Literatura académica sobre el tema "Adaptivive trajectory planning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Adaptivive trajectory planning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Adaptivive trajectory planning"
Wang, Xin, Junwei Wang y Zhi Rao. "An adaptive parametric interpolator for trajectory planning". Advances in Engineering Software 41, n.º 2 (febrero de 2010): 180–87. http://dx.doi.org/10.1016/j.advengsoft.2009.09.010.
Texto completoWang, Yuan, Zhenglei Wei, Changqiang Huang, Hanqiao Huang, Kexin Zhao y Cong Li. "Online Cooperative Trajectory Planning for UCAV Formation in Uncertain Environment". Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 36, n.º 6 (diciembre de 2018): 1145–55. http://dx.doi.org/10.1051/jnwpu/20183661145.
Texto completoVu, Nga Thi-Thuy, Nam Phuong Tran y Nam Hoai Nguyen. "Adaptive Neuro-Fuzzy Inference System Based Path Planning for Excavator Arm". Journal of Robotics 2018 (2 de diciembre de 2018): 1–7. http://dx.doi.org/10.1155/2018/2571243.
Texto completoKim, Kijung, Youngsoo Kim, Jongwon Kim, Hwa Soo Kim y Taewon Seo. "Optimal Trajectory Planning for 2-DOF Adaptive Transformable Wheel". IEEE Access 8 (2020): 14452–59. http://dx.doi.org/10.1109/access.2020.2966767.
Texto completoShin, Jin-Ho y Ju-Jang Lee. "Trajectory planning and robust adaptive control for underactuated manipulators". Electronics Letters 34, n.º 17 (1998): 1705. http://dx.doi.org/10.1049/el:19981191.
Texto completoWei, Zhenglei, Changqiang Huang, Dali Ding, Hanqiao Huang y Huan Zhou. "UCAV Formation Online Collaborative Trajectory Planning Using hp Adaptive Pseudospectral Method". Mathematical Problems in Engineering 2018 (22 de octubre de 2018): 1–25. http://dx.doi.org/10.1155/2018/3719762.
Texto completoZHANG, HE, RUI WU, CHANGLE LI, XIZHE ZANG, YANHE ZHU, HONGZHE JIN, XUEHE ZHANG y JIE ZHAO. "ADAPTIVE MOTION PLANNING FOR HITCR-II HEXAPOD ROBOT". Journal of Mechanics in Medicine and Biology 17, n.º 07 (noviembre de 2017): 1740040. http://dx.doi.org/10.1142/s0219519417400401.
Texto completoMarti, K. "Stochastic Programming Methods in Adaptive Optimal Trajectory Planning for Robots". ZAMM 82, n.º 11-12 (noviembre de 2002): 795–809. http://dx.doi.org/10.1002/1521-4001(200211)82:11/12<795::aid-zamm795>3.0.co;2-i.
Texto completoBureerat, Sujin, Nantiwat Pholdee, Thana Radpukdee y Papot Jaroenapibal. "Self-adaptive MRPBIL-DE for 6D robot multiobjective trajectory planning". Expert Systems with Applications 136 (diciembre de 2019): 133–44. http://dx.doi.org/10.1016/j.eswa.2019.06.033.
Texto completoKim, Junsoo, Kichun Jo, Wonteak Lim y Myoungho Sunwoo. "A probabilistic optimization approach for motion planning of autonomous vehicles". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 232, n.º 5 (16 de agosto de 2017): 632–50. http://dx.doi.org/10.1177/0954407017704782.
Texto completoTesis sobre el tema "Adaptivive trajectory planning"
Dizorzi, Matúš. "Adaptivní plánování trajektorie průmyslového robotu". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-400667.
Texto completoAboud, Vieider Felicia y Anirudh Narasimha Kulkarni. "Traction Adaptive trajectory planning for autonomous racing". Thesis, KTH, Maskinkonstruktion (Inst.), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281249.
Texto completoDe senaste åren har den autonoma fordons industrin genomgått en stor utveckling genom forskning, företag har gjort stora investeringar för att förbättra teknologin för att kunna nå den privata marknaden. Industrin och akademin jobbar fortfarande för att göra autonoma bilar säkra, pålitliga och robusta. Autonom racing tillhandahåller en plattform för att förbättra tekniken så att den kan utnyttja fordonets fulla fysiska förmåga i ett brett spektrum av driftsförhållanden. Flera funktioner krävs för att göra bilen autonom, detta arbete fokuserar på rörelseplaneringsmodulen för autonom racing. Vi har utvärderat hur rörelseplanerings algoritmen presterar vid användning av en dynamisk modell med dynamiska begräsningar. Utvärderingen är baserad på ett ramverk för optimal rörelseplanering [1] vilken löser optimerings problemet genom användning av "Sampling Augmented Real Time Iteration (SAARTI) motion planning scheme". Fyra olika modeller jämfördes vilka inkluderade en dynamisk cykelmodell med både statiska och dynamiska begränsningar. De parametrar som påverkade prestandan identifierades, och avvägningen mellan modell komplexitet och planerings horisont undersöktes genom att studera skillnader i prestanda för olika parameter konfigurationer. Generaliserbarhet av resultaten undersöktes genom att studera prestandan för olika parameter konfigurationer under olika körförhållanden. Batch simuleringar utfördes för att ta hänsyn till många olika scenarion, för att säkerställa att resultaten var så nära verkligheten som möjligt. Simuleringarna visade att användning av dynamiska begränsningar vid rörelse planering förbättrar prestandan jämfört med att använda statiska begränsningar vid extrema körförhållanden. Observation av resultaten från simuleringarna visade att användning av den grepp adaptiva modellen resulterade i robust och konsistent prestanda. Att kombinera estimering av friktion och samtidigt ta hänsyn till en varierande normal kraft, ökar förmågan att planera för variationer i friktion, minskar chansen att bilen kör av vägen och förbättrar varvtiden.
Anisi, David A. "Online trajectory planning and observer based control". Licentiate thesis, Stockholm : Optimization and systems theory, Royal Institute of Technology, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4153.
Texto completoAlbagul, Abdulgani. "Dynamic modelling and control of a wheeled mobile robot". Thesis, University of Newcastle Upon Tyne, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327239.
Texto completoJ'alics, Laci. "Trajectory planning for terrain adaptive locomotion and rhythmic movements of a neuromuscular biped /". The Ohio State University, 1996. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487941504296459.
Texto completoShui, Yuhao. "Strategic Trajectory Planning of Highway Lane Change Maneuver with Longitudinal Speed Control". The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1431093441.
Texto completoAnisi, David A. "On Cooperative Surveillance, Online Trajectory Planning and Observer Based Control". Doctoral thesis, KTH, Optimeringslära och systemteori, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9990.
Texto completoQC 20100622
TAIS, AURES
Bose, A. Subhash Chandra. "Adaptive trajectory planning for industrial robots". 1987. http://catalog.hathitrust.org/api/volumes/oclc/16405056.html.
Texto completoTypescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 116-132).
Lee, Chi-Tai y 李啟泰. "Trajectory Planning and Adaptive Trajectory Tracking Control for a Small Scale Autonomous Helicopter". Thesis, 2010. http://ndltd.ncl.edu.tw/handle/35376378022379391196.
Texto completo國立中興大學
電機工程學系所
98
This dissertation presents three nonlinear adaptive trajectory tracking controllers as well as an on-line trajectory generation method for a small scale autonomous helicopter. The proposed trajectory tracking controllers are mainly on the basis of the adaptive backstepping design technique with an integral action. Unlike those approximate modeling approaches neglecting the nonlinear coupling terms among force equations, the developments of three proposed controllers are intentionally based on the complete rigid-body model such that the closed-loop helicopter systems are guaranteed to be semi-globally ultimately bounded and have satisfactory trajectory tracking performance over its entire flight envelope. Three different adaptive techniques are used to cope with the coupling terms existing in the force equations of the complete rigid-body model. In particular, RBFNN and RNN are adopted to accommodate the adaptive backstepping integral scheme with an augmented approximation function and robust performance respectively. Furthermore, the local path generation based on the elastic band concept is proposed to find an on-line collision-free trajectory for the tracking controller of a small scale helicopter. In addition to the complete evolution of synthesis process and stability analysis, the proposed controllers are verified by using a software-in-the-loop approach which implements a high fidelity dynamic model of a small-scale helicopter. The effectiveness and merits of the proposed methods are exemplified by conducting several dynamic simulations, including specified maneuvers of hovering and trajectory tracking, autonomous tasks of obstacle avoidance, and terrain following.
Wang, Meng-ko y 王夢柯. "Fuzzy Adaptive Control for Hexapod Robots with Trajectory Planning". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/fhj4pt.
Texto completo大同大學
電機工程學系(所)
106
Trajectory planning and tracking control are important for the robotics research to achieve the locomotion of the hexapod robots. This thesis proposes the hexapod robot locomotion control using fuzzy tracking control design algorithm. The human-machine interface including kinematics and inverse kinematics written by C$\#$ in Visual Studio is used for obtaining the joint angles corresponding to the desired trajectory. Given the desired trajectory, the coordinates of the center of mass (COM) of the hexapod robot is given through the conversion transformation matrix between the coordinates of the COM and the coordinate systems of legs. Then, these coordinates to track the desired trajectory will be mapped to the joints for each leg by the inverse kinematics. In addition, the stability of the closed-loop control system for the fuzzy adaptive control algorithm and trajectory planning is guaranteed by the Lyapunov theorem, and the robots can achieve trajectory planning and tracking. The experiments demonstrate that the proposed control scheme can work effectively tracking the desired trajectory in balancing.
Capítulos de libros sobre el tema "Adaptivive trajectory planning"
Aurnhammer, Andreas y Kurt Marti. "Adaptive Optimal Stochastic Trajectory Planning". En Online Optimization of Large Scale Systems, 521–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04331-8_27.
Texto completoMarti, Kurt. "Adaptive Optimal Stochastic Trajectory Planning and Control (AOSTPC)". En Stochastic Optimization Methods, 119–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46214-0_4.
Texto completoMarti, K. "Adaptive Optimal Stochastic Trajectory Planning and Control (AOSTPC) for Robots". En Lecture Notes in Economics and Mathematical Systems, 155–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-55884-9_9.
Texto completoArora, Akash, P. Michael Furlong, Robert Fitch, Terry Fong, Salah Sukkarieh y Richard Elphic. "Online Multi-modal Learning and Adaptive Informative Trajectory Planning for Autonomous Exploration". En Field and Service Robotics, 239–54. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67361-5_16.
Texto completoZou, Qingxiao, Weidong Guo y Fouaz Younès Hamimid. "A Novel Robot Trajectory Planning Algorithm Based on NURBS Velocity Adaptive Interpolation". En Advances in Mechanical Design, 1191–208. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6553-8_78.
Texto completoZhai, Jingmei, Kun Liu, Haiyang He y Fan Ouyang. "An Efficient Approach for Collision-Free Trajectory Planning Using Adaptive Velocity Vector Field Algorithm". En Advances in Mechanical Design, 1169–90. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6553-8_77.
Texto completoRoy, Abhishek Ghosh y Pratyusha Rakshit. "Motion Planning of Non-Holonomic Wheeled Robots Using Modified Bat Algorithm". En Nature-Inspired Algorithms for Big Data Frameworks, 94–123. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-5852-1.ch005.
Texto completoVera, S., F. Petric, G. Heredia, A. Ollero y Z. Kovacic. "Trajectory Planning Based on Collocation Methods for Adaptive Motion Control of Multiple Aerial and Ground Autonomous Vehicles". En Control of Complex Systems, 585–634. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-805246-4.00021-5.
Texto completoActas de conferencias sobre el tema "Adaptivive trajectory planning"
Dieumegard, Pierre, Supatcha Chaimatanan y Daniel Delahaye. "Large Scale Adaptive 4D Trajectory Planning". En 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). IEEE, 2018. http://dx.doi.org/10.1109/dasc.2018.8569632.
Texto completoAlonso-Portillo, I. y E. Atkins. "Adaptive trajectory planning for flight management systems". En 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-1073.
Texto completoLee, Ritchie, Javier Puig - Navarro, Adrian K. Agogino, Dimitra Giannakoupoulou, Ole J. Mengshoel, Mykel J. Kochenderfer y B. Danette Allen. "Adaptive Stress Testing of Trajectory Planning Systems". En AIAA Scitech 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-1454.
Texto completoFotouhi-C., Reza, Peter N. Nikiforuk y Walerian Szyszkowski. "Combined Trajectory Planning and Parameter Identification of a Two-Link Rigid Manipulator". En ASME 1998 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/detc98/mech-5994.
Texto completoEvans, Ethan N., Patrick Meyer, Samuel Seifert, Dimitri N. Mavris y Evangelos A. Theodorou. "Locally Adaptive Online Trajectory Optimization in Unknown Environments With RRTs". En ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-8997.
Texto completoXie, Bo y Bin Yao. "New Approach of Tracking Control for a Class of Non-Minimum Phase Linear Systems". En ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42237.
Texto completoTrucios, Luis E., Mahdi Tavakoli y Kim Adams. "Adaptive tracking control for task-based robot trajectory planning". En 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2020. http://dx.doi.org/10.1109/smc42975.2020.9283035.
Texto completoSvensson, Lars, Monimoy Bujarbaruah, Nitin R. Kapania y Martin Torngren. "Adaptive Trajectory Planning and optimization at Limits of Handling". En 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019. http://dx.doi.org/10.1109/iros40897.2019.8967679.
Texto completoLopez, Israel y Nesrin Sarigul-Klijn. "Integrated Structural Damage Assessment, Motion Planning, and Decision-Making for Distressed Aircraft Under Uncertainty". En ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2009. http://dx.doi.org/10.1115/smasis2009-1315.
Texto completoFridovich-Keil, David, Sylvia L. Herbert, Jaime F. Fisac, Sampada Deglurkar y Claire J. Tomlin. "Planning, Fast and Slow: A Framework for Adaptive Real-Time Safe Trajectory Planning". En 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018. http://dx.doi.org/10.1109/icra.2018.8460863.
Texto completo