble de ces données nous permet de proposer un modèle selon lequel MamK et MamK-like participeraient tous deux à l'alignement des magnétosomes bactériens, vraisemblablement par la formation de filaments hybrides
Magnetotactic bacteria (MTB) have the ability to orient in a magnetic field through a prokaryotic organelle composed of a magnetic nanocrystal surrounded by a biological membrane: the magnetosome. The synthesis of this organelle is a genetically complex process controlled by a series of specific genes (mam genes) grouped together on the bacterial chromosome. In the strain model Magnetospirillum magneticum AMB-1 this set of genes form a genomic island (MAI) and a second distinct group of seven genes homologous to mam genes (mam-like genes) recently identified. The physiological role of this islet magnetosome (MIS) is very little characterized to date.Among the products of mam genes, MamK is involved in the alignment of the magnetosomes. This « actin-like » which forms prokaryote filaments according an ATP - dependent process has been characterized in recent years. In the MIS of AMB-1, a homologous gene mamK-like was identified. And various multidisciplinary approaches have been developed to understand the role of MamK and MamK-like. The MIS gene expression was quantified. The strains lacking genes of mamK, mamK-like and the obtained of double mutant were then phenotyped by different imaging techniques. The interactions between the two proteins were also tested. Finally, the two proteins were overexpressed and their biochemical properties characterized. All of these data allows us to propose a model whereby MamK and MamK-like participate in both the alignment of bacterial magnetosomes, presumably by the formation of hybrid filaments
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Von, Hase Amrei. "Leaf movement in the carnivorous plant Drosera capensis. What role do actin filaments and turgor changes play?" Thesis, University of Cape Town, 1998. http://hdl.handle.net/11427/26018.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Tholl, Stéphane. "Etude biochimique comparative des "Actin Depolymerizing Factors"(ADFs) d'Arabidopsis : activité inattendue de pontage des filaments d'actine pour les ADFs appartenant à la sous-classe III". Thesis, Strasbourg, 2012. http://www.theses.fr/2012STRAJ002.

Texto completo
Resumen
L'organisation et la dynamique du cytosquelette d'actine sont finement régulées par une multitude de "actin-binding proteins" (ABPs). Parmi ces dernières, les ADFs (actin-depolymerizing factors) jouent un rôle majeur dans le turnover des filaments d'actine en induisant leur découpage et en facilitant leur dépolymérisation. Arabidopsis thaliana possède 11 protéines ADFs fonctionnelles qui peuvent être classées en 4 sous-classes sur la base de leur profil d'expression et liens phylogénétiques. Nous démontrons que l’ADF5 et l’ADF9 de la sous-classe III sont des ADFs atypiques puisqu’elles n’induisent pas la dépolymérisation des filaments d’actine. Au contraire, elles montrent une forte capacité à stabiliser et ponter les filaments d’actine en longs câbles in vitro ainsi que in vivo. Nous décrivons la caractérisation d’un nouveau mutant knockout d’Arabidopsis. Les données suggèrent un rôle d’ADF9 dans l’élongation cellulaire. Ainsi, l’hypocotyle est significativement plus long dans les mutants adf9 que dans les plantules sauvages, et ce phénotype est amplifié par des conditions de croissance à l’obscurité dans lesquelles le gène ADF9 est normalement préférentiellement exprimé. L’analyse des cellules épidermiques d’hypocotyle indique que ce phénotype est essentiellement dut à une augmentation de l’élongation cellulaire. De manière surprenante, les plantules mutantes adf9 présentent également des racines plus courtes que les contrôles, suggérant un lien complexe entre l’organisation du cytosquelette d’actine et l’élongation cellulaire. Finalement, la capacité réduite du cal issue des plantules adf9 à proliférer suggère également un rôle d’ADF9 dans la division cellulaire
Actin cytoskeleton organization and dynamics are tightly regulated by many actin-binding proteins (ABPs). Among ABPs, the actin-depolymerizing factors (ADFs) play a major role in actin filament turnover by promoting actin filament severing and facilitating pointed end depolymerization. Arabidopsis thaliana has 11 functional proteins that can be classified into four subclasses according to their expression profile and phylogenetic relationships. We provide evidence that subclass III ADF5 and ADF9 are unconventional ADFs since they do not display typical actin filament depolymerizing activities. Instead, they exhibit opposite activities with a surprisingly high ability to stabilize and crosslink actin filaments into long and thick actin bundles both in vitro and in live cells. Competition experiments with ADF1 support that ADF9 antagonizes the depolymerizing activity of conventional ADFs. We report the characterization of a not yet described knockout Arabidopsis mutant. Data strongly suggests a role for ADF9 in cell elongation. Indeed, hypocotyls are significantly longer in adf9 mutant than in wild- type seedlings, and this phenotype is enhanced in dark growth conditions in which the ADF9 gene is normally preferentially expressed. The analysis of hypocotyl epidermal cells indicates that this phenotype is essentially due to an increase of cell expansion. Surprisingly, adf9 seedlings exhibit shorter roots than control plants, suggesting a complex link between actin cytoskeleton organization and cell elongation. Finally, the reduced ability of adf9- derived calli to proliferate supports a role for ADF9 in cell division as well
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Osborn, Eric A. (Eric Alan) 1975. "The dynamics and regulation of actin filaments in vascular endothelial cells and in a reconstituted purified protein system". Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/16760.

Texto completo
Resumen
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2001.
Includes bibliographical references.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cell motility and shape change are complex processes that depend primarily on the cytoplasmic dynamics and distribution of actin monomer and polymer. Proteins that regulate actin cycling control cellular architecture and movement. One method to measure parameters that characterize actin dynamics is photo activation of fluorescence (PAF), which can simultaneously estimate the fraction of total actin polymerized (PF) and the lifetime of actin filaments (t). By deciphering the relationships between actin dynamics and regulatory proteins, the complicated motions of cells and biological consequences of these movements can be better understood. In purified actin solutions at steady-state, actin filament dynamics can be analyzed with PAF at long times following photoactivation. By increasing the width of the photoactivated band, actin filament turnover (t ~ 8 hours) can be distinguished from actin filament diffusion. Proteins believed to stabilize actin filaments against depolymerization markedly slow actin filament turnover in wide photoactivated bands (t ~ 65 hours). Decreasing the band width causes photoactivated fluorescence to decay more rapidly (t ~ 3 hours) due to a combination of actin filament diffusion and turnover. Addition of actin binding protein forms crosslinked actin gels that hinder filament diffusion and slow filament turnover (t ~ 12 hours) in narrow photoactivated bands. Endothelial cells decrease t and PF in order to accelerate their migration speed, consistent with mechanisms attributed to ADF/cofilin in vitro. Removal of gelsolin in fibroblasts produces a similar correlation between motility, t, and PF. Consistent with increased actin filament severing, fast-moving endothelial cells have an increased number of short actin filaments and more uncapped barbed ends, but paradoxically bind less cofilin. A mechanism of increasing endothelial cell motility is proposed that relies on actin filament severing to create uncapped pointed ends for ADF/cofilin-mediated depolymerization.
by Eric A. Osborn.
S.M.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Kimura, Kazushi. "Regulation of the association of adducin with actin filaments by Rho-associated kinase(Rho-kinase)and myosin phosphatase". Kyoto University, 2001. http://hdl.handle.net/2433/150197.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Theisen, Kelly E. "Exploring the mechanical properties of filamentous proteins and their homologs by multiscale simulations". University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1384850483.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Zuchero, J. Bradley. "Regulation of actin polymerization by JMY: Nucleation of filaments and activation of the Arp2/3 complex to control cell motility". Diss., Search in ProQuest Dissertations & Theses. UC Only. Search in ProQuest Dissertations & Theses. UC Only, 2010. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3390088.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Pereira, José Carlos Ribeiro Ferreira. "Cytoskeleton regulation in bladder cancer cells after photodynamic treatment". Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/21089.

Texto completo
Resumen
Mestrado em Biologia Molecular e Celular
A terapia fotodinâmica (PDT) é uma modalidade promissora para o tratamento do cancro. Esta terapia baseia-se na interação entre um composto químico (fotossensibilizador, PS), luz com um determinado comprimento de onda e oxigénio molecular para originar a produção de espécies reativas de oxigénio (ROS). Devido à sua elevada reatividade, estas espécies tóxicas podem causar danos severos conduzindo à morte celular. Atualmente, os PS disponíveis na clínica para o tratamento de tumores apresentam baixa seletividade para as células tumorais. Estudos anteriores do nosso grupo descreveram uma porfirina conjugada com unidades dendríticas de galactose (PorGal8) como um novo PS solúvel em solução aquosa, capaz de gerar ROS após fotoativação e com reconhecimento por parte de proteínas (galectina-1) que se encontram sobreexpressas nas células do cancro da bexiga. Vários estudos têm descrito alterações no citoesqueleto em resposta ao tratamento fotodinâmico. No entanto, a contribuição da desorganização do citoesqueleto na morte celular induzida por PDT encontra-se pouco esclarecida. Neste trabalho, avaliámos de que forma alterações nos constituintes do citoesqueleto – filamentos de actina, filamentos intermédios e microtúbulos – estão relacionadas com morte celular induzida por PDT com PorGal8. O uptake de PorGal8 em duas linhas celulares do cancro da bexiga derivadas de carcinoma de células transicionais (UM-UC-3 e HT-1376), foi dependente da concentração. O uptake celular de PorGal8 foi superior nas células UM-UC-3, que exibem níveis superiores da proteína galectina-1, comparativamente com as células HT-1376. PorGal8 mostrou não ser tóxico no escuro. A fotoativação da PorGal8 resultou numa fototoxicidade significativamente superior nas células UM-UC-3 relativamente às células HT-1376. A PorGal8 não induziu alterações significativas nos níveis de proteína α-tubulina nas células UM-UC-3. No entanto, observou-se uma redução significativa nos níveis de α-tubulina nas células HT-1376 vinte e quatro horas após tratamento com irradiação. Apesar de se ter observado uma recuperação na organização dos microtúbulos em algumas células, a intensidade da fluorescência diminuiu consideravelmente na maior parte das células HT-1376. Uma redução significativa nos níveis de proteína dos filamentos intermédios (vimentina) foi observada em ambas as linhas celulares vinte e quatro horas após irradiação. Trinta minutos após a irradiação, as células UM-UC-3 e HT-1376 apresentaram uma clara retração nos filamentos de actina com perda de fibras de stress. Ao contrário das células UM-UC-3 em que não se verificaram sinais de recuperação, em algumas células HT-1376 verificou-se uma certa reorganização dos filamentos de actina, com curtas fibras de stress, longas extensões, grandes filopodia, o que parece sugerir uma possível recuperação das células HT-1376. A RhoA, uma proteína da família de pequenas proteínas GTPases, descrita como estando relacionada com a expressão da galectina-1, foi adicionalmente avaliada. Resultados preliminares indicaram que a PorGal8 induziu uma tendência para aumentar os níveis de RhoA nas células HT-1376 vinte e quatro horas após tratamento com irradiação. Concluindo, os nossos resultados contribuem para o esclarecimento dos mecanismos subjacentes dos efeitos fototóxicos da PorGal8. Uma melhor compreensão dos intervenientes e das alterações induzidas imediatamente após PDT nas estruturas do citoesqueleto em cancros resistentes à terapia, poderão contribuir para o desenvolvimento de novos agentes terapêuticos adjuvantes à PDT.
Photodynamic therapy (PDT) is a promising modality for the treatment of cancer that involves light of an appropriate wavelength and a photosensitizing drug (photosensitizer, PS), used in conjunction with molecular oxygen, leading to the production of reactive oxygen species (ROS). In a biological environment, these toxic species can interact with the cellular constituents eliciting cell death. Currently, the PS available show poor tumor specificity. Previous work from our research group reported a porphyrin conjugated with dendritic units of galactose (PorGal8) as a new water soluble PS, able to generate ROS after photoactivation and exhibiting increased selectivity to bladder cancer cells overexpressing galectin-1. Several studies reported cytoskeleton alterations derived from photodynamic treatments. However, the role of cytoskeleton disorganization in cell death induced by PDT remains unclear. In this work we evaluated whether changes in the cytoskeletal constituents - actin filaments, intermediate filaments and microtubules - are correlated with cell death triggered by PDT with PorGal8. The uptake of PorGal8 in two bladder cancer lines derived from transitional cell carcinoma (UM-UC-3 and HT-1376 cells), was concentration dependent. Cellular uptake of PorGal8 was higher in UM-UC-3 cells that express higher levels of galectin-1 protein than HT-1376 cells. PorGal8 was nontoxic in dark. Photoactivation of PorGal8 resulted in a significantly higher phototoxicity in UM-UC-3 cells than HT-1376 cells. PorGal8 did not change the α-tubulin protein levels in UM-UC-3 cells but reduced α-tubulin twenty-four hours after photodynamic activation in HT-1376 cells. Although a few cells showed a recovery in microtubules organization, the fluorescence intensity decreased noticeably in most of the HT-1376 cells. A significant decrease in intermediate filaments (vimentin) protein levels was exhibited in both cell lines twenty-hours after irradiation. Thirty minutes post-irradiation, UM-UC-3 and HT-1376 cells showed a clear retraction of actin filaments with loss of stress fibers. Although no recovery was observed in UM-UC-3 cells, some cells present some reorganization in actin filaments, presenting short stress fibers, long extensions, like large filopodia, suggesting a possible recovery in HT-1376 cells. A small GTPases family protein, RhoA, referred to be involved with galectin-1 expression, was also evaluated, with preliminary results indicating a tendency towards an increase in HT-1376 cells twenty-four hours after therapy. Overall, our results give new insights into the mechanisms underlying the phototoxic effects of PorGal8. Better understanding the intrinsic web of events and alterations on cytoskeleton structures induced immediately after photodynamic treatment in resistant cancers may contribute to envisage new potential therapeutic adjuvants for PDT.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Qian, Yong. "Identification of the function of the carboxy terminus of AFAP-110 in regulating AFAP-110's self-association, cell localization and the integrity of actin filaments". Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=1102.

