Siga este enlace para ver otros tipos de publicaciones sobre el tema: Aero-Propulsive.

Artículos de revistas sobre el tema "Aero-Propulsive"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Aero-Propulsive".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

STEPAN, Anca, Georges GHAZI, and Ruxandra Mihaela BOTEZ. "Development of an Adaptive Aero-Propulsive Performance Model in Cruise Flight – Application to the Cessna Citation X." INCAS BULLETIN 14, no. 4 (2022): 167–81. http://dx.doi.org/10.13111/2066-8201.2022.14.4.14.

Texto completo
Resumen
To accurately predict the amount of fuel needed by an aircraft for a given flight, a performance model must account for engine and airframe degradation. This paper presents a methodology to identify an aero-propulsive model to predict the fuel flow of an aircraft in cruise, while considering initial modeling uncertainties and performance variation over time due to degradation. Starting from performance data obtained from a Research Aircraft Flight Simulator, an initial aero-propulsive model was identified using different estimation methods. The estimation methods studied in this paper were pol
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Zhao, Wenyuan, Yanlai Zhang, Peng Tang, and Jianghao Wu. "The Impact of Distributed Propulsion on the Aerodynamic Characteristics of a Blended-Wing-Body Aircraft." Aerospace 9, no. 11 (2022): 704. http://dx.doi.org/10.3390/aerospace9110704.

Texto completo
Resumen
Motivated by outstanding aerodynamic performance and limited emissions, the blend-wing-body (BWB) aircraft equipped with a distributed propulsion (DP) system has become a possible layout for civil aircraft in the next generation. Due to the strong aero-propulsive interference (API) between the DP system and the airframe, the conventional integration of pressure and friction stress over the surface may fail to evaluate the aerodynamic power consumption of this layout. Here, the aero-propulsive integrated power balance approach is used alternatively to obtain the aerodynamic power consumption th
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Ma, Yiyuan, Chaofan Wang, Zhonghua Han, and Yue Wang. "Mid-fidelity aero-propulsive coupling approach for distributed propulsion aircraft." Aerospace Science and Technology 157 (February 2025): 109859. https://doi.org/10.1016/j.ast.2024.109859.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Luo, Shaojun, Tian Zi Eng, Zhili Tang, Qianrong Ma, Jinyou Su, and Gabriel Bugeda. "Multidisciplinary Optimization of Aircraft Aerodynamics for Distributed Propulsion Configurations." Applied Sciences 14, no. 17 (2024): 7781. http://dx.doi.org/10.3390/app14177781.

Texto completo
Resumen
The combination of different aerodynamic configurations and propulsion systems, namely, aero-propulsion, affects flight performance differently. These effects are closely related to multidisciplinary collaborative aspects (aerodynamic configuration, propulsion, energy, control systems, etc.) and determine the overall energy consumption of an aircraft. The potential benefits of distributed propulsion (DP) involve propulsive efficiency, energy-saving, and emissions reduction. In particular, wake filling is maximized when the trailing edge of a blended wing body (BWB) is fully covered by propulsi
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Seitz, Arne, Anaïs Luisa Habermann, Fabian Peter, et al. "Proof of Concept Study for Fuselage Boundary Layer Ingesting Propulsion." Aerospace 8, no. 1 (2021): 16. http://dx.doi.org/10.3390/aerospace8010016.

Texto completo
Resumen
Key results from the EU H2020 project CENTRELINE are presented. The research activities undertaken to demonstrate the proof of concept (technology readiness level—TRL 3) for the so-called propulsive fuselage concept (PFC) for fuselage wake-filling propulsion integration are discussed. The technology application case in the wide-body market segment is motivated. The developed performance bookkeeping scheme for fuselage boundary layer ingestion (BLI) propulsion integration is reviewed. The results of the 2D aerodynamic shape optimization for the bare PFC configuration are presented. Key findings
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Baklacioglu, T., and M. Cavcar. "Aero-propulsive modelling for climb and descent trajectory prediction of transport aircraft using genetic algorithms." Aeronautical Journal 118, no. 1199 (2014): 65–79. http://dx.doi.org/10.1017/s0001924000008939.

Texto completo
Resumen
Abstract In this study, a new aero-propulsive model (APM) was derived from the flight manual data of a transport aircraft using Genetic Algorithms (GAs) to perform accurate trajectory predictions. This new GA-based APM provided several improvements to the existing models. The use of GAs enhanced the accuracy of both propulsive and aerodynamic modelling. The effect of compressible drag rise above the critical Mach number, which was not included in previous models, was considered along with the effects of compressibility and profile camber in the aerodynamic model. Consideration of the thrust de
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Swain, Prafulla Kumar, Ashok K. Barik, Siva Prasad Dora, and Rajeswara Resapu. "The propulsion of tandem flapping foil following fishtailed flapping trajectory." Physics of Fluids 34, no. 12 (2022): 123609. http://dx.doi.org/10.1063/5.0128223.

Texto completo
Resumen
It has always been a challenge to implement the natural flyer and swimmer kinematics into human-made aero/hydro vehicles for the enhancement of their performance. The propulsive performance of underwater vehicles can be enhanced by following the fishtailed kinematics. In the present study, a two-dimensional simulation has been performed on a tandem flapping foil by altering the simple flapping trajectory motion to a fishtailed trajectory by varying the Strouhal number ( St) in the range of 0.1–0.5. The effect of the inter-foil spacing and phasing between the foils on wake interaction is also i
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Yin, F., and A. Gangoli Rao. "Performance analysis of an aero engine with inter-stage turbine burner." Aeronautical Journal 121, no. 1245 (2017): 1605–26. http://dx.doi.org/10.1017/aer.2017.93.

Texto completo
Resumen
ABSTRACTThe historical trends of reduction in fuel consumption and emissions from aero engines have been mainly due to the improvement in the thermal efficiency, propulsive efficiency and combustion technology. The engine Overall Pressure Ratio (OPR) and Turbine Inlet Temperature (TIT) are being increased in the pursuit of increasing the engine thermal efficiency. However, this has an adverse effect on engine NOx emission. The current paper investigates a possible solution to overcome this problem for future generation Very High Bypass Ratio (VHBR)/Ultra High Bypass Ratio (UHBR) aero-engines i
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Corcione, Salvatore, Vincenzo Cusati, Danilo Ciliberti, and Fabrizio Nicolosi. "Experimental Assessment of Aero-Propulsive Effects on a Large Turboprop Aircraft with Rear-Engine Installation." Aerospace 10, no. 1 (2023): 85. http://dx.doi.org/10.3390/aerospace10010085.

Texto completo
Resumen
This paper deals with the estimation of propulsive effects for a three-lifting surface turboprop aircraft concept, with rear engine installation at the horizontal tail tips, conceived to carry up to 130 passengers. This work is focused on how the propulsive system affects the horizontal tailplane aerodynamics and, consequently, the aircraft’s static stability characteristics using wind tunnel tests. Both direct and indirect propulsive effects have been estimated. The former produces moments whose values depend on the distance from the aircraft’s centre of gravity to the thrust lines and propel
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Minucci, Marco A. S., and Leik N. Myrabo. "Phase distortion in a propulsive laser beam due to aero-optical phenomena." Journal of Propulsion and Power 6, no. 4 (1990): 416–25. http://dx.doi.org/10.2514/3.25452.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Perry, Aaron T., Phillip J. Ansell, and Michael F. Kerho. "Aero-Propulsive and Propulsor Cross-Coupling Effects on a Distributed Propulsion System." Journal of Aircraft 55, no. 6 (2018): 2414–26. http://dx.doi.org/10.2514/1.c034861.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Omran, Ashraf, Brett Newman, and Drew Landman. "Global aircraft aero-propulsive linear parameter-varying model using design of experiments." Aerospace Science and Technology 22, no. 1 (2012): 31–44. http://dx.doi.org/10.1016/j.ast.2011.05.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Ciliberti, Danilo, Pierluigi Della Vecchia, Vincenzo Orticalco, and Fabrizio Nicolosi. "Aero-Propulsive Interactions between UAV Wing and Distributed Propellers Due to Their Relative Position." Drones 7, no. 1 (2023): 49. http://dx.doi.org/10.3390/drones7010049.

Texto completo
Resumen
The purpose of this paper is the evaluation of the aero-propulsive effects on a UAV wing model with distributed propulsion. An array of three propellers is placed ahead of the leading edge of a rectangular wing with flap. The investigation was performed with high-fidelity numerical analyses to provide insights into the phenomenology and to screen the interesting positions to be validated in the wind tunnel. The propellers’ array is moved into twelve different positions, allowing longitudinal and vertical translations. The wing has an untwisted and constant section profile, with a single slot t
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Jeong, In-Ho, and Hyeong-Geun Kim. "Nonlinear Control for Missile Autopilot Based on Control Allocation for Dual Aero/Propulsive Inputs." Journal of Institute of Control, Robotics and Systems 29, no. 8 (2023): 584–91. http://dx.doi.org/10.5302/j.icros.2023.23.0055.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Jasa, John P., Benjamin J. Brelje, Justin S. Gray, Charles A. Mader, and Joaquim R. R. A. Martins. "Large-Scale Path-Dependent Optimization of Supersonic Aircraft." Aerospace 7, no. 10 (2020): 152. http://dx.doi.org/10.3390/aerospace7100152.

Texto completo
Resumen
Aircraft are multidisciplinary systems that are challenging to design due to interactions between the subsystems. The relevant disciplines, such as aerodynamic, thermal, and propulsion systems, must be considered simultaneously using a path-dependent formulation to assess aircraft performance accurately. In this paper, we construct a coupled aero-thermal-propulsive-mission multidisciplinary model to optimize supersonic aircraft considering their path-dependent performance. This large-scale optimization problem captures non-intuitive design trades that single disciplinary models and path-indepe
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Chudoba, B., G. Coleman, L. Gonzalez, E. Haney, A. Oza, and V. Ricketts. "Orbital transfer vehicle (OTV) system sizing study for manned GEO satellite servicing." Aeronautical Journal 120, no. 1226 (2016): 573–99. http://dx.doi.org/10.1017/aer.2016.3.

Texto completo
Resumen
ABSTRACTIn an effort to quantify the feasibility of candidate space architectures for astronauts servicing Geosynchronous Earth Orbit (GEO) satellites, a conceptual assessment of architecture-concept and operations-technology combinations has been performed. The focus has been the development of a system with the capability to transfer payload to and from geostationary orbit. Two primary concepts of operations have been selected: (a) Direct insertion/re-entry (Concept of Operations 1 – CONOP 1); (b) Launch to low-earth orbit at Kennedy Space Center inclination angle with an orbital transfer to
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Goulos, I., J. Otter, T. Stankowski, D. Macmanus, N. Grech, and C. Sheaf. "Design optimisation of separate-jet exhausts for the next generation of civil aero-engines." Aeronautical Journal 122, no. 1256 (2018): 1586–605. http://dx.doi.org/10.1017/aer.2018.95.

Texto completo
Resumen
ABSTRACTThe next generation of civil large aero-engines will employ greater bypass ratios compared with contemporary architectures. This results in higher exchange rates between exhaust performance and specific fuel consumption (SFC). Concurrently, the aerodynamic design of the exhaust is expected to play a key role in the success of future turbofans. This paper presents the development of a computational framework for the aerodynamic design of separate-jet exhaust systems for civil aero-engines. A mathematical approach is synthesised based on class-shape transformation (CST) functions for the
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Dong, Yiwei, Weiguo Yan, Tao Liao, Qianwen Ye, and Yancheng You. "Model characterization and mechanical property analysis of bimetallic functionally graded turbine discs." Mechanics & Industry 22 (2021): 4. http://dx.doi.org/10.1051/meca/2021001.

Texto completo
Resumen
In advanced propulsive systems, a turbine disc bears vast mechanical and thermal loads under its working conditions of high-temperature gradients and high rotational velocity.The complex working conditions of aero-engine turbine discs place stringent performance requirements on the materials used. With dual organizations and superior composite performances, bimetallic functionally graded turbine discs have become a focus in the research of high thrust-to-weight ratio aero-engines. To study the mechanical properties of new bimetallic functionally graded materials under service conditions, we pr
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Daniel, Thomas L. "Forward flapping flight from flexible fins." Canadian Journal of Zoology 66, no. 3 (1988): 630–38. http://dx.doi.org/10.1139/z88-094.

Texto completo
Resumen
The mechanics and energetics of aquatic flight by the clearnose skate (Raja eglanteria) are examined with cinefilm and a new theoretical approach toward flight mechanics. Film analyses show that these animals move with a flapping, flexing wing that has a propulsive wave travelling rearward at twice the forward speed of the animal. A combination of blade-element theory and unsteady airfoil theory is used to examine the mechanics and energetics of this mode of locomotion. The theoretical analysis shows that (i) unsteady effects determine the overall performance of the wings, and (ii) there exist
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Chu, Hoang-Quan, Quang-Ngoc Dinh, Thai-Son Vu, et al. "Static Aero-Propulsion Experiment of an Electric Ducted Fan." Aerospace 12, no. 6 (2025): 509. https://doi.org/10.3390/aerospace12060509.

Texto completo
Resumen
Electric ducted fans are gaining prominence in aviation due to their compact size, low noise, and zero emissions compared to conventional gas turbines. This study presents an experimental test system for a 390 mm electric Ducted Propulsion Fan developed by the Aerospace Propulsion Systems group at Hanoi University of Science and Technology. The carbon fiber composite thruster, driven by a centrally located BLDC motor, was mounted on a test stand equipped with force and rotational speed (rpm) sensors. Power was supplied through two battery configurations, eight-pack and nine-pack, with voltage
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Cilgin, Mehmet Emin, and Onder Turan. "Entropy Generation Calculation of a Turbofan Engine: A Case of CFM56-7B." International Journal of Turbo & Jet-Engines 35, no. 3 (2018): 217–27. http://dx.doi.org/10.1515/tjj-2017-0053.

Texto completo
Resumen
Abstract Entropy generation and energy efficiency of turbofan engines become greater concern in recent years caused by rises fuel costs and as well as environmental impact of aviation emissions. This study describes calculation of entropy generation for a two-spool CFM56-7B high-bypass turbofan widely used on short to medium range, narrow body aircrafts. Entropy generation and power analyses are performed for five main engine components obtaining temperature-entropy, entropy-enthalpy, pressure-volume diagrams at ≈121 kN take-off thrust force. In the study, maximum entropy production is determi
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Rolt, Andrew, Vishal Sethi, Florian Jacob, et al. "Scale effects on conventional and intercooled turbofan engine performance." Aeronautical Journal 121, no. 1242 (2017): 1162–85. http://dx.doi.org/10.1017/aer.2017.38.

Texto completo
Resumen
ABSTRACTNew commercial aero engines for 2050 are expected to have lower specific thrusts for reduced noise and improved propulsive efficiency, but meeting the ACARE Flightpath 2050 fuel-burn and emissions targets will also need radical design changes to improve core thermal efficiency. Intercooling, recuperation, inter-turbine combustion and added topping and bottoming cycles all have the potential to improve thermal efficiency. However, these new technologies tend to increase core specific power and reduce core mass flow, giving smaller and less efficient core components. Turbine cooling also
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Zhang, Jing, Xianfa Zeng, and Lingyu Yang. "Model-based analysis of boundary layer ingestion effect on lateral-directional aerodynamics using differentiated boundary conditions." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 231, no. 13 (2016): 2452–63. http://dx.doi.org/10.1177/0954410016667148.

Texto completo
Resumen
The noteworthy feature of aircraft with distributed propulsion configuration is the integration of a blended-wing-body type airframe and an embedded distributed propulsion system, thus inducing the specific boundary layer ingestion effect. Different boundary layer ingestion effects on the distributed engines may generate asymmetric flow fields on the airframe surface, and then lead to the unique lateral-directional aero-propulsive close coupling. To investigate the lateral-directional aerodynamics influenced by boundary layer ingestion, a new comprehensive computational method based on the dif
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Ciliberti, Danilo, Pierluigi Della Vecchia, Vittorio Memmolo, Fabrizio Nicolosi, Guido Wortmann, and Fabrizio Ricci. "The Enabling Technologies for a Quasi-Zero Emissions Commuter Aircraft." Aerospace 9, no. 6 (2022): 319. http://dx.doi.org/10.3390/aerospace9060319.

Texto completo
Resumen
The desire for greener aircraft pushes both academic and industrial research into developing technologies, manufacturing, and operational strategies providing emissions abatement. At time of writing, there are no certified electric aircraft for passengers’ transport. This is due to the requirements of lightness, reliability, safety, comfort, and operational capability of the fast air transport, which are not completely met by the state-of-the-art technology. Recent studies have shown that new aero-propulsive technologies do not provide significant fuel burn reduction, unless the operational ra
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Memmolo, V., F. Orefice, F. Nicolosi, and F. Ricci. "Design of near-zero emission aircraft based on refined aerodynamic model and structural analysis." IOP Conference Series: Materials Science and Engineering 1226, no. 1 (2022): 012067. http://dx.doi.org/10.1088/1757-899x/1226/1/012067.

Texto completo
Resumen
Abstract During recent years, aircraft manufacturers focused their attention on environmentally friendly and aerodynamically efficient aircraft concepts that could allow a radical reduction of emissions. The use of hybrid-electric powertrain is one of the most effective ways to design near-zero emission aircraft. These aircraft are highly performing and sophisticated. Hence, the design process must be extremely accurate and should make use of multidisciplinary design optimization. It is indeed crucial to establish both aerodynamic and structural models to simulate the aircraft performance and
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Parker, R., and M. Lathoud. "Green aero-engines: Technology to mitigate aviation impact on environment." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 224, no. 3 (2010): 529–38. http://dx.doi.org/10.1243/09544062jmes1515.

Texto completo
Resumen
Despite consistent, continued efforts by the aviation industry to reduce emissions, further technological advances are required to mitigate its impact on the global climate. This article first outlines aviation's importance in the global challenge and its specific constraints relative to other industries. It then investigates the current understanding of aviation's climate impact and the ongoing Rolls-Royce efforts to develop technologies to mitigate it. This includes improving the engine's propulsive efficiency, thermal efficiency, and combustion process. This article also discusses paradigm
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Sannino, Antonio, Dylan De Prisco, Sergio Cassese, Stefano Mungiguerra, Anselmo Cecere, and Raffaele Savino. "Re-Entry Comparison of a Spacecraft in Low Earth Orbit: Propulsion-Assisted vs. Non-Propulsive Configurations." Aerospace 12, no. 2 (2025): 79. https://doi.org/10.3390/aerospace12020079.

Texto completo
Resumen
This paper presents a mission concept for a Low Earth Orbit (LEO) satellite equipped with a payload for space experiments, designed to be recovered on Earth post-mission. The focus of this study is on developing a mission concept with fast de-orbit and accurate landing capability for a small satellite payload. Two re-entry configurations are analyzed: one employing a deployable aero-brake heat shield for aerodynamic descent and another integrating a propulsion system. Aerodynamic analysis of the capsule, including drag coefficient and stability at relevant altitudes, was conducted using the Di
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Figueira, João C., Sean Bazzocchi, Stephen Warwick, and Afzal Suleman. "Nonlinear Aero-Propulsive Modeling for Fixed-Wing eVTOL UAV from Flight Test Data." Journal of Aircraft, November 18, 2024, 1–13. http://dx.doi.org/10.2514/1.c037964.

Texto completo
Resumen
This paper presents a methodology for constructing an aero-propulsive system identification model for a fixed-wing propeller-driven aircraft with limited flight data. Developing a flight dynamics model is an iterative process involving costly and time-consuming flight testing to collect relevant data. To maximize the utilization of available data, this study employs a time-domain system identification procedure on flight data from various maneuvers and flights. The methodology incorporates multivariate orthogonal functions to capture the nonlinear terms representing the coupled effects of the
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Keller, Dennis. "Towards higher aerodynamic efficiency of propeller-driven aircraft with distributed propulsion." CEAS Aeronautical Journal, August 17, 2021. http://dx.doi.org/10.1007/s13272-021-00535-5.

Texto completo
Resumen
AbstractThe scope of the present paper is to assess the potential of distributed propulsion for a regional aircraft regarding aero-propulsive efficiency. Several sensitivities such as the effect of wingtip propellers, thrust distribution, and shape modifications are investigated based on a configuration with 12 propulsors. Furthermore, an initial assessment of the high-lift performance is undertaken in order to estimate potential wing sizing effects. The performance of the main wing and the propellers are thereby equally considered with the required power being the overall performance indicato
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Seitz, Arne, Anaïs Luisa Habermann, and Martijn van Sluis. "Optimality considerations for propulsive fuselage power savings." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, April 8, 2020, 095441002091631. http://dx.doi.org/10.1177/0954410020916319.

Texto completo
Resumen
The paper discusses optimality constellations for the design of boundary layer ingesting propulsive fuselage concept aircraft under special consideration of different fuselage fan power train options. Therefore, a rigorous methodical approach for the evaluation of the power saving potentials of propulsive fuselage concept aircraft configurations is provided. Analytical formulation for the power-saving coefficient metric is introduced, and, the classic Breguet–Coffin range equation is extended for the analytical assessment of boundary layer ingesting aircraft fuel burn. The analytical formulati
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Bhandarkar, Anand, M. S. R. Chandra Murty, P. Manna, and Debasis Chakraborty. "CFD Driven Aero-Propulsive Design of a Ducted Ramjet Missile." Journal of Aerospace Sciences and Technologies, July 29, 2023, 281–88. http://dx.doi.org/10.61653/joast.v71i3.2019.149.

Texto completo
Resumen
Detailed Computational Fluid Dynamics (CFD) simulations are carried out for a ducted ramjet missile. Combined internal and external flow fields are numerically simulated by solving 3D RANS equations along with Menter’s SST turbulence model. Aero-propulsive configuration is evolved progressively by improving radome shape, intake ramps, intake bleed system, diverter height etc. Numerical simulations have revealed that ogive radome has less drag compared to power law shaped radome and provide better flow characteristics at the intake entry leading to superior intake performance. Appropriate bound
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Simmons, Benjamin M., James L. Gresham, and Craig A. Woolsey. "Aero-Propulsive Modeling for Propeller Aircraft Using Flight Data." Journal of Aircraft, July 29, 2022, 1–16. http://dx.doi.org/10.2514/1.c036773.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Awad, Mohamed, and Eike Stumpf. "Aero-propulsive interaction model for conceptual distributed propulsion aircraft design." Aircraft Engineering and Aerospace Technology, February 8, 2022. http://dx.doi.org/10.1108/aeat-06-2021-0178.

Texto completo
Resumen
Purpose This research aims to present an aero-propulsive interaction model applied to conceptual aircraft design with distributed electric propulsion (DeP). The developed model includes a series of electric ducted fans integrated into the wing upper trailing edge, taking into account the effect of boundary layer ingestion (BLI). The developed model aims to estimate the aerodynamic performance of the wing with DeP using an accurate low-order computational model, which can be easily used in the overall aircraft design's optimization process. Design/methodology/approach First, the ducted fan aero
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

WANG, Kelei, and Zhou ZHOU. "Aero-propulsive coupling performance and design of distributed propulsion wing." Chinese Journal of Aeronautics, December 2024. https://doi.org/10.1016/j.cja.2024.12.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Habermann, Anaïs Luisa, Anubhav Gokhale, and Mirko Hornung. "Numerical investigation of the effects of fuselage upsweep in a propulsive fuselage concept." CEAS Aeronautical Journal, January 6, 2021. http://dx.doi.org/10.1007/s13272-020-00487-2.

Texto completo
Resumen
AbstractIn recent years, aircraft concepts employing wake-filling devices to reduce mission fuel burn have gained increasing attention. The study presented here aims at a detailed physical understanding of the effects of integrating a propulsive fuselage device on a commercial aircraft. Compared to an isolated, axisymmetric fuselage-propulsor configuration, a propulsive fuselage device experiences an increased circumferential inlet distortion due to three-dimensional geometric features of the aircraft. This study uses three-dimensional CFD simulations to investigate the effect of fuselage upsw
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Balasubramanian, R., Jessy Prabhu Dayal, R. Krishnamurthy, and Debasis Chakraborty. "Aero-Propulsive Characterization of a Flight Vehicle with Two Side-Jets." Journal of Aerospace Sciences and Technologies, July 31, 2023, 8–16. http://dx.doi.org/10.61653/joast.v68i1.2016.224.

Texto completo
Resumen
Numerical simulations were carried out to study the aero-propulsive characteristics of a flight vehicle using in-house developed Reynolds Averaged Navier-Stokes code CERANS. The analyses involved subsonic external flow with inclined supersonic dual sustainer jets at various angles of attack, roll orientations and side slip. The control characteristics of the configuration are evaluated for the flow with and without sustainer jets. Numerical simulations indicated that the jet plume exhausting out of the scarf sustainer nozzle grazed and clung to the airframe for a considerable downstream distan
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Saccone, Guido, Ali Can Ispir, Bayindir Huseyin Saracoglu, Luigi Cutrone, and Marco Marini. "Computational evaluations of emissions indexes released by the STRATOFLY air-breathing combined propulsive system." Aircraft Engineering and Aerospace Technology, June 7, 2022. http://dx.doi.org/10.1108/aeat-01-2022-0024.

Texto completo
Resumen
Purpose The purpose of this study is to provide the description of a computational methodology to model the combined propulsive systems of hydrogen propelled air-breathing scramjet vehicles and to evaluate the pollutant and climate-changing emissions. Design/methodology/approach Emissions indexes of nitrogen oxide (EINO) and water vapour released by the air turbo rocket (ATR) and dual mode ramjet (DMR) engines of the STRATOFLY air-breathing, hypersonic scramjet vehicle, propelled by hydrogen/air were evaluated. ATR engine operation was assessed for several cruise conditions in both subsonic an
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Yurttav, G., T. Mutlu, and T. Baklacioglu. "Drag polar modelling for jet aircraft using 6-DOF model data via cuckoo search algorithm." Aeronautical Journal, January 10, 2025, 1–24. https://doi.org/10.1017/aer.2024.84.

Texto completo
Resumen
Abstract This paper describes a reverse engineering methodology so as to accomplish an aero-propulsive modelling (APM) through implementing a drag polar estimation for a case study jet aircraft in case of the absence of the thrust data of the aircraft’s engine. Since the available thrust force can be replaced by the required thrust force for the sustained turn, this approach allows the elimination for the need of the thrust parameter in deriving an aero-propulsive model utilising equations of motion. Two different modelling approaches have been adopted: (i) implementing the 6-DOF model data fo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Moirou, Nicolas G. M., and Drewan S. Sanders. "Performance evaluation approach for design space explorations of propulsive fuselage aircraft concepts." CEAS Aeronautical Journal, April 1, 2025. https://doi.org/10.1007/s13272-025-00830-5.

Texto completo
Resumen
Abstract A promising architecture to enhance the performance of next-generation commercial aircraft involves embedding the propulsion system within the airframe, thereby capturing energy from the fuselage through boundary layer ingestion. However, in cases of strong aerodynamic coupling, traditional accounting methods break down, necessitating alternative approaches. The lack of consensus surrounding the interpretation and quantification of these benefits underscores the need for a unified assessment method. In this work, commonly used near-field momentum-based bookkeeping schemes are discusse
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Jia, Wei, Tao Liu, Qingguo Kong, Man Wang, and Shuiting Ding. "Aero-propulsive interaction analysis of a distributed propulsion system under windmilling conditions." Physics of Fluids 37, no. 6 (2025). https://doi.org/10.1063/5.0271760.

Texto completo
Resumen
Distributed propulsion systems have received extensive attention due to high efficiency, reliability, favorable fuel economy, and noise reduction advantages. However, effects of ducted fan failure on the aerodynamics of such systems remain unclear. Numerical simulations were performed using a method based on the hybrid body force model to explore the aero-propulsive coupling effect of a distributed propulsion system when a ducted fan failed. The aero-propulsive interaction between the wing and ducted fans and the cross coupling effect between different ducted fans were analyzed. The results sh
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Simmons, Benjamin M., and Patrick C. Murphy. "Aero-Propulsive Modeling for Tilt-Wing, Distributed Propulsion Aircraft Using Wind Tunnel Data." Journal of Aircraft, March 2, 2022, 1–17. http://dx.doi.org/10.2514/1.c036351.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Lee, Sang-Don, and Chang-Hun Lee. "Multi-phase and dual aero/propulsive rocket landing guidance using successive convex programming." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, November 10, 2022, 095441002211383. http://dx.doi.org/10.1177/09544100221138350.

Texto completo
Resumen
This paper aims to suggest a new landing guidance algorithm for reusable launch vehicles (RLVs) to enable generation of fuel-efficient trajectories based on successive convex programming. To this end, a dual aero/propulsive landing guidance problem is first formulated to fully exploit the additional moment generated by the aerodynamic control to reduce the propulsion demand required for attitude control. As the result of the aerodynamic landing phase could greatly affect the fuel-optimal trajectory during the vertical landing phase, the formulation is further extended to the multi-phase optima
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Planas Andrés, David, Eric Nguyen Van, Carsten Döll, and Philippe Pastor. "Multi-disciplinary optimization of a distributed electric propulsion aircraft under aero-propulsive effects." CEAS Aeronautical Journal, March 4, 2025. https://doi.org/10.1007/s13272-025-00819-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Moirou, N. G. M., N. E. Mutangara, and D. S. Sanders. "Fundamental considerations in the design and performance assessment of propulsive fuselage aircraft concepts." Aeronautical Journal, November 28, 2024, 1–26. http://dx.doi.org/10.1017/aer.2024.124.

Texto completo
Resumen
Abstract Propulsive fuselage aircraft complement the two under-wing turbofans of current aircraft with an embedded propulsion system within the airframe to ingest the energy-rich fuselage boundary layer. The key design features of this embedding are examined and related to an aero-propulsive performance assessment undertaken in the absolute reference frame which is believed to best evaluate these effects with intuitive physics-based interpretations. First, this study completes previous investigations on the potential for energy recovery for different fuselage slenderness ratios to characterise
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Goulos, Ioannis, John Otter, Tomasz Stankowski, David MacManus, Nicholas Grech, and Christopher Sheaf. "Aerodynamic Design of Separate-Jet Exhausts for Future Civil Aero-engines—Part II: Design Space Exploration, Surrogate Modeling, and Optimization." Journal of Engineering for Gas Turbines and Power 138, no. 8 (2016). http://dx.doi.org/10.1115/1.4032652.

Texto completo
Resumen
The aerodynamic performance of the bypass exhaust system is key to the success of future civil turbofan engines. This is due to current design trends in civil aviation dictating continuous improvement in propulsive efficiency by reducing specific thrust and increasing bypass ratio (BPR). This paper aims to develop an integrated framework targeting the automatic design optimization of separate-jet exhaust systems for future aero-engine architectures. The core method of the proposed approach is based on a standalone exhaust design tool comprising modules for cycle analysis, geometry parameteriza
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Hoogreef, Maurice F. M., and Johannes S. E. Soikkeli. "Flight dynamics and control assessment for differential thrust aircraft in engine inoperative conditions including aero-propulsive effects." CEAS Aeronautical Journal, June 27, 2022. http://dx.doi.org/10.1007/s13272-022-00591-5.

Texto completo
Resumen
AbstractDifferential thrust can be used for directional control on distributed electric propulsion aircraft. This paper presents an assessment of flight dynamics and control under engine inoperative conditions at minimum control speed for a typical distributed propulsion aircraft employing differential thrust. A methodology consisting of an aerodynamic data acquisition module and a non-linear six-degrees-of-freedom flight dynamics model is proposed. Directional control is achieved using a controller to generate a yaw command, which is distributed to the propulsors through a thrust mapping appr
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Kavvalos, Mavroudis, Rainer Schnell, Maximilian Mennicken, Marco Trost, and Konstantinos G. Kyprianidis. "On the Performance of Variable-Geometry Ducted E-Fans." Journal of Engineering for Gas Turbines and Power, July 29, 2024, 1–13. http://dx.doi.org/10.1115/1.4066074.

Texto completo
Resumen
Abstract Electrically-driven ducted fans (e-fans), either underwing-mounted or located at the aft-fuselage, can potentially improve the system overall efficiency in hybrid-electric propulsion architectures by increasing their thrust share over the thrust generated by the main engines. However, the low design pressure ratio of such e-fans make them prone to operability issues at off-design conditions, i.e. take-off, where nozzle pressure ratio is close or below the critical value. This paper investigates the operational limitations of such e-fans, proving the necessity of variable geometry. A c
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Qin, Jiachen, Zhou Zhou, Guowei Yang, Zhuang Shao, and Jia Zong. "Aero-Propulsive Coupling Modeling and Dynamic Stability Analysis of Distributed Electric Propulsion Tandem-Wing UAV with Rapid Ascent Capability." Aerospace Science and Technology, July 2024, 109406. http://dx.doi.org/10.1016/j.ast.2024.109406.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Simmons, Benjamin M. "System Identification Approach for eVTOL Aircraft Demonstrated Using Simulated Flight Data." Journal of Aircraft, February 1, 2023, 1–16. http://dx.doi.org/10.2514/1.c036896.

Texto completo
Resumen
This paper describes a system identification method for electric vertical takeoff and landing (eVTOL) aircraft. The approach merges fixed-wing and rotary-wing modeling techniques with new strategies to develop a modeling method for eVTOL vehicles using flight-test data. The eVTOL aircraft system identification approach is demonstrated through application to the NASA Langley Aerodrome No. 8 tandem tilt-wing, distributed electric propulsion aircraft using a high-fidelity flight dynamics simulation. Orthogonal phase-optimized multisine inputs are applied to each control surface and propulsor at n
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Simmons, Benjamin M., James L. Gresham, and Craig A. Woolsey. "Flight-Test System Identification Techniques and Applications for Small, Low-Cost, Fixed-Wing Aircraft." Journal of Aircraft, June 24, 2023, 1–19. http://dx.doi.org/10.2514/1.c037260.

Texto completo
Resumen
This paper provides an overview of flight-test system identification methods applied in the Virginia Tech Nonlinear Systems Laboratory that focus on modeling small, inexpensive, fixed-wing aircraft controlled by a ground-based pilot. The general aircraft system identification approach is outlined with details provided on the flight-test facilities, experiment design methods, instrumentation systems, flight-test operations, data processing techniques, and model identification methods enabling small aircraft flight dynamics model development. Specific small aircraft system identification challen
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!