Artículos de revistas sobre el tema "Aircraft Wing"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Aircraft Wing".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Olugbeji, Jemitola P., Okafor E. Gabriel y Godwin Abbe. "Wing Thickness Optimization for Box Wing Aircraft". Recent Patents on Engineering 14, n.º 2 (29 de octubre de 2020): 242–49. http://dx.doi.org/10.2174/1872212113666190206123755.
Texto completoSharma, Vaibhav. "Fanwing Aircraft- Scope as an Agricultural Aircraft". International Journal for Research in Applied Science and Engineering Technology 9, n.º VIII (15 de agosto de 2021): 603–7. http://dx.doi.org/10.22214/ijraset.2021.37436.
Texto completoSiliang, Du y Tang Zhengfei. "The Aerodynamic Behavioral Study of Tandem Fan Wing Configuration". International Journal of Aerospace Engineering 2018 (30 de octubre de 2018): 1–14. http://dx.doi.org/10.1155/2018/1594570.
Texto completoHong, Wei Jiang y Dong Li Ma. "Influence of Control Coupling Effect on Landing Performance of Flying Wing Aircraft". Applied Mechanics and Materials 829 (marzo de 2016): 110–17. http://dx.doi.org/10.4028/www.scientific.net/amm.829.110.
Texto completoSrinivas, G. y Srinivasa Rao Potti. "Computational Analysis of Fighter Aircraft Wing under Mach Number 0.7 for Small Sweep Angles". Applied Mechanics and Materials 592-594 (julio de 2014): 1020–24. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.1020.
Texto completoJemitola, P. O., G. Monterzino y J. Fielding. "Wing mass estimation algorithm for medium range box wing aircraft". Aeronautical Journal 117, n.º 1189 (marzo de 2013): 329–40. http://dx.doi.org/10.1017/s0001924000008022.
Texto completoTeo, Z. W., T. H. New, Shiya Li, T. Pfeiffer, B. Nagel y V. Gollnick. "Wind tunnel testing of additive manufactured aircraft components". Rapid Prototyping Journal 24, n.º 5 (9 de julio de 2018): 886–93. http://dx.doi.org/10.1108/rpj-06-2016-0103.
Texto completoAndrews, SA y RE Perez. "Analytic study of the conditions required for longitudinal stability of dual-wing aircraft". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 232, n.º 5 (11 de mayo de 2017): 958–72. http://dx.doi.org/10.1177/0954410017704215.
Texto completoKalinowski, Miłosz. "Aero-Structural Optimization of Joined-Wing Aircraft". Transactions on Aerospace Research 2017, n.º 4 (1 de diciembre de 2017): 48–63. http://dx.doi.org/10.2478/tar-2017-0028.
Texto completoTeng, Xichao, Qifeng Yu, Jing Luo, Xiaohu Zhang y Gang Wang. "Pose Estimation for Straight Wing Aircraft Based on Consistent Line Clustering and Planes Intersection". Sensors 19, n.º 2 (16 de enero de 2019): 342. http://dx.doi.org/10.3390/s19020342.
Texto completoRojewski, Adam y Jarosław Bartoszewicz. "Numerical Investigation of Endplates Influence on the Wing in Ground Effect Lift Force". Journal of KONES 26, n.º 4 (1 de diciembre de 2019): 205–10. http://dx.doi.org/10.2478/kones-2019-0109.
Texto completoElfitra Desifatma. "Electrical Wing Prototype Anti Icing pada Pesawat Komersil". Jurnal Jaring SainTek 2, n.º 2 (29 de octubre de 2020): 34–41. http://dx.doi.org/10.31599/jaring-saintek.v2i2.331.
Texto completoKumar, S. Suresh, V. Veeraraghavan, M. Vimalesh y Sanjay B. Bharadwaj. "Mixed Mode Stress Intensity Factor Determination for Single and Multiple Cracks in an Aircraft Wing". Applied Mechanics and Materials 592-594 (julio de 2014): 2528–33. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.2528.
Texto completoArun, M. P., M. Satheesh y Edwin Raja J. Dhas. "Optimization of Aerodynamic Parameters of Cropped Delta Wing with Fence at Sonic Mach Number". Journal of Computational and Theoretical Nanoscience 16, n.º 2 (1 de febrero de 2019): 403–9. http://dx.doi.org/10.1166/jctn.2019.7740.
Texto completoRezaei, M., S. A. Fazelzadeh, A. Mazidi, M. I. Friswell y H. H. Khodaparast. "Fuzzy uncertainty analysis and reliability assessment of aeroelastic aircraft wings". Aeronautical Journal 124, n.º 1275 (10 de febrero de 2020): 786–811. http://dx.doi.org/10.1017/aer.2020.2.
Texto completoGrendysa, Wojciech. "Multidisciplinary wing design of a light long endurance UAV". Aircraft Engineering and Aerospace Technology 91, n.º 6 (10 de junio de 2019): 905–14. http://dx.doi.org/10.1108/aeat-09-2018-0256.
Texto completo., Sutrisno, Febryanto Nugroho, Yogi Adi Pratama, Sigit Iswahyudi y Setyawan Bekti Wibowo. "Sukhoi SU-47 Berkut and Eurofighter Typhoon Models Flow Visualization and Performance Investigation Using GAMA Water Tunnel". Modern Applied Science 13, n.º 2 (3 de enero de 2019): 21. http://dx.doi.org/10.5539/mas.v13n2p21.
Texto completoXu, Hao, Jinglong Han, Haiwei Yun y Xiaomao Chen. "Calculation of the Hinge Moments of a Folding Wing Aircraft during the Flight-Folding Process". International Journal of Aerospace Engineering 2019 (3 de septiembre de 2019): 1–11. http://dx.doi.org/10.1155/2019/9362629.
Texto completoCarithers, Collin y Carlos Montalvo. "Experimental Control of Two Connected Fixed Wing Aircraft". Aerospace 5, n.º 4 (28 de octubre de 2018): 113. http://dx.doi.org/10.3390/aerospace5040113.
Texto completoFragola Barbosa, Luciano Magno, Ricardo Luiz Utsch de Freitas Pinto y Bernardo Oliveira Hargreaves. "Aircraft Configuration Improvement Study from Aerodynamic and Structure Standpoints". Applied Mechanics and Materials 798 (octubre de 2015): 565–70. http://dx.doi.org/10.4028/www.scientific.net/amm.798.565.
Texto completoSleesongsom, Suwin y Sujin Bureerat. "Effect of Actuating Forces on Aeroelastic Characteristics of a Morphing Aircraft Wing". Applied Mechanics and Materials 52-54 (marzo de 2011): 308–17. http://dx.doi.org/10.4028/www.scientific.net/amm.52-54.308.
Texto completoBarcala-Montejano, Miguel A., Ángel A. Rodríguez-Sevillano, Rafael Bardera-Mora, Jaime García-Ramírez, Joaquín de Nova-Trigueros, Iñigo Urcelay-Oca y Israel Morillas-Castellano. "Smart materials applied in a micro remotely piloted aircraft system with morphing wing". Journal of Intelligent Material Systems and Structures 29, n.º 16 (5 de julio de 2018): 3317–32. http://dx.doi.org/10.1177/1045389x18783893.
Texto completoXu, Xin, Qiang Li, Dawei Liu, Keming Cheng y Dehua Chen. "Geometric Effects Analysis and Verification of V-Shaped Support Interference on Blended Wing Body Aircraft". Applied Sciences 10, n.º 5 (28 de febrero de 2020): 1596. http://dx.doi.org/10.3390/app10051596.
Texto completoJemitola, P. O., J. Fielding y P. Stocking. "Joint fixity effect on structural design of a box wing aircraft". Aeronautical Journal 116, n.º 1178 (abril de 2012): 363–72. http://dx.doi.org/10.1017/s0001924000005261.
Texto completoZou, Jie-Tong y Pan Zheng-Yan. "THE DEVELOPMENT OF TILT-ROTOR UNMANNED AERIAL VEHICLE". Transactions of the Canadian Society for Mechanical Engineering 40, n.º 5 (diciembre de 2016): 909–21. http://dx.doi.org/10.1139/tcsme-2016-0075.
Texto completoMetzger, S., W. Junkermann, K. Butterbach-Bahl, H. P. Schmid y T. Foken. "Measuring the 3-D wind vector with a weight-shift microlight aircraft". Atmospheric Measurement Techniques Discussions 4, n.º 1 (28 de febrero de 2011): 1303–70. http://dx.doi.org/10.5194/amtd-4-1303-2011.
Texto completoSpillman, J. J. "Wing tip sails; progress to date and future developments". Aeronautical Journal 91, n.º 910 (diciembre de 1987): 445–53. http://dx.doi.org/10.1017/s0001924000050624.
Texto completoGao, Zhenxing, Debao Wang y Zhiwei Xiang. "A Method for Estimating Aircraft Vertical Acceleration and Eddy Dissipation Rate in Turbulent Flight". Applied Sciences 10, n.º 19 (28 de septiembre de 2020): 6798. http://dx.doi.org/10.3390/app10196798.
Texto completoGai, S. L., M. Roberts, A. Barker, C. Kleczaj y A. J. Riley. "Vortex interaction and breakdown over double-delta wings". Aeronautical Journal 108, n.º 1079 (enero de 2004): 27–34. http://dx.doi.org/10.1017/s0001924000004966.
Texto completoCooper, John, Nico L. Avenant y Peter W. Lafite. "Airdrops and king penguins: a potential conservation problem at sub-Antarctic Marion Island". Polar Record 30, n.º 175 (octubre de 1994): 277–82. http://dx.doi.org/10.1017/s0032247400024530.
Texto completoKhalid, Mahmood. "Crosswise Wind Shear Represented as a Ramped Velocity Profile Impacting a Forward-Moving Aircraft". International Journal of Aerospace Engineering 2019 (18 de agosto de 2019): 1–18. http://dx.doi.org/10.1155/2019/7594737.
Texto completoLanteigne, Eric, Justin McLeod, Mayank Vadsola y Shilong Liu. "On the design of structural wing members for an unmanned weight-shift aircraft". Journal of Unmanned Vehicle Systems 8, n.º 3 (1 de septiembre de 2020): 161–71. http://dx.doi.org/10.1139/juvs-2019-0012.
Texto completoMa, Zhen y Xiyuan Chen. "Fiber Bragg Gratings Sensors for Aircraft Wing Shape Measurement: Recent Applications and Technical Analysis". Sensors 19, n.º 1 (23 de diciembre de 2018): 55. http://dx.doi.org/10.3390/s19010055.
Texto completoДвейрин, А. З. y В. И. Рябков. "ОЦІНКА ЕФЕКТИВНОСТІ ФОРМ КРИЛА ВАЖКИХ ЛІТАКІВ НА ОСНОВІ ЇХ КОЕФІЦІЄНТА ЕЛІПТИЧНОСТІ". Open Information and Computer Integrated Technologies, n.º 92 (6 de septiembre de 2021): 15–25. http://dx.doi.org/10.32620/oikit.2021.92.02.
Texto completoLee, Do hyeon, Chang-joo Kim y Seong han Lee. "Development of Unified High-Fidelity Flight Dynamic Modeling Technique for Unmanned Compound Aircraft". International Journal of Aerospace Engineering 2021 (4 de mayo de 2021): 1–23. http://dx.doi.org/10.1155/2021/5513337.
Texto completoCastrichini, A., V. Hodigere Siddaramaiah, D. E. Calderon, J. E. Cooper, T. Wilson y Y. Lemmens. "Preliminary investigation of use of flexible folding wing tips for static and dynamic load alleviation". Aeronautical Journal 121, n.º 1235 (21 de noviembre de 2016): 73–94. http://dx.doi.org/10.1017/aer.2016.108.
Texto completoGallman, John W., Stephen C. Smith y Ilan M. Kroo. "Optimization of joined-wing aircraft". Journal of Aircraft 30, n.º 6 (noviembre de 1993): 897–905. http://dx.doi.org/10.2514/3.46432.
Texto completoOsipov, S. V. y A. V. Tarasenko. "AIRCRAFT WITH VARIABLE WING AREA". Bulletin of Dubna International University for Nature, Society, and Man. Series: Natural and engineering sciences, n.º 3 (44) (27 de diciembre de 2019): 43–46. http://dx.doi.org/10.37005/1818-0744-2019-3-43-46.
Texto completoWang, Caidong, Yu Ning, Xinjie Wang, Junqiu Zhang y Liangwen Wang. "Simulation Analysis of the Aerodynamic Performance of a Bionic Aircraft with Foldable Beetle Wings in Gliding Flight". Applied Bionics and Biomechanics 2020 (24 de diciembre de 2020): 1–12. http://dx.doi.org/10.1155/2020/8843360.
Texto completoLis, Mateusz y Cezary Galinski. "PREDICTED PERFORMANCE OF THE INVERTED JOINED WING SCALED DEMONSTRATOR". Aviation 19, n.º 3 (13 de noviembre de 2015): 123–32. http://dx.doi.org/10.3846/16487788.2015.1104798.
Texto completoZhang, Li, Zhenghong Gao y Yiming Du. "Study on Cruise Drag Characteristics of Low Drag Normal Layout Civil Aircraft". Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 38, n.º 3 (junio de 2020): 580–88. http://dx.doi.org/10.1051/jnwpu/20203830580.
Texto completoXu, Lai Bin, Shu Xing Yang y Bo Mo. "Pitching Dynamic Response of Variable Sweep Wing Aircraft". Applied Mechanics and Materials 197 (septiembre de 2012): 159–63. http://dx.doi.org/10.4028/www.scientific.net/amm.197.159.
Texto completoDurmus, Seyhun. "Theoretical model proposal on direct calculation of wetted area and maximum lift-to-drag ratio". Aircraft Engineering and Aerospace Technology 93, n.º 6 (9 de julio de 2021): 1097–103. http://dx.doi.org/10.1108/aeat-02-2021-0038.
Texto completoHuyssen, R. J., E. H. Mathews, L. Liebenberg y G. R. Spedding. "On the wing density and the inflation factor of aircraft". Aeronautical Journal 120, n.º 1224 (febrero de 2016): 291–312. http://dx.doi.org/10.1017/aer.2015.12.
Texto completoKaparos, Pavlos, Charalampos Papadopoulos y Kyros Yakinthos. "Conceptual design methodology of a box wing aircraft: A novel commercial airliner". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 232, n.º 14 (24 de agosto de 2018): 2651–62. http://dx.doi.org/10.1177/0954410018795815.
Texto completoDing, Menglong, Chuan Zeng y Wieslaw K. Binienda. "Assessment on aerodynamic degradation for wing-damaged transport aircraft". Aircraft Engineering and Aerospace Technology 92, n.º 7 (29 de mayo de 2020): 973–79. http://dx.doi.org/10.1108/aeat-11-2019-0220.
Texto completoEl Tom, Joy Della y Gareth A. Vio. "Novel Wing Box Design". Applied Mechanics and Materials 553 (mayo de 2014): 243–48. http://dx.doi.org/10.4028/www.scientific.net/amm.553.243.
Texto completoRautenberg, Alexander, Martin Graf, Norman Wildmann, Andreas Platis y Jens Bange. "Reviewing Wind Measurement Approaches for Fixed-Wing Unmanned Aircraft". Atmosphere 9, n.º 11 (28 de octubre de 2018): 422. http://dx.doi.org/10.3390/atmos9110422.
Texto completoMat, Shabudin, I. Shah Ishak, Khidzir Zakaria y Z. Ajis Khan. "Manufacturing Process of Blended Delta-Shaped Wing Model". Advanced Materials Research 845 (diciembre de 2013): 971–74. http://dx.doi.org/10.4028/www.scientific.net/amr.845.971.
Texto completoSiliang, Du, Zhao Qijun y Wang Bo. "Research on Distributed Jet Blowing Wing Based on the Principle of Fan-Wing Vortex-Induced Lift and Thrust". International Journal of Aerospace Engineering 2019 (9 de julio de 2019): 1–11. http://dx.doi.org/10.1155/2019/7561856.
Texto completo