Texto completo
Resumen
Thesis (Ph. D.)--West Virginia University, 1999.
Title from document title page. Document formatted into pages; contains vi, 163 p. : ill. (some col.) Vita. Includes abstract. Includes bibliographical references.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Mühle, Hans-Werner. "Das Zytoskelett der Endothelzelle". Doctoral thesis, Humboldt-Universität zu Berlin, Medizinische Fakultät - Universitätsklinikum Charité, 2004. http://dx.doi.org/10.18452/14986.

Texto completo
Resumen
F-Aktin spielt eine wichtige Rolle bei der Steuerung der endothelialen Barrierefunktion. In dieser Arbeit verwendeten wir Colchicin, Vinca-Alkaloide (Vinblastin, Vincristin) und Paclitaxel um Mikrotubulussysteme (MT) auszulenken und den Effekt auf die Permeabilität zu untersuchen. Endothelzellen wurden auf Polycarbonatfiltermembranen gepflanzt und einem kontinuierlichen hydrostatischen Druck von 10 cm H2O ausgesetzt. Die Exposition von Endothelzell-Monolayern gegenüber Colchicin und Vinca-Alkaloiden führte innerhalb von 60 100 Minuten zeit- und dosisabhängig zu einem fünf zehnfachen Anstieg der hydraulischen Konduktivität. Dagegen war nach MT-Stabilisation durch Paclitaxel keine Permeabilitätszunahme festzustellen. Doppelimmunfluoreszenz-Mikroskopie zeigte, dass die MT-Depolymerisation durch Colchicin und Vinca Alkaloide zu F-Aktin-Umverteilung, Stressfaserbildung und Zellretraktionen mit ausgeprägter parazellulärer Lücken-Bildung führt. Diese Phänomene wurden durch Kombinationen von Vinblastin und Paclitaxel deutlich abgeschwächt. Die fluorometrische Messung des intrazellulären F-Aktins nach MT-Depolymerisation durch Vinblastin resultierte in einer signifikanten Zunahme der Aktinfilamente. Auf der anderen Seite resultierte F-Aktin Abbau durch Cytochalasin D und Clostridium difficile (TcdB-10463) morphologisch nicht in einer Veränderung von MT-Strukturen. Dabei zeigten in Interzellularbrücken gelegene MT-Filamente Kolokalisation mit F-Aktin Fragmenten. Unsere Ergebnisse demonstrieren, dass MT-Systeme an der Regulation der endothelialen Barriere beteiligt sind. Darüber hinaus verdeutlichen die Resultate eine enge Bindung von MT- und Aktin-Filamenten innerhalb endothelzellulärer Adhäsionskontakte.
The endothelian cytosceleton plays an important role in the regulation of endothelial permeability via cellular actin filaments. We tested the effect of agents known to perturb cellular microtubules on the permeability of endothelial cell monolayers. The agents chosen were colchicine, the vinca alkaloids vinblastine and vincristine and paclitaxel. Cell monolayers were prepared on polycarbonate filter membranes and exposed to a continuous hydrostatic pressure of 10 cm H2O. Colchicine and the vinca alkaloids caused a five to tenfold increase in the hydraulic conductivity of the monolayers within 60 100 min. The effect was dose and time dependent. The microtubule stabilizer paclitaxel caused no increase in permeability. Double-immunofluorescence microscopy showed that microtubule depolymerisation was associated with certain morphological features such as inter-endothelial gaps, cell retraction, f-actin reorganisation and some stressfibre appearance. These phenomena were significantly reduced when vinblastine and paclitaxel were combined. Measurement of intracellular f-actin following microtubule inhibition with vinblastine showed a significant increase in endothelial actin filaments. No changes in microtubule structures were seen when actin filaments were perturbed with cytochalasin D and Clostridium difficile (TcdB-10463). However, in this case the intercellular bridges showed that microtubules were co-localised with fragments of actin filaments from neighbouring cells. Our data demonstrate that microtubules are important for the regulation of endothelial permeability. Moreover, our results support evidens of binding between microtubules and actin filaments within endothelial cell adhesion contacts.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Castellanos, Glenda L. "Cellular Events Under Flow States Pertinent to Heart Valve Function". FIU Digital Commons, 2015. http://digitalcommons.fiu.edu/etd/2285.

Texto completo
Resumen
Heart valve disease (HVD) or a damaged valve can severely compromise the heart's ability to pump efficiently. Balloon valvuloplasty is preferred on neonates with aortic valve stenosis. Even though this procedure decreases the gradient pressure across the aortic valve, restenosis is observed soon after balloon intervention. Tissue engineering heart valves (TEHV), using bone marrow stem cells (BMSCs) and biodegradable scaffolds, have been investigated as an alternative to current non-viable prosthesis. By observing the changes in hemodynamics following balloon aortic valvuloplasty, we could uncover a potential cause for rapid restenosis after balloon intervention. Subsequently, a tissue engineering treatment strategy based on BMSC mechanobiology could be defined. Understanding and identifying the mechanisms by which cytoskeletal changes may lead to cellular differentiation of a valvular phenotype is a first critical step in enhancing the promotion of a robust valvular phenotype from BMSCs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Scoville, Damon Charles. "Filament dynamics and actin binding factors". Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1693066541&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Robertson, Alec 1974. "Material properties of actin filament bundles". Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/46628.

Texto completo
Resumen
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.
Includes bibliographical references (p. 119-127).
Actin is an ubiquitous structural protein fundamental to such biological processes as cell motility and muscle contraction. Our model system is the acrosomal process of the Limulus sperm which extends a 60 ýtm long actin bundle during reproduction. It is an example of a biological spring where the force of elongation derives from twist energy stored within the bundle during spermatogenesis. In addition to actin the acrosome comprises only one other protein: scruin, an actin-binding protein specific to Limulus that decorates and crosslinks actin filaments into a crystalline bundle. Our goal is to reconstitute the structure of the acrosome using these two proteins in order to further elucidate the role of scruin in actin bundle crosslinking.A multi-scale approach is presented wherein the bending rigidity of scruin bundles and their constituent filaments are probed individually, then inter-related by simple mechanical models. Material properties of filaments and bundles are measured using a combination of optical tweezers, electron and fluorescence microscopy. We find that scruin bundles reconstituted from acrosome fragments display an ordered structure, with a bending rigidity orders of magnitude higher than their individual filaments. Actin bundles formed by depletion exhibit similar behavior, revealing an intrinsic regime of coupled actin bundle formation. Bundle elastic moduli are eight orders of magnitude stiffer than reconstituted networks and an order of magnitude softer than the native acrosome, highlighting scruin's ability to dictate a wide range of material properties depending on the formation conditions.
by Alec P. Robertson.
Ph.D.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Storz, Tobias-Alexander. "Statische und dynamische Lichtstreuung an Lösungen von Aktinfilamenten". [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963434861.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Schnauß, Jörg, Tom Golde, Carsten Schuldt, B. U. Sebastian Schmidt, Martin Glaser, Dan Strehle, Claus Heussinger y Josef Alfons Käs. "Collective dynamics in a multi-filament actin bundle". Diffusion fundamentals 24 (2015) 46, S. 1, 2015. https://ul.qucosa.de/id/qucosa%3A14566.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Schnauß, Jörg, Tom Golde, Carsten Schuldt, B. U. Sebastian Schmidt, Martin Glaser, Dan Strehle, Claus Heussinger y Josef Alfons Käs. "Collective dynamics in a multi-filament actin bundle". Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-198625.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Schnauß, Jörg. "Self-assembly effects of filamentous actin bundles". Doctoral thesis, Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-179722.

Texto completo
Resumen
Das Zytoskelett einer eukaryotischen Zelle besteht aus drei Hauptbestandteilen: Aktin, Intermediärfilamenten und Mikrotubuli. Die vorliegende Arbeit beschäftigt sich mit dem Protein Aktin, welches unter physiologischen Bedingungen dynamische Filamente durch Polymerisation ausbildet. Diese Filamente können sowohl in Netzwerken als auch Bündeln angeordnet werden. Diese Anordnungen bilden die Grundlage für eine Vielfalt von Strukturen zur Realisierung diverser zellulärer Funktionen. Konventionell wurde die Ausprägung solcher Strukturen durch zusätzliche Proteine erklärt, welche Aktin beispielsweise vernetzen oder sogar aktive, dissipative Prozesse durch ATP Hydrolyse ermöglichen. Durch diese Erklärungen prägte sich ein sehr komplexes Bild zellulärer Funktionen heraus. Die dissipative Natur der meisten Prozesse führte dazu, dass meist auf grundlegende physikalische Beschreibungen, welche auf nicht-dissipativen Gleichgewichtszuständen beruhen, verzichtet wurde. Diese Arbeit widmet sich solchen nicht-dissipativen Prozessen und beschreibt deren inhärente Bedeutung auch in aktiven, dissipativen Systemen. Ein erstes Beispiel beschreibt die Generierung von kontraktilen Kräften in Aktinbündeln durch eine hohe makromolekulare Dichte der Umgebung. Diese hohe Dichte führt zu einem entropischen Effekt, welcher durch Volumenausschluss hochkonzentrierter inerter Polymere Aktinfilamente in Bündel ordnet. Werden diese Strukturen aus ihrem energetischen Minimum ausgelenkt, so entsteht eine rücktreibende Kraft, welche nach Ausschaltung der auslenkenden Kraft zu einer Kontraktion des gesamten Bündels führt. Dieses Bespiel zeigt klar, dass selbst in sehr einfachen Systemen äußerst komplexe Prozesse ablaufen können, welche konventionell mittels dissipativer Umwandlung von chemischer Energie in mechanische Arbeit beschrieben wurden. Die Komplexität der Eigenschaften von Aktinbündeln nimmt zudem drastisch zu sobald zusätzliche Proteine mit eigenen mechanischen Eigenschaften das System beeinflussen. Zur Untersuchung eines solchen Mehrkomponentensystems wurden Aktinfilamente mittels transienter Vernetzungsproteine gebündelt. Versuche auf unterschiedlichen Zeitskalen zeigten klar differenzierbare mechanische Antworten auf induzierte, aktive Biegedeformationen. Im Falle kurzer Deformationen verhielt sich das System völlig elastisch, während für lange Deformationszeiten deutliche plastische Effekte auftraten. Als Ursprung dieser Plastizität wurde die dynamische Umordnung der Vernetzungsproteine identifiziert. Jedoch führen nicht nur zusätzliche Proteine zu einer erhöhten Komplexität. Bereits die Anordnung von reinen Aktinbündeln in Netzwerke mittels entropischer Kräfte führt zu einer überraschenden Variabilität von entstehenden Mustern. Im besonderen Fokus dieser Untersuchung stehen Aster ähnliche Muster, welche regelmäßige Netzwerkstrukturen ausbilden und nur in Verbindung mit Aktin assoziierten Proteinen bekannt waren. Störungen der isotropen Ausgangssituation führen zu veränderter Musterbildung, welche die initiale Störung direkt widerspiegeln. Mit den präsentierten Resultaten leistet die Arbeit einen wichtigen Beitrag zum Verständnis der Dynamik von Aktinbündeln sowie deren Interaktionen.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Spiros, Athan Andrew. "Investigating models for cross-linker mediated actin filament dynamics". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ34627.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Elisabeth, Nathalie Hortensia. "Plasticité tissulaire et cellulaire du filament branchial des Lucinidae symbiotiques côtiers Codakia orbiculata et Lucine pensylvanica". Thesis, Antilles-Guyane, 2011. http://www.theses.fr/2011AGUY0461/document.

Texto completo
Resumen
La zone latérale des filaments branchiaux des bivalves Codakia orbiculata et Lucina pensylvanica est le lieu d'une symbiose chimioautotrophe avec des bactéries sulfo-oxydantes hébergées dans des cellules spécialisées, appelées bactériocytes. Dans cette étude, nous nous sommes proposés de déterminer les mécanismes qui sous-tendent la plasticité cellulaire et tissulaire observée au cours des processus de décolonisation et de recolonisation bactérienne. Pour ce faire, des individus collectés dans leur milieu naturel, ont été maintenus au laboratoire dans des bacs d'eau de mer filtrée en absence de nourriture et de soufre réduit, afin de provoquer la décolonisation bactérienne des filaments branchiaux. Lorsque la branchie apparaissait purgée de ses symbiotes, les individus ont été remis dans leur habitat naturel afin de provoquer sa recolonisation. L'analyse des branchies au cours de ces processus a fait appel à des techniques variées (histologie, immunohistochimie, hybridation in situ, cytométrie en flux, dosage des protéines et spectrométrie de fluorescence X). Les résultats obtenus ont permis de montrer que l'acquisition environnementale mise en évidence chez les juvéniles des Codakia se poursuivait tout au long de la vie des adultes. Cette étude a également permis une meilleure compréhension des mécanismes tissulaires sous-jacents à la plasticité du filament branchial en mettant en évidence les processus d'apoptose et de prolifération cellulaire qui ont lieu au cours des processus de décolonisation et de recolonisation. Ces processus s'accompagnent d'une variation de la teneur en soufre élémentaire, ainsi que de la taille relative et du contenu génomique des symbiotes
The lateral zone of gills filaments of coastal bivalves Codakia orbiculata and Lucina pensylvanica is the site of chemoautotrophic symbiosis with sulfur-oxidizing bacteria, housed in specialized cells called bacteriocytes. The objective of this thesis is to determine the mechanisms underlying cel1 plasticity and tissue plasticity observed in the lateral zone of gills filaments during the processes of bacterial decolonization and recolonization. In order to do this, the individuals collected in their natural habitat were maintained at the laboratory in seawater filtered tanks, without food and reduced sulfur, to cause bacterial decolonization. When the gills seemed to be purged, the individuals were returned to their natural habitat in order to cause the bacterial recolonization of gills filaments. The analysis of the gills during these processes involves several techniques (histology, immunohistochemistry, molecular hybridization, flow cytometry, total protein assays, protein sulfur assays, X-ray fluorescence spectrometry).This study shows that symbiont acquisition can occur during the entire life of Codakia bivalves. It also allows a better understanding of gills filaments plasticity by highlighting apoptosis and cell proliferation during decolonization and recolonization processes.Theses processes are accompanied with of elemental sufur, relative size and genomic content of symbiontes
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Hu, Bin y 胡斌. "Actin-based propulsion and entropic forces generated by single filament". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B46084411.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Sehring, Ivonne Margarete. "Molecular components and organelles involved in calcium-mediated signal-transduction in Paramecium". [S.l. : s.n.], 2006. http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-41167.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Stokasimov, Ema. "Insights into the allosteric interactions within the actin molecule". Diss., University of Iowa, 2009. https://ir.uiowa.edu/etd/890.

Texto completo
Resumen
Actin's ability to engage in a wide range of physiological functions requires that it be subject to complex spatial and temporal regulation. This regulation is achieved internally through monomer-monomer contacts and externally through interactions with actin binding proteins. The first part of my thesis focused on better understanding the role of inter-monomeric ionic interactions proposed between subdomains 2 and 3 of opposing monomers in F-actin stabilization. I studied several yeast actin mutants: A167R to disrupt a proposed ionic attraction with R39, A167E to mimic a proposed ionic attraction in muscle actin, and D275R to disrupt a proposed ionic attraction with R39. I investigated the effects of mutations in vivo, effects on filament polymerization characteristics and appearance in vitro, as well as interaction of the mutants with the filament severing protein cofilin. While both in vivo and in vitro data demonstrated the importance of the R39-D275 interaction for yeast actin and the interaction of the filament with cofilin, disruption of this interaction alone did not cause filament fragmentation. Conversely, results with A167 do demonstrate the in vivo and in vitro importance of another potential R39 ionic interaction for filament stabilization. In the second part of my work I used amide proton hydrogen/deuterium (HD) exchange detected by mass spectrometry as a tool to gain structural insight into yeast and muscle actin and profilin isoform differences and the actin-profilin interaction. The yeast and muscle actin HD analysis showed greater exchange for yeast G-actin compared to muscle actin in the barbed end pivot region and areas in subdomains 1 and 2, and for F-actin in monomer-monomer contact areas. These results suggest greater flexibility of the yeast actin monomer and filament compared to muscle actin. For yeast-muscle hybrid G-actins, the muscle-like and yeast-like parts of the molecule generally showed exchange characteristics resembling their parent actins. There were a few exceptions to this rule, however: a peptide on top of subdomain 2 and the pivot region between subdomains 1 and 3. These exhibited muscle actin-like exchange characteristics even though the areas were yeast-like, suggesting that there is crosstalk between subdomains 1 and 2 and the large and small domains. Hybrid F-actin data showing greater exchange compared to both yeast and muscle actins are consistent with mismatched yeast-muscle actin interfaces resulting in decreased stability of the hybrid filament contacts. Actin-profilin HD exchange results demonstrated a possible differential interaction of specific profilin isoforms with specific actin isoforms. While profilin binding mostly caused a decreased exchange for yeast actin peptides, it caused an increase in exchange for muscle actin peptides. Many of the changes observed were in peptides that line or contact the nucleotide cleft, consistent with profilin's ability to alter the kinetics of nucleotide exchange.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Herrig, Wolfgang Alexander. "Wechselwirkung von Ezrin mit PIP2-haltigen artifiziellen Membransystemen und mit F-Aktin". kostenfrei, 2007. http://www.opus-bayern.de/uni-regensburg/volltexte/2008/817/.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Achard, Vérane. "Dynamique de l'actine : mécanismes moléculaires contrôlant la dynamique d'assemblage des filaments d'actine en structures ordonnées". Grenoble INPG, 2009. http://www.theses.fr/2009INPG0106.

Texto completo
Resumen
Cette thèse porte sur l’étude de certaines de ces protéines rendant compte de l’assemblage/désassemblage dynamique des structures organisées de filaments d’actine nécessaires à la génération de force par polymérisation de l’actine. Dans un premier temps, nous avons étudié l’effet sur la dynamique des filaments d’actine de l’action conjuguée de trois protéines interagissant avec l’actine : la formine, la protéine de coiffe et l’ADF/cofiline. Dans un second temps, nous avons exploré la synergie entre ADF/cofiline et coronine pour le désassemblage des filaments d’actine. Ce travail fut réalisé dans le cadre d’une collaboration avec l’équipe de B. Goode (Brandeis University, Waltham). Enfin, la formation dans le temps et dans l’espace du réseau branché d’actine responsable de la motilité des cellules et/ou des pathogènes a été étudiée. Nous avons mis en évidence le rôle particulier de la protéine de coiffe dans le remodelage cinétique et mécanique du réseau branché d’actine créé par le complexe Arp2/3 en couplant expériences en microscopie à ondes évanescentes et modélisation numérique
This work is about the synergy between Actin binding pro teins in order to produce high-ordered actin structures. Ln order to do that we combined TIRF microscopy with in si/ico experiments. We first studied the effet on actin dynamics of capping protein, ADF/cofilin and formin. Then, we investigated the synergy between ADF/cofilin and coronin for actin disassembly. This work is reported in an article of Moelcular Cell. Last but not least, the formation of actin branched networks prior to actin-based motility has been studied
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Hertzog, Maud. "Modulation de l'assemblage des filaments d'actine par le motif WH2/thymosine beta". Paris 6, 2004. http://www.theses.fr/2004PA066545.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Wear, Martin Alexander. "Biochemical studies on gelsolin : actin complexes and experiments to form a minimal, defined-length actin filament". Thesis, University of Edinburgh, 2000. http://hdl.handle.net/1842/23253.

Texto completo
Resumen
In this thesis we report the formation of a putative "capped-actin-minifilament" complex. This was created by combining the gelsolin:actin2 ternary (G:A2) and the actin:DNaseI binary (A:D) complexes together (1:1 molar ratio) under polymerising conditions (100mM KC1; 2mM MgC12 in the presence of 0.2mM CaC12). Size-exclusion data indicates the formation of a significantly larger species (in relation to G:A2), with an apparent stiochiometry of G:A3:D (gelsolin:actin:DNaseI, respectively). Kinetic and modelling evidence (Weber et al, 1994) suggests that the binding of two DNaseI molecules at the pointed-end of filaments is not possible due to a steric clash. Using DNaseI's ability to bind at the pointed-ends of actin monomers, we have probed the disposition of the monomers in the G:A2 complex. Size-exclusion, native-PAGE and fluorescence enhancement data (performed with NBD-Actin) indicate the formation of a stable, co-operative complex with a stoichiometry of G:A2:D2 (gelsolin:actin:DNaseI, respectively). The apparent Kd of A:D binding to the gelsolin:actin binary complex (G:A) is ~ 50nM, and is equivalent to the binding of G-Actin alone (Kd ~ 39nM). Our data are consistent with DNaseI having no effect on the interaction of actin monomers with gelsolin, and with the spatial orientation of monomers in G:A2 being different to those at the barbed-end of filaments. In contrast to this, data from fluorescence enhancement experiments with rhodamin-phalloidin (an actin filament specific binding molecule) provide evidence for the actin monomers, within the putative "minifilament", being in a filamentous-like conformation. We observe a specific binding, with significant levels of fluorescence enhancement (~ 3 - 4 fold), of rhodamine-phalloidin to the "minifilament", with an apparent Kd of ~4.6mM. We have also examined the possibility of replacing gelsolin (as the barbed-end capping protein) with a cloned polypeptide fragment derived from tensin, a component of focal adhesions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Uhlemann, Ria [Verfasser]. "Essential role of actin filament dynamics in microglia activation / Ria Uhlemann". Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2015. http://d-nb.info/1068208309/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Fritzsche, M. "Homeostasis of the cellular actin cortex and its filament length-distribution". Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1382930/.

Texto completo
Resumen
The cell cortex is a thin network of actin, myosin motors, and associated proteins that underlies the plasma membrane in most eukaryotic cells. It enables cells to resist extracellular stresses, perform mechanical work, and change shape. The actin network undergoes constant reorganisation due to molecular turnover. Hence, cortical structural and mechanical properties depend strongly on the relative turnover rates of its constituents and the actin filament length-distribution, but quantitative data on these dynamics remains elusive. I combined single molecule speckle microscopy and photobleaching experiments with microscopic computer simulations to analyse how molecular binding dynamics of G-actin to filaments sets network turnover and consequently the mechanical properties of the cellular actin cortex in living cells. Using photobleaching experiments, I found that two filament families with very different turnover rates composed the actin cortex: one with fast turnover dynamics and polymerisation resulting from addition of monomers to free barbed-ends and one with slow turnover dynamics with polymerisation resulting from formin-mediated filament growth. I show that filaments in the second subpopulation are on average longer than those in the first and that cofilin-mediated severing of formin-capped filaments contributes to replenishing the filament subpopulation with free barbed-ends. Additionally, I measured the molecular association rates and the distribution of travel-distances of single actin monomers and formin dimers in speckle experiments and showed that this travel-distance distribution is consistent with the actin filament length-distribution found from photobleaching experiments and molecular simulations. Furthermore, I compare the steady state cortex of different cell lines and newly formed cortices in cellular blebs and discuss the role of cross-linkers like α-actinin and myosin mini-filaments in the actin cortex. Together, my results provide a quantitative characterisation of essential mechanisms underlying actin cortex homeostasis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Zumdieck, Alexander. "Dynamics of Active Filament Systems: The Role of Filament Polymerization and Depolymerization". Doctoral thesis, Technische Universität Dresden, 2005. https://tud.qucosa.de/id/qucosa%3A24642.

Texto completo
Resumen
Aktive Filament-Systeme, wie zum Beispiel das Zellskelett, sind Beispiele einer interessanten Klasse neuartiger Materialien, die eine wichtige Rolle in der belebten Natur spielen. Viele wichtige Prozesse in lebenden Zellen wie zum Beispiel die Zellbewegung oder Zellteilung basieren auf dem Zellskelett. Das Zellskelett besteht aus Protein-Filamenten, molekularen Motoren und einer großen Zahl weiterer Proteine, die an die Filamente binden und diese zu einem Netz verbinden können. Die Filamente selber sind semifexible Polymere, typischerweise einige Mikrometer lang und bestehen aus einigen hundert bis tausend Untereinheiten, typischerweise Mono- oder Dimeren. Die Filamente sind strukturell polar, d.h. sie haben eine definierte Richtung, ähnlich einer Ratsche. Diese Polarität begründet unterschiedliche Polymerisierungs- und Depolymerisierungs-Eigenschaften der beiden Filamentenden und legt außerdem die Bewegungsrichtung molekularer Motoren fest. Die Polymerisation von Filamenten sowie Krafterzeugung und Bewegung molekularer Motoren sind aktive Prozesse, die kontinuierlich chemische Energie benötigen. Das Zellskelett ist somit ein aktives Gel, das sich fern vom thermodynamischen Gleichgewicht befindet. In dieser Arbeit präsentieren wir Beschreibungen solcher aktiven Filament-Systeme und wenden sie auf Strukturen an, die eine ähnliche Geometrie wie zellulare Strukturen haben. Beispiele solcher zellularer Strukturen sind Spannungsfasern, kontraktile Ringe oder mitotische Spindeln. Spannungsfasern sind für die Zellbewegung essentiell; sie können kontrahieren und so die Zelle vorwärts bewegen. Die mitotische Spindel trennt Kopien der Erbsubstanz DNS vor der eigentlichen Zellteilung. Der kontraktile Ring schließlich trennt die Zelle am Ende der Zellteilung. In unserer Theorie konzentrieren wir uns auf den Einfluß der Polymerisierung und Depolymerisierung von Filamenten auf die Dynamik dieser Strukturen. Wir zeigen, dass der kontinuierliche Umschlag (d.h. fortwährende Polymerisierung und Depolymerisierung) von Filamenten unabdingbar ist für die kontraktion eines Rings mit konstanter Geschwindigkeit, so wie in Experimenten mit Hefezellen beobachtet. Mit Hilfe einer mikroskopisch motivierten Beschreibung zeigen wir, wie "filament treadmilling", also Filament Polymerisierung an einem Ende mit der gleichen Rate wie Depolymerisierung am anderen Ende, zur Spannung in Filament Bündeln und Ringen beitragen kann. Ein zentrales Ergebnis ist, dass die Depolymerisierung von Filamenten in Anwesenheit von filamentverbindenden Proteinen das Zusammenziehen dieser Bündel sogar in Abwesenheit molekulare Motoren herbeiführen kann. Ferner entwickeln wir eine generische Kontinuumsbeschreibung aktiver Filament-Systeme, die ausschließlich auf Symmetrien der Systeme beruht und von mikroskopischen Details unabhängig ist. Diese Theorie erlaubt uns eine komplementäre Sichtweise auf solche aktiven Filament-Systeme. Sie stellt ein wichtiges Werkzeug dar, um die physikalischen Mechanismen z.B. in Filamentbündeln aber auch bei der Bildung von Filamentringen im Zellkortex zu untersuchen. Schließlich entwickeln wir eine auf einem Kräftegleichgewicht basierende Beschreibung für bipolare Strukturen aktiver Filamente und wenden diese auf die mitotische Spindel an. Wir diskutieren Bedingungen für die Bildung und Stabilität von Spindeln.
Active filament systems such as the cell cytoskeleton represent an intriguing class of novel materials that play an important role in nature. The cytoskeleton for example provides the mechanical basis for many central processes in living cells, such as cell locomotion or cell division. It consists of protein filaments, molecular motors and a host of related proteins that can bind to and cross-link the filaments. The filaments themselves are semiflexible polymers that are typically several micrometers long and made of several hundreds to thousands of subunits. The filaments are structurally polar, i.e. they possess a directionality. This polarity causes the two distinct filament ends to exhibit different properties regarding polymerization and depolymerization and also defines the direction of movement of molecular motors. Filament polymerization as well as force generation and motion of molecular motors are active processes, that constantly use chemical energy. The cytoskeleton is thus an active gel, far from equilibrium. We present theories of such active filament systems and apply them to geometries reminiscent of structures in living cells such as stress fibers, contractile rings or mitotic spindles. Stress fibers are involved in cell locomotion and propel the cell forward, the mitotic spindle mechanically separates the duplicated sets of chromosomes prior to cell division and the contractile ring cleaves the cell during the final stages of cell division. In our theory, we focus in particular on the role of filament polymerization and depolymerization for the dynamics of these structures. Using a mean field description of active filament systems that is based on the microscopic processes of filaments and motors, we show how filament polymerization and depolymerization contribute to the tension in filament bundles and rings. We especially study filament treadmilling, an ubiquitous process in cells, in which one filament end grows at the same rate as the other one shrinks. A key result is that depolymerization of filaments in the presence of linking proteins can induce bundle contraction even in the absence of molecular motors. We extend this description and apply it to the mitotic spindle. Starting from force balance considerations we discuss conditions for spindle formation and stability. We find that motor binding to filament ends is essential for spindle formation. Furthermore we develop a generic continuum description that is based on symmetry considerations and independent of microscopic details. This theory allows us to present a complementary view on filament bundles, as well as to investigate physical mechanisms behind cell cortex dynamics and ring formation in the two dimensional geometry of a cylinder surface. Finally we present a phenomenological description for the dynamics of contractile rings that is based on the balance of forces generated by active processes in the ring with forces necessary to deform the cell. We find that filament turnover is essential for ring contraction with constant velocities such as observed in experiments with fission yeast.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Brangbour, Coraline. "Force générée par la polymérisation de filaments d'actine". Phd thesis, Université Pierre et Marie Curie - Paris VI, 2008. http://pastel.archives-ouvertes.fr/pastel-00005102.

Texto completo
Resumen
Plusieurs mécanismes biologiques utilisent la polymérisation des filaments d'actine comme moteur mécanique. L'énergie chimique libérée à l'addition d'un monomère dans le filament est convertie en travail mécanique et une force est générée. Les filaments ainsi formés s'organisent grâce à des protéines liant l'actine et forment des structures qui diffèrent par leurs propriétés mécaniques et élastiques mais aussi de leurs fonctions dans les différents processus biologiques. Notre système expérimental permet d'étudier le lien entre les propriétés mécaniques et les mécanismes à l'origine de la production de la force. La polymérisation des filaments est directement initiée sur la surface de particules magnétiques. En présence d'un champ magnétique, ces dernières s'organisent en chaîne par des interactions dipôle-dipôle, et une force magnétique compressive est induite sur les filaments qui polymérisent. La polymérisation écartent les particules au cours du temps et en fonction de la force appliquée, la vitesse d'écartement des particules est ralentie. En suivant l'évolution de la distance entre particules, nous détaillons la relation force-vitesse et les propriétés mécaniques des filaments.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Pappas, Christopher Theodore. "Elucidating the Mechanisms by Which Nebulin Regulates Thin Filament Assembly in Skeletal Muscle". Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/145422.

Texto completo
Resumen
Proper contraction of striated muscle requires the assembly of actin filaments with precise spacing, polarity and lengths, however the mechanisms by which the cell accomplishes this remain unclear. In one model, the giant protein nebulin is proposed to function as a "molecular ruler" specifying the final lengths of the actin filaments. This dissertation focuses on determining the mechanisms by which nebulin regulates thin filament assembly. We found that nebulin physically interacts with CapZ, a protein that caps the barbed end of the actin filament within the Z-disc. Reduction of nebulin levels in chick skeletal myocytes via siRNA results in a reduction of assembled CapZ, and a loss of the uniform alignment of the barbed ends of the actin filaments. These data suggest that nebulin restricts the position of thin-filament barbed ends to the Z-disc via a direct interaction with CapZ. Unexpectedly, the CapZ binding site was mapped to a site on nebulin that was previously predicted to localize outside of the Z-disc. Thus, we also propose a novel molecular model of Z-disc architecture in which nebulin interacts with CapZ from a thin filament of an adjacent sarcomere, thus providing a structural link between sarcomeres. To determine the mechanism by which nebulin regulates thin filament length and directly test the molecular ruler hypothesis, a unique small nebulin molecule ("mini-nebulin") was constructed. The introduction of mini-nebulin into chick skeletal myocytes, with endogenous nebulin knocked down, does not result in corresponding shorter actin filaments; an observation that is inconsistent with a strict ruler function. Treatment of these cells, however, with the actin depolymerizing agent Latrunculin A produces filaments that match the length of the mini-nebulin molecule, indicating mini-nebulin stabilizes the actin filaments. Furthermore, knockdown of nebulin results in more dynamic populations of the thin filament components actin, tropomyosin and tropomodulin. Strikingly, introduction of mini-nebulin is able to restore the normal stability of the actin filaments. Taken together, these data indicate that nebulin is responsible for proper actin organization within the Z-disc and contributes to actin filament length regulation by stabilizing the filament, preventing actin depolymerization.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Johnsson, Anna-Karin. "The Actin Filament System : Its Involvement in Cell Migration and Neurotransmitter Release". Doctoral thesis, Stockholms universitet, Wenner-Grens institut, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-56877.

Texto completo
Resumen
The microfilament system consists of actin filaments as the major component and is regulated by a number of actin binding proteins. It is juxtaposed to the plasma membrane where it forms a dense cortical weave from where it pervades into the cell interior. This filament system has multiple roles and participates in virtually all motile processes where its dynamic activities depend on receptor mediated signaling leading to constant polymerizations and depolymerizations. These activities are now also known to affect gene regulation. This thesis discusses these dynamic reorganizations of the microfilament system and how components are supplied to support these motile processes. The focus is on profilin/profilin:actin, actin polymerization and the localization of the transcripts of these proteins. The localization of profilin mRNA was examined in relation to the distribution of β-actin mRNA using fluorescent in situ hybridization. It was concluded that both these mRNAs localize to sites of massive actin polymerization called dorsal ruffles albeit the data obtained suggests that this localization must be dependent on distinct mechanisms. Additionally signal transduction and cell motility was studied after depleting the two profilin isoforms 1 and 2. The activity of the transcription factor SRF is known to be coupled to microfilament system dynamics via the cofactor MAL which binds to actin monomers and is released upon receptor mediated actin polymerization. Depletion of profilin was seen to influence SRF dependent signaling, most likely because the lack of profilin enables more MAL to bind actin monomers thereby preventing SRF dependent transcription. Finally, it was also investigated how the synaptic vesicle protein synaptotagmin 1 which is involved in exocytosis, has a role in actin polymerization. This protein has previously been described to cause filopodia formation when ectopically expressed. A polybasic sequence motif was identified as the effector sequence for this activity and it was established that this sequence interacts with anionic lipids. It is also discussed how this sequence could have a role in neurotransmitter release and actin polymerization in the nerve synapse.
At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Submitted.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Junior, Euclides Matheucci. "Clonagem e caracterização do gene de actina de trichoderma reesei". Universidade de São Paulo, 1993. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-18092015-165016/.

Texto completo
Resumen
Não consta resumo na publicação.
The gene encoding actin in the cellulolytic filamentus fungus Trichoderma reesei has been isolated and sequenced. The nucleotide sequence reveals that the gene is composed of 6 exons separated by 5 introns within the coding region. The positions of the introns were predicted by comparison of sequence homology to the genes coding for actin with known amino acid sequence and by identification of splice-site signal sequences. The actin protein of Trichoderma reesei shows extensive homology to the actins of other fungi E. nidulans, 95% , T. lanuginosus, 92% and S. pombae. The T. reesei actin promoter has a CT-rich region, CAAT and GC. There is no obvious TATA sequence in the T. reesei actin promoter. The absence of TATA-like sequence were also observed in anothers genes of T. reesei. An important aspect in molecular biology of filamentous fungi is the analysis, under a specific metabolic events, of the mechanism(s) regulating the expression of constitutive and induced genes. The filamentous fungus Trichoderma reesei is considered to be one of the most efficient producer of cellulase, and it serves as a model system for enzymatic cellulose hydrolysis. Expression of the cellulase genes are stringently regulated by the carbon source. Growth on cellulose results in induction of the cellulase transcripts, whereas glucose strongly represses their expression. The availability of a constitutive expressed genes of T. reesei provides not only important information regarding the molecular biology of the fungi, but also is essential for a better understanding of the mechanism(s) controlling the expression of the cellulase transcripts. Under inductive process of the of the major cellulase transcript (cbh1) and its repression by glucose, actin mRNA is constitutively expressed. The present results should be useful for further structural and functional analysis of the elements involved in inductive and constitutive expression of cellulase and actin transcripts.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Breitsprecher, Dennis [Verfasser]. "Molecular mechanism of actin filament elongation by Ena/VASP proteins / Dennis Breitsprecher". Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover, 2010. http://d-nb.info/1008374679/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Zumdieck, Alexander. "Dynamics of Active Filament Systems". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1139849910030-68242.

Texto completo
Resumen
Aktive Filament-Systeme, wie zum Beispiel das Zellskelett, sind Beispiele einer interessanten Klasse neuartiger Materialien, die eine wichtige Rolle in der belebten Natur spielen. Viele wichtige Prozesse in lebenden Zellen wie zum Beispiel die Zellbewegung oder Zellteilung basieren auf dem Zellskelett. Das Zellskelett besteht aus Protein-Filamenten, molekularen Motoren und einer großen Zahl weiterer Proteine, die an die Filamente binden und diese zu einem Netz verbinden können. Die Filamente selber sind semifexible Polymere, typischerweise einige Mikrometer lang und bestehen aus einigen hundert bis tausend Untereinheiten, typischerweise Mono- oder Dimeren. Die Filamente sind strukturell polar, d.h. sie haben eine definierte Richtung, ähnlich einer Ratsche. Diese Polarität begründet unterschiedliche Polymerisierungs- und Depolymerisierungs-Eigenschaften der beiden Filamentenden und legt außerdem die Bewegungsrichtung molekularer Motoren fest. Die Polymerisation von Filamenten sowie Krafterzeugung und Bewegung molekularer Motoren sind aktive Prozesse, die kontinuierlich chemische Energie benötigen. Das Zellskelett ist somit ein aktives Gel, das sich fern vom thermodynamischen Gleichgewicht befindet. In dieser Arbeit präsentieren wir Beschreibungen solcher aktiven Filament-Systeme und wenden sie auf Strukturen an, die eine ähnliche Geometrie wie zellulare Strukturen haben. Beispiele solcher zellularer Strukturen sind Spannungsfasern, kontraktile Ringe oder mitotische Spindeln. Spannungsfasern sind für die Zellbewegung essentiell; sie können kontrahieren und so die Zelle vorwärts bewegen. Die mitotische Spindel trennt Kopien der Erbsubstanz DNS vor der eigentlichen Zellteilung. Der kontraktile Ring schließlich trennt die Zelle am Ende der Zellteilung. In unserer Theorie konzentrieren wir uns auf den Einfluß der Polymerisierung und Depolymerisierung von Filamenten auf die Dynamik dieser Strukturen. Wir zeigen, dass der kontinuierliche Umschlag (d.h. fortwährende Polymerisierung und Depolymerisierung) von Filamenten unabdingbar ist für die kontraktion eines Rings mit konstanter Geschwindigkeit, so wie in Experimenten mit Hefezellen beobachtet. Mit Hilfe einer mikroskopisch motivierten Beschreibung zeigen wir, wie "filament treadmilling", also Filament Polymerisierung an einem Ende mit der gleichen Rate wie Depolymerisierung am anderen Ende, zur Spannung in Filament Bündeln und Ringen beitragen kann. Ein zentrales Ergebnis ist, dass die Depolymerisierung von Filamenten in Anwesenheit von filamentverbindenden Proteinen das Zusammenziehen dieser Bündel sogar in Abwesenheit molekulare Motoren herbeiführen kann. Ferner entwickeln wir eine generische Kontinuumsbeschreibung aktiver Filament-Systeme, die ausschließlich auf Symmetrien der Systeme beruht und von mikroskopischen Details unabhängig ist. Diese Theorie erlaubt uns eine komplementäre Sichtweise auf solche aktiven Filament-Systeme. Sie stellt ein wichtiges Werkzeug dar, um die physikalischen Mechanismen z.B. in Filamentbündeln aber auch bei der Bildung von Filamentringen im Zellkortex zu untersuchen. Schließlich entwickeln wir eine auf einem Kräftegleichgewicht basierende Beschreibung für bipolare Strukturen aktiver Filamente und wenden diese auf die mitotische Spindel an. Wir diskutieren Bedingungen für die Bildung und Stabilität von Spindeln
Active filament systems such as the cell cytoskeleton represent an intriguing class of novel materials that play an important role in nature. The cytoskeleton for example provides the mechanical basis for many central processes in living cells, such as cell locomotion or cell division. It consists of protein filaments, molecular motors and a host of related proteins that can bind to and cross-link the filaments. The filaments themselves are semiflexible polymers that are typically several micrometers long and made of several hundreds to thousands of subunits. The filaments are structurally polar, i.e. they possess a directionality. This polarity causes the two distinct filament ends to exhibit different properties regarding polymerization and depolymerization and also defines the direction of movement of molecular motors. Filament polymerization as well as force generation and motion of molecular motors are active processes, that constantly use chemical energy. The cytoskeleton is thus an active gel, far from equilibrium. We present theories of such active filament systems and apply them to geometries reminiscent of structures in living cells such as stress fibers, contractile rings or mitotic spindles. Stress fibers are involved in cell locomotion and propel the cell forward, the mitotic spindle mechanically separates the duplicated sets of chromosomes prior to cell division and the contractile ring cleaves the cell during the final stages of cell division. In our theory, we focus in particular on the role of filament polymerization and depolymerization for the dynamics of these structures. Using a mean field description of active filament systems that is based on the microscopic processes of filaments and motors, we show how filament polymerization and depolymerization contribute to the tension in filament bundles and rings. We especially study filament treadmilling, an ubiquitous process in cells, in which one filament end grows at the same rate as the other one shrinks. A key result is that depolymerization of filaments in the presence of linking proteins can induce bundle contraction even in the absence of molecular motors. We extend this description and apply it to the mitotic spindle. Starting from force balance considerations we discuss conditions for spindle formation and stability. We find that motor binding to filament ends is essential for spindle formation. Furthermore we develop a generic continuum description that is based on symmetry considerations and independent of microscopic details. This theory allows us to present a complementary view on filament bundles, as well as to investigate physical mechanisms behind cell cortex dynamics and ring formation in the two dimensional geometry of a cylinder surface. Finally we present a phenomenological description for the dynamics of contractile rings that is based on the balance of forces generated by active processes in the ring with forces necessary to deform the cell. We find that filament turnover is essential for ring contraction with constant velocities such as observed in experiments with fission yeast
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Figura, Guido von. "Charakterisierung der Aktin-ADP-Ribosyltransferase SpvB aus Salmonella enterica". [S.l. : s.n.], 2005.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía