Tesis sobre el tema "Algebraic normal form"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 18 mejores tesis para su investigación sobre el tema "Algebraic normal form".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Calik, Cagdas. "Computing Cryptographic Properties Of Boolean Functions From The Algebraic Normal Form Representation". Phd thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615759/index.pdf.
Texto completoMus, Koksal. "An Alternative Normal Form For Elliptic Curve Cryptography: Edwards Curves". Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12611065/index.pdf.
Texto completoChen, Yahao. "Geometric analysis of differential-algebraic equations and control systems : linear, nonlinear and linearizable". Thesis, Normandie, 2019. http://www.theses.fr/2019NORMIR04.
Texto completoIn the first part of this thesis, we study linear differential-algebraic equations (shortly, DAEs) and linear control systems given by DAEs (shortly, DAECSs). The discussed problems and obtained results are summarized as follows. 1. Geometric connections between linear DAEs and linear ODE control systems ODECSs. We propose a procedure, named explicitation, to associate a linear ODECS to any linear DAE. The explicitation of a DAE is a class of ODECSs, or more precisely, an ODECS defined up to a coordinates change, a feedback transformation and an output injection. Then we compare the Wong sequences of a DAE with invariant subspaces of its explicitation. We prove that the basic canonical forms, the Kronecker canonical form KCF of linear DAEs and the Morse canonical form MCF of ODECSs, have a perfect correspondence and their invariants (indices and subspaces) are related. Furthermore, we define the internal equivalence of two DAEs and show its difference with the external equivalence by discussing their relations with internal regularity, i.e., the existence and uniqueness of solutions. 2. Transform a linear DAECS into its feedback canonical form via the explicitation with driving variables. We study connections between the feedback canonical form FBCF of DAE control systems DAECSs proposed in the literature and the famous Morse canonical form MCF of ODECSs. In order to connect DAECSs with ODECSs, we use a procedure named explicitation (with driving variables). This procedure attaches a class of ODECSs with two kinds of inputs (the original control input and the vector of driving variables) to a given DAECS. On the other hand, for classical linear ODECSs (without driving variables), we propose a Morse triangular form MTF to modify the construction of the classical MCF. Based on the MTF, we propose an extended MTF and an extended MCF for ODECSs with two kinds of inputs. Finally, an algorithm is proposed to transform a given DAECS into its FBCF. This algorithm is based on the extended MCF of an ODECS given by the explication procedure. Finally, a numerical example is given to show the structure and efficiency of the proposed algorithm. For nonlinear DAEs and DAECSs (of quasi-linear form), we study the following problems: 3. Explicitations, external and internal analysis, and normal forms of nonlinear DAEs. We generalize the two explicitation procedures (with or without driving variable) proposed in the linear case for nonlinear DAEs of quasi-linear form. The purpose of these two explicitation procedures is to associate a nonlinear ODECS to any nonlinear DAE such that we can use the classical nonlinear ODE control theory to analyze nonlinear DAEs. We discuss differences of internal and external equivalence of nonlinear DAEs by showing their relations with the existence and uniqueness of solutions (internal regularity). Then we show that the internal analysis of nonlinear DAEs is closely related to the zero dynamics in the classical nonlinear control theory. Moreover, we show relations of DAEs of pure semi-explicit form with the two explicitation procedures. Furthermore, a nonlinear generalization of the Weierstrass form WE is proposed based on the zero dynamics of a nonlinear ODECS given by the explicitation procedure
Millan, William L. "Analysis and design of Boolean functions for cryptographic applications". Thesis, Queensland University of Technology, 1997.
Buscar texto completoCheng, Howard. "Algorithms for Normal Forms for Matrices of Polynomials and Ore Polynomials". Thesis, University of Waterloo, 2003. http://hdl.handle.net/10012/1088.
Texto completoRamos, Alberto Gil Couto Pimentel. "Numerical solution of Sturm–Liouville problems via Fer streamers". Thesis, University of Cambridge, 2016. https://www.repository.cam.ac.uk/handle/1810/256997.
Texto completoDarpö, Erik. "Problems in the Classification Theory of Non-Associative Simple Algebras". Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9536.
Texto completoChakir, El-Alaoui El-Houcine. "Les métriques sous riemanniennes en dimension 3". Rouen, 1996. http://www.theses.fr/1996ROUES055.
Texto completoLinfoot, Andy James. "A Case Study of A Multithreaded Buchberger Normal Form Algorithm". Diss., The University of Arizona, 2006. http://hdl.handle.net/10150/305141.
Texto completoHartsell, Jack. "A Normal Form for Words in the Temperley-Lieb Algebra and the Artin Braid Group on Three Strands". Digital Commons @ East Tennessee State University, 2018. https://dc.etsu.edu/etd/3504.
Texto completoRantner, Walter 1973. "The algebraic spin liquid of a possible model description for the normal state of underdoped high temperature superconductors". Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/29303.
Texto completoIncludes bibliographical references (p. 92-95).
16 years and counting ... In 1986 Bednorz and Muller discovered the layered perovskite structure (La - Ba)2Cu04 which showed the phenomenon of superconductivity at the unprecedented high temperature of Tc = 33 K. In the ensuing months and years it became more and more apparent that the cuprates, as the materials came to be known, show very peculiar correlations in their "normal" state at temperatures T > Tc. The majority of this thesis is concerned with this abnormal "normal" state, attempting to extract a coherent picture for the strange phenomenology. The underlying theoretical framework is a slave particle description of the tJ model proposed by Wen and Lee. The conceptual background is rooted in Anderson's proposal of spin charge separation as the key emergent phenomenon in cuprate physics. After a brief motivation we look at single particle tunneling into the cuprate's superconducting state from the perspective of both d-wave BCS and the SU(2) slave boson theory of Wen and Lee. Both approaches work well close to zero tunneling bias. The slave particle formulation however also naturally incorporates the particle/hole asymmetric background that is seen in experiments.
(cont.) The question of single particle correlations studied experimentally via angle resolved photo emission experiments motivates the analysis of the next chapter. The broad spectral line-shapes seