Siga este enlace para ver otros tipos de publicaciones sobre el tema: Activation de liaison C-F.

Artículos de revistas sobre el tema "Activation de liaison C-F"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Activation de liaison C-F".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Fillion, G., C. Harel, I. Cloez, P. Barone, F. Atger, MP Fillion, N. Prudhomme et al. "Récepteurs sérotoninergiques 5-HT1D et antidépresseurs". Psychiatry and Psychobiology 5, n.º 3 (1990): 187–94. http://dx.doi.org/10.1017/s0767399x00003485.

Texto completo
Resumen
RésuméDivers sous-types de récepteurs sérotoninergiques de type 5-HT1 ont été mis en évidence. Ils correspondent aux soustypes 5-HT1A (marqué sélectivement par le 8-OH-DPAT), 5-HT1B marqué par le propranolol et certains bêta-antagonistes et présent seulement chez le rat et la souris, absent chez l’homme) et 5-HT1C (marqué par la mésulergine et présent en particulier dans les plexus choroïdes). Un sous-type supplémentaire 5-HT1 non A, non B, non C a été mis en évidence; il est caractérisé par un site de liaison insensible aux concentrations de ligands inhibant sélectivement les sous-types 5-HT1A, 5-HT1B et 5-HT1C, il correspond à un système de transduction adénylcyclasique (activation ou inhibition) et apparaît enfin jouer un rôle important dans la modulation présynaptique de la libération de neurotransmetteurs - non sérotoninergiques - en particulier l’acétylcholine. Ces caractéristiques ont été mises en évidence sur des préparations membranaires de cortex de mammifères par des essais in vitro de liaison de [3H]5-HT, de mesure d’activité adénylcyclasique sur les mêmes préparations et par mesure de libération évoquée de [3H] acétylcholine à partir de préparations synaptosomales de diverses régions cérébrales de rat et de cobaye. Une analyse par autoradiographie quantitative a été réalisée chez l’homme sur des coupes fines de cortex frontal prélevées post-mortem chez des individus normaux et des individus déprimés; les résultats obtenus suggèrent une légère augmentation des sites 5-HT1 non A, non b, non c chez les individus déprimés versus les cerveaux normaux. Les antidépresseurs à faibles concentrations (10 à 100 nM) sont capables d’interagir in vitro avec le fonctionnement de ce récepteur: au niveau du site de reconnaissance en altérant les caractéristiques de liaison de la [3H]5-HT, à celui du système de transduction adénylcyclasique en inhibant l’activation induite par la 5-HT et enfin au niveau de l’effet cellulaire sérotoninergique en réversant partiellement l’effet inhibiteur du trilîuorophénylméthylpipérazine (TFMPP), un agoniste sérotoninergique, sur la libération évoquée d’acétylcholine. Cet effet est observé avec des antidépresseurs inhibiteurs d’uptake de la 5-HT mais aussi avec des inhibiteurs d’uptake de la noradrénaline et non pas avec des benzodiazépines ou des neuroleptiques. Ces résultats suggèrent I’hypothèse selon laquelle le système sérotoninergique fonctionnant à l’aide des récepteurs 5-HT1 non A, non B, non c pourrait réguler la libération de divers autres neurotransmetteurs entraînant par là une régulation du nombre des récepteurs correspondants à ceux-ci. Les antidépresseurs pourraient interagir avec cet effet modulateur sérotoninergique vraisemblablement altéré au cours de pathologies dépressives ou accompagnant celle-ci.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Berto, Ludovic, Anaëlle Dumazer, Fanny Malhaire, Giuseppe Cannone, Vinothkumar Kutti Ragunath, Cyril Goudet y Guillaume Lebon. "Les avancées récentes dans le domaine de la biologie structurale des récepteurs couplés aux protéines G de la classe C : Le récepteur métabotropique du glutamate 5". Biologie Aujourd’hui 215, n.º 3-4 (2021): 85–94. http://dx.doi.org/10.1051/jbio/2021013.

Texto completo
Resumen
La classe C des Récepteurs Couplés aux Protéines G (RCPG) comprend plusieurs membres aux fonctions physiologiques importantes comme par exemple les récepteurs des principaux neurotransmetteurs excitateurs (glutamate) et inhibiteurs (GABA) du système nerveux, les récepteurs des goûts umami et sucré et les récepteurs sensibles au calcium. Ces récepteurs possèdent une architecture moléculaire particulière, caractérisée par la présence d’un large domaine extracellulaire (ECD) relié à un domaine membranaire composé de 7 hélices transmembranaires (7TM). De plus, ils forment tous des dimères obligatoires, la dimérisation étant fondamentale pour leur fonction. La fixation d’agoniste dans l’ECD induit l’activation du récepteur. L’activité des agonistes peut être modulée de manière allostérique par des modulateurs positifs (PAM) ou négatifs (NAM), se liant au domaine 7TM. Il est important de comprendre comment les changements de conformation induits par la liaison des agonistes au sein du domaine extracellulaire sont transmis au domaine transmembranaire mais aussi de comprendre les bases structurales et moléculaires de la régulation allostérique des récepteurs de la classe C. Les progrès récents de la microscopie électronique en conditions cryogéniques (cryoEM) ont permis des avancées sans précédent dans le décryptage des bases structurelles et moléculaires des mécanismes d’activation des RCPG de classe C, et notamment du récepteur métabotropique du glutamate de type 5 (mGlu5). Le glutamate entraîne une fermeture et un changement d’orientation des domaines extracellulaires qui induit un mouvement important entre les sous-unités, rapprochant les 7TM et stabilisant la conformation active du récepteur. La diversité de conformations inactives pour les récepteurs de la classe C était inattendue mais propice à une activation possible par des PAM. Ces derniers stabilisent une conformation active des 7TM, indépendante des changements conformationnels induits par les agonistes, représentant un mode alternatif d’activation des récepteurs mGlu. Nous présentons et discutons ici les caractérisations structurales récentes des récepteurs de classe C, en soulignant les résultats qui rendent cette famille de récepteurs unique. La compréhension de la base structurelle de la signalisation des dimères de mGlu représente une réalisation historique et ouvre la voie à l’analyse de la signalisation des dimères de RCPG en général. Ces analyses structurales devraient également ouvrir de nouvelles voies pour la conception de médicaments ciblant cette famille de récepteurs qui sont aussi des cibles thérapeutiques.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Lee, Eunsung y Ewa Pietrasiak. "Activation of C–F, Si–F, and S–F Bonds by N-Heterocyclic Carbenes and Their Isoelectronic Analogues". Synlett 31, n.º 14 (7 de mayo de 2020): 1349–60. http://dx.doi.org/10.1055/s-0040-1707106.

Texto completo
Resumen
Reactions involving C–F, Si–F, and S–F bond cleavage with N-heterocyclic carbenes and isoelectronic species are reviewed. Most examples involve activation of aromatic C–F bond via an SNAr pathway and nucleophilic substitution of fluorine in electron-deficient olefins. The mechanism of the C–F bond activation depends on the reaction partners and the reaction can proceed via addition–elimination, oxidative addition (concerted or stepwise) or metathesis. The adducts formed upon substitution find applications in organic synthesis, as ligands and as stable radical precursors, but in most cases, their full potential remains unexplored.1 Introduction1.1 The C–F Bond1.2 C–F Bond Activation: A Short Summary1.3 C–F Bond Activation: A Special Case of SNAr1.4 N-Heterocyclic Carbenes (NHCs)1.5 The Purpose of this Article2 C–F bond Activation in Acyl Fluorides3 Activation of Vinylic C–F Bonds4 Activation of Aromatic C–F Bonds5 X–F Bond Activation (X = S or Si)6 C–F Bond Activation by Main Group Compounds Isoelectronic with NHCs7 Conclusions and Outlook
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Lyon, Jonathan T. y Lester Andrews. "Formation of CH2TiF2by C−F Activation and α-F Transfer". Organometallics 25, n.º 6 (marzo de 2006): 1341–43. http://dx.doi.org/10.1021/om060019w.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Amii, Hideki y Kenji Uneyama. "C−F Bond Activation in Organic Synthesis". Chemical Reviews 109, n.º 5 (13 de mayo de 2009): 2119–83. http://dx.doi.org/10.1021/cr800388c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Burdeniuc, Juan, Brigitte Jedicka y Robert H. Crabtree. "Recent Advances in C–F Bond Activation". Chemische Berichte 130, n.º 2 (febrero de 1997): 145–54. http://dx.doi.org/10.1002/cber.19971300203.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kühnel, Moritz F y Dieter Lentz. "Titanium-Catalyzed C-F Activation of Fluoroalkenes". Angewandte Chemie International Edition 49, n.º 16 (12 de marzo de 2010): 2933–36. http://dx.doi.org/10.1002/anie.200907162.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Jaeger, Alma D., Christian Ehm y Dieter Lentz. "Organocatalytic C−F Bond Activation with Alanes". Chemistry - A European Journal 24, n.º 26 (30 de marzo de 2018): 6769–77. http://dx.doi.org/10.1002/chem.201706061.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Swamy, V. S. V. S. N., Nasrina Parvin, K. Vipin Raj, Kumar Vanka y Sakya S. Sen. "C(sp3)–F, C(sp2)–F and C(sp3)–H bond activation at silicon(ii) centers". Chemical Communications 53, n.º 71 (2017): 9850–53. http://dx.doi.org/10.1039/c7cc05145j.

Texto completo
Resumen
Silylene, [PhC(NtBu)2SiN(SiMe3)2] (1) underwent C(sp3)–F, C(sp2)–F and C(sp3)–H bond activation with trifluoroacetophenone, octafluorotoluene, and acetophenone, respectively, under ambient conditions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Hamel, Jean-Denys y Jean-François Paquin. "Activation of C–F bonds α to C–C multiple bonds". Chemical Communications 54, n.º 73 (2018): 10224–39. http://dx.doi.org/10.1039/c8cc05108a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Ma, Rongqing, Hongfan Hu, Xinle Li, Guoliang Mao, Yuming Song y Shixuan Xin. "Advances in Catalytic C–F Bond Activation and Transformation of Aromatic Fluorides". Catalysts 12, n.º 12 (18 de diciembre de 2022): 1665. http://dx.doi.org/10.3390/catal12121665.

Texto completo
Resumen
The activation and transformation of C–F bonds in fluoro-aromatics is a highly desirable process in organic chemistry. It provides synthetic methods/protocols for the generation of organic compounds possessing single or multiple C–F bonds, and effective catalytic systems for further study of the activation mode of inert chemical bonds. Due to the high polarity of the C–F bond and it having the highest bond energy in organics, C–F activation often faces considerable academic challenges. In this mini-review, the important research achievements in the activation and transformation of aromatic C–F bond, catalyzed by transition metal and metal-free systems, are presented.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Raza, A. L. y T. Braun. "Consecutive C–F bond activation and C–F bond formation of heteroaromatics at rhodium: the peculiar role of FSi(OEt)3". Chemical Science 6, n.º 7 (2015): 4255–60. http://dx.doi.org/10.1039/c5sc00877h.

Texto completo
Resumen
C–F activation reactions for a silyl complex gave fluorosilane and Rh pyridyl complexes. In consecutive reactions, the fluorosilane can act as a fluoride source and a regeneration of the C–F bond occurs by Si–F bond cleavage. This sets back the C–F bond cleavage reaction with consequences for the overall chemoselectivity of the activation reactions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Böhm, Volker P. W., Christian W. K. Gstöttmayr, Thomas Weskamp y Wolfgang A. Herrmann. "Catalytic C−C Bond Formation through Selective Activation of C−F Bonds". Angewandte Chemie International Edition 40, n.º 18 (17 de septiembre de 2001): 3387–89. http://dx.doi.org/10.1002/1521-3773(20010917)40:18<3387::aid-anie3387>3.0.co;2-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Nguyen, Trang T., Jeffery A. Bertke, Danielle L. Gray y Kami L. Hull. "Facile C–H, C–F, C–Cl, and C–C Activation by Oxatitanacyclobutene Complexes". Organometallics 34, n.º 17 (26 de agosto de 2015): 4190–93. http://dx.doi.org/10.1021/acs.organomet.5b00470.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Young, Robert J. y Vladimir V. Grushin. "Catalytic C−F Bond Activation of Nonactivated Monofluoroarenes". Organometallics 18, n.º 3 (febrero de 1999): 294–96. http://dx.doi.org/10.1021/om980887w.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Đorđević, Nemanja, Madelyn Qin Yi Tay, Senthilkumar Muthaiah, Rakesh Ganguly, Dušan Dimić y Dragoslav Vidović. "C–F Bond Activation by Transient Phosphenium Dications". Inorganic Chemistry 54, n.º 9 (14 de abril de 2015): 4180–82. http://dx.doi.org/10.1021/ic5031125.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Arnold, Polly L., Max W. McMullon, Julia Rieb y Fritz E. Kühn. "CH Bond Activation by f-Block Complexes". Angewandte Chemie International Edition 54, n.º 1 (10 de noviembre de 2014): 82–100. http://dx.doi.org/10.1002/anie.201404613.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Bayne, Julia M. y Douglas W. Stephan. "C−F Bond Activation Mediated by Phosphorus Compounds". Chemistry – A European Journal 25, n.º 40 (26 de marzo de 2019): 9350–57. http://dx.doi.org/10.1002/chem.201900542.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Jaeger, Alma D. y Dieter Lentz. "Rare Earth Metal Catalyzed C-F Bond Activation". Zeitschrift für anorganische und allgemeine Chemie 644, n.º 21 (20 de abril de 2018): 1229–33. http://dx.doi.org/10.1002/zaac.201800044.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Akiba, Ikumi, Naoki Shida y Mahito Atobe. "Oxidative C-F Bonds Activation Using Electrochemical Techniques". ECS Meeting Abstracts MA2023-02, n.º 52 (22 de diciembre de 2023): 2487. http://dx.doi.org/10.1149/ma2023-02522487mtgabs.

Texto completo
Resumen
Fluorinated organic compounds are widely used in diverse areas such as pharmaceuticals, agrochemicals, and materials science, and occupy an important position in modern chemistry.[1] Consequently, there has been a large library of fluorine-containing chemicals. Thus, the evolution of defluorination reactions using abundant fluorinated organic compounds as starting materials is expected to lead to further development in various fields. For example, it is expected to be applied to the synthesis of medical and agrochemical products with new functions using defluorination reactions, as well as to the defluorination process of polyfluorinated organic compounds that are highly persistent in the environment. The inherent challenge of C-F functionalization is the highly stable and strong nature of C-F bond. To tackle this problem, various methods have been proposed to activate C-F bonds using transition metal complexes, and Lewis acids. However, these methods have some issues that using expensive heavy metals and toxic reagents. Recent years have seen a focus on the development of economical and environmentally friendly defluorination reactions, especially C-F bonds activation based on efficient energy input using electrochemical or photochemical methods. As for photochemical methods, Gouverneur and co-workers developed photocatalytic methods for the selective hydrodefluorination and defluoroalkylation of trifluoromethyl(hetero)arenes using 2,4,5,6-tetrakis(diphenylamino)isophthalonitrile as an organophotocatalyst.[2] As for electrochemical methods, Cheng and co-workers reported a defluorinative method to convert α,α,α-trifluoromethyl cinnamates to gem-difluorostyrenes using electrochemical reduction.[3] These methods of defluorination still have limitations in terms of the versatility of the substrates where only substrates with π-system or have electron acceptors like carbonyl groups are suitable for cleaving C-F bonds presumably for the facile single electron reduction. Thus, the activation and functionalization of C-F bonds in the aliphatic backbone by electrochemical or photochemical means still remain a challenge. In this work, we have developed an electrochemical C-F bond activation and functionalization under oxidative conditions. After exploring the reaction conditions, the electrochemical defluorination reaction of 1-fluoroadamantane was found to proceed in weakly coordinating electrolyte composed of 0.1 M Bu4NB(C6F5)4/CH2Cl2. Nucleophiles such as allyltrimethylsilane and 4,4,5,5-tetramethyl-2-(p-tolyl)-1,3,2-dioxaborolane were applicable to affording 1-allyladamantane (72% yield) and p-(1-adamantyl)toluene (52% yield), respectively. In this reaction, the use of a divided cell was found to be necessary, evidencing that the defluorination reaction proceeds oxidatively at the anode. In conclusion, we have successfully developed the first electrochemical defluorinative functionalization system under oxidative conditions, which potentially become a complementary strategy of electro-reductive counterpart of the defluorinative transformation of organic molecules. In the presentation, an exploration of the substrate scope, electrochemical studies, and the mechanistic proposal of the reaction will also be discussed. [1] Y. Ogawa, E. Tokunaga, O. Kobayashi, K. Hirai, N. Shibata, iScience., 2020, 23, 101467–101467. [2] J. B. I. Sap, N. J. W. Straathof, T. Knauber, C. F. Meyer, M. Médebielle, L. Buglioni, C. Genicot, A. A. Trabanco, T. Noël, C. W. am Ende, V. Gouverneur, J. Am. Chem. Soc., 2020, 142, 20, 9181–9187. [3] J. Sheng, N. Wu, X. Liu, F. Liu, S. Liu, W. Ding, C. Liu and X. Cheng, Chin. J. Org. Chem., 2020, 40, 11, 3873–3880. Figure 1
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Capdevila, Lorena, Tjark H. Meyer, Steven Roldán-Gómez, Josep M. Luis, Lutz Ackermann y Xavi Ribas. "Chemodivergent Nickel(0)-Catalyzed Arene C–F Activation with Alkynes: Unprecedented C–F/C–H Double Insertion". ACS Catalysis 9, n.º 12 (9 de octubre de 2019): 11074–81. http://dx.doi.org/10.1021/acscatal.9b03620.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Eisenstein, Odile, Jessica Milani y Robin N. Perutz. "Selectivity of C–H Activation and Competition between C–H and C–F Bond Activation at Fluorocarbons". Chemical Reviews 117, n.º 13 (27 de junio de 2017): 8710–53. http://dx.doi.org/10.1021/acs.chemrev.7b00163.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Yin, Haolin, Alexander V. Zabula y Eric J. Schelter. "C–F→Ln/An interactions in synthetic f-element chemistry". Dalton Transactions 45, n.º 15 (2016): 6313–23. http://dx.doi.org/10.1039/c6dt00108d.

Texto completo
Resumen
C–F→Ln/An interactions have been increasingly recognized as a key aspect of f-element chemistry over the last two decades. This Perspective summarizes the literature on the nature of C–F→Ln/An contacts, their role in the structural and coordination chemistry of f-block elements and their applications for C–F bond activation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Li, Yan, Yun Wu, Guang‐Shui Li y Xi‐Sheng Wang. "Palladium‐Catalyzed CF Bond Formation via Directed CH Activation". Advanced Synthesis & Catalysis 356, n.º 7 (5 de mayo de 2014): 1412–18. http://dx.doi.org/10.1002/adsc.201400101.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Allemann, Oliver, Kim K. Baldridge y Jay S. Siegel. "Intramolecular C–H insertion vs. Friedel–Crafts coupling induced by silyl cation-promoted C–F activation". Organic Chemistry Frontiers 2, n.º 9 (2015): 1018–21. http://dx.doi.org/10.1039/c5qo00170f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Liu, Zijian, Kunbing Ouyang y Nianfa Yang. "The thiolation of pentafluorobenzene with disulfides by C–H, C–F bond activation and C–S bond formation". Organic & Biomolecular Chemistry 16, n.º 6 (2018): 988–92. http://dx.doi.org/10.1039/c7ob02836a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Barrio, Pilar, Ricardo Castarlenas, Miguel A. Esteruelas, Agustí Lledós, Feliu Maseras, Enrique Oñate y Jaume Tomàs. "Reactions of a Hexahydride−Osmium Complex with Aromatic Ketones: C−H Activation versus C−F Activation§". Organometallics 20, n.º 3 (febrero de 2001): 442–52. http://dx.doi.org/10.1021/om000844r.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Butcher, Trevor W., Jonathan L. Yang, Willi M. Amberg, Nicholas B. Watkins, Natalie D. Wilkinson y John F. Hartwig. "Desymmetrization of difluoromethylene groups by C–F bond activation". Nature 583, n.º 7817 (1 de junio de 2020): 548–53. http://dx.doi.org/10.1038/s41586-020-2399-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Weaver, Jimmie y Sameera Senaweera. "C–F activation and functionalization of perfluoro- and polyfluoroarenes". Tetrahedron 70, n.º 41 (octubre de 2014): 7413–28. http://dx.doi.org/10.1016/j.tet.2014.06.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Lanzinger, Dominik, Ignaz M. Höhlein, Sebastian B. Weiß y Bernhard Rieger. "Catalytic C–F activation via cationic group IV metallocenes". Journal of Organometallic Chemistry 778 (febrero de 2015): 21–28. http://dx.doi.org/10.1016/j.jorganchem.2014.12.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Sun, Alex D. y Jennifer A. Love. "Cross coupling reactions of polyfluoroarenes via C–F activation". Dalton Transactions 39, n.º 43 (2010): 10362. http://dx.doi.org/10.1039/c0dt00540a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Stahl, Timo, Hendrik F. T. Klare y Martin Oestreich. "Main-Group Lewis Acids for C–F Bond Activation". ACS Catalysis 3, n.º 7 (18 de junio de 2013): 1578–87. http://dx.doi.org/10.1021/cs4003244.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Cole, Marcus L., Glen B. Deacon, Peter C. Junk y Kristina Konstas. "Steric engineering of C–F activation with lanthanoid formamidinates". Chem. Commun., n.º 12 (2005): 1581–83. http://dx.doi.org/10.1039/b419047e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Barrett, Anthony G M., Mark R Crimmin, Michael S Hill, Peter B Hitchcock y Panayiotis A Procopiou. "Trifluoromethyl Coordination and CF Bond Activation at Calcium". Angewandte Chemie International Edition 46, n.º 33 (19 de julio de 2007): 6339–42. http://dx.doi.org/10.1002/anie.200701945.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

BURDENIUC, J., B. JEDLICKA y R. H. CRABTREE. "ChemInform Abstract: Recent Advances in C-F Bond Activation". ChemInform 28, n.º 17 (4 de agosto de 2010): no. http://dx.doi.org/10.1002/chin.199717267.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Schaub, Thomas, Peter Fischer, Thomas Meins y Udo Radius. "Consecutive C-F Bond Activation of Hexafluorobenzene and Decafluorobiphenyl". European Journal of Inorganic Chemistry 2011, n.º 20 (6 de junio de 2011): 3122–26. http://dx.doi.org/10.1002/ejic.201100323.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Meier, Gregor y Thomas Braun. "Catalytic CF Activation and Hydrodefluorination of Fluoroalkyl Groups". Angewandte Chemie International Edition 48, n.º 9 (15 de enero de 2009): 1546–48. http://dx.doi.org/10.1002/anie.200805237.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Kuehnel, Moritz F. y Dieter Lentz. "ChemInform Abstract: Titanium-Catalyzed C-F Activation of Fluoroalkenes." ChemInform 41, n.º 32 (23 de julio de 2010): no. http://dx.doi.org/10.1002/chin.201032047.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Barrett, Anthony G M., Mark R Crimmin, Michael S Hill, Peter B Hitchcock y Panayiotis A Procopiou. "Trifluoromethyl Coordination and CF Bond Activation at Calcium". Angewandte Chemie 119, n.º 33 (20 de agosto de 2007): 6455–58. http://dx.doi.org/10.1002/ange.200701945.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Young, Rowan D., Richa Gupta, Amit K. Jaiswal y Dipendu Mandal. "A Frustrated Lewis Pair Solution to a Frustrating Problem: Mono-Selective Functionalization of C–F Bonds in Di- and Trifluoromethyl Groups". Synlett 31, n.º 10 (28 de enero de 2020): 933–37. http://dx.doi.org/10.1055/s-0039-1690811.

Texto completo
Resumen
Polyfluoromethyl groups generally suffer from over-reaction, where multiple C–F bonds are uncontrollably functionalized. The use of a frustrated Lewis pair (FLP)-mediated C–F bond activation permits selective monodefluorination through base capture of intermediate fluorocarbocations. FLP-mediated C–F bond activation can be applied to aromatic, heteroaromatic, or nonaromatic difluoro and trifluoromethyl groups to generate selectively fluoride-substituted phosphonium and pyridinium salts. These salts can be further functionalized by Wittig coupling, nucleophilic substitution, photoredox alkylation, nucleophilic transfer, or hydrogenation reactions to install a range of functional groups into the activated C–F position.1 Introduction2 Frustrated Lewis Pair C–F Activation3 Conclusion
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Mallov, Ian, Timothy C. Johnstone, Darcy C. Burns y Douglas W. Stephan. "A model for C–F activation by electrophilic phosphonium cations". Chemical Communications 53, n.º 54 (2017): 7529–32. http://dx.doi.org/10.1039/c7cc04057a.

Texto completo
Resumen
The electrophilic phosphonium cation (EPC) salt [C10H6(CF3)PF(C6F5)2][B(C6F5)4] 4 exhibited structural and spectroscopic features evidencing an interaction between the CF3 and fluorophosphonium units. It thus models a key step in the proposed mechanism of main group C–F activation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Cai, Sai-Hu, Lu Ye, Ding-Xing Wang, Yi-Qiu Wang, Lin-Jie Lai, Chuan Zhu, Chao Feng y Teck-Peng Loh. "Manganese-catalyzed synthesis of monofluoroalkenes via C–H activation and C–F cleavage". Chemical Communications 53, n.º 62 (2017): 8731–34. http://dx.doi.org/10.1039/c7cc04131d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Schaub, Thomas, Marc Backes y Udo Radius. "Catalytic C−C Bond Formation Accomplished by Selective C−F Activation of Perfluorinated Arenes". Journal of the American Chemical Society 128, n.º 50 (diciembre de 2006): 15964–65. http://dx.doi.org/10.1021/ja064068b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Kundu, Gargi, V. S. Ajithkumar, Milan Kumar Bisai, Srinu Tothadi, Tamal Das, Kumar Vanka y Sakya S. Sen. "Diverse reactivity of carbenes and silylenes towards fluoropyridines". Chemical Communications 57, n.º 36 (2021): 4428–31. http://dx.doi.org/10.1039/d1cc01401c.

Texto completo
Resumen
The activation of the para C–F bond of C5F5N by IDipp led to functionalization of all three carbon atoms of the imidazole ring. When the para C–F bond is replaced with a C–H bond, IDipp activates the other C–F bonds leaving the C–H bond intact.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Xu, Conghui, Maria Talavera, Stefan Sander y Thomas Braun. "C–H and C–F bond activation reactions of pentafluorostyrene at rhodium complexes". Dalton Transactions 48, n.º 43 (2019): 16258–67. http://dx.doi.org/10.1039/c9dt03371h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Ahrens, Theresia, Mike Ahrens, Thomas Braun, Beatrice Braun y Roy Herrmann. "Synthesis of a rhodium(i) germyl complex: a useful tool for C–H and C–F bond activation reactions". Dalton Transactions 45, n.º 11 (2016): 4716–28. http://dx.doi.org/10.1039/c5dt04845a.

Texto completo
Resumen
The rhodium(i) germyl complex [Rh(GePh3)(PEt3)3] is a useful tool for C–F and C–H bond activation reactions. For instance, treatment with hexafluoropropene results in the formation of two isomeric C–F activation products [Rh{(E)-CFCF(CF3)}(PEt3)3] and [Rh{(Z)-CFCF(CF3)}(PEt3)3] in a 3 : 1 ratio.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Meconi, Sonia, Christian Capo, Maryse Remacle-Bonnet, Gilbert Pommier, Didier Raoult y Jean-Louis Mege. "Activation of Protein Tyrosine Kinases byCoxiella burnetii: Role in Actin Cytoskeleton Reorganization and Bacterial Phagocytosis". Infection and Immunity 69, n.º 4 (1 de abril de 2001): 2520–26. http://dx.doi.org/10.1128/iai.69.4.2520-2526.2001.

Texto completo
Resumen
ABSTRACT Coxiella burnetii, the agent of Q fever, is an obligate intracellular microorganism that grows in monocytes/macrophages. The internalization of virulent organisms by monocytes is lower than that of avirulent variants and is associated with actin cytoskeleton reorganization. We studied the activation of protein tyrosine kinases (PTKs) by C. burnetii in THP-1 monocytes. Virulent organisms induced early PTK activation and the tyrosine phosphorylation of several endogenous substrates, including Hck and Lyn, two Src-related kinases. PTK activation reflects C. burnetiivirulence since avirulent variants were unable to stimulate PTK. We also investigated the role of PTK activation in C. burnetii-stimulated F-actin reorganization. Tyrosine-phosphorylated proteins were colocalized with F-actin inside cell protrusions induced by C. burnetii, and PTK activity was increased in Triton X-100-insoluble fractions. In addition, lavendustin A, a PTK inhibitor, and PP1, a Src kinase inhibitor, prevented C. burnetii-induced cell protrusions and F-actin reorganization. We finally assessed the role of PTK activation in bacterial phagocytosis. Pretreatment of THP-1 cells with lavendustin A and PP1 upregulated the uptake of virulent C. burnetii but had no effect on the phagocytosis of avirulent organisms. Thus, it is likely that PTK activation by C. burnetii negatively regulates bacterial uptake by interfering with cytoskeleton organization.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Ren, Qiangqiang, Song Hu, Qingwei Hu, Qing Li, Limo He, Zhiwen Lei, Sheng Su, Yi Wang, Long Jiang y Jun Xiang. "Waste Tire Heat Treatment to Prepare Sulfur Self-Doped Char: Operando Insight into Activation Mechanisms Based on the Char Structures Evolution". Processes 9, n.º 9 (9 de septiembre de 2021): 1622. http://dx.doi.org/10.3390/pr9091622.

Texto completo
Resumen
Waste tire (WT) can be heat-treated to be high-quality sulfur self-doped char via pyrolysis and K2FeO4-assisted activation processes. This work aimed at further studying the activation mechanisms based on the char structures evolution by operando experimental method. Activation treatment process (from 50 °C to 800 °C and then held for 3 h) was divided into six typical stages (S1–S6) and consisted of carbonization process (S1–S4) and effective activation process (S4–S6). During the carbonization process, the specific capacitance only increased from 0.2 F/g to 12.4 F/g, aromatic ring systems and alkyl-aryl C-C bonds generated, S 2p3/2 (sulphide bridge) was mainly gradually consumed. During the effective activation process, the specific capacitance hugely increased from 12.4 F/g to 112.5 F/g, aromatic ring systems and alkyl-aryl C-C bonds turned to ordered graphitic char. The pores massively generated from S4 to S5, while micropores partly formed to larger and mesopores+macropores fractionally converting to smaller from S5 to S6. Besides, both S 2p3/2 and S 2p5/2 (sulphone bridge) were enriched after S5. Furthermore, the key structural parameters for huge improvement of specific capacitance were found and it further revealed that mesopores+macropores possessed stronger promotion effect than micropores and S 2p3/2 was more beneficial than S 2p5/2.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Keddie, Neil S., Pier Alexandre Champagne, Justine Desroches, Jean-François Paquin y David O'Hagan. "Stereochemical outcomes of C–F activation reactions of benzyl fluoride". Beilstein Journal of Organic Chemistry 14 (9 de enero de 2018): 106–13. http://dx.doi.org/10.3762/bjoc.14.6.

Texto completo
Resumen
In recent years, the highly polar C–F bond has been utilised in activation chemistry despite its low reactivity to traditional nucleophiles, when compared to other C–X halogen bonds. Paquin’s group has reported extensive studies on the C–F activation of benzylic fluorides for nucleophilic substitutions and Friedel–Crafts reactions, using a range of hydrogen bond donors such as water, triols or hexafluoroisopropanol (HFIP) as the activators. This study examines the stereointegrity of the C–F activation reaction through the use of an enantiopure isotopomer of benzyl fluoride to identify whether the reaction conditions favour a dissociative (SN1) or associative (SN2) pathway. [2H]-Isotopomer ratios in the reactions were assayed using the Courtieu 2H NMR method in a chiral liquid crystal (poly-γ-benzyl-L-glutamate) matrix and demonstrated that both associative and dissociative pathways operate to varying degrees, according to the nature of the nucleophile and the hydrogen bond donor.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

García-Valle, Francisco M., Vanessa Tabernero, Tomás Cuenca, Marta E. G. Mosquera y Jesús Cano. "Intramolecular C–F Activation in Schiff-Base Alkali Metal Complexes". Organometallics 38, n.º 4 (6 de febrero de 2019): 894–904. http://dx.doi.org/10.1021/acs.organomet.8b00868.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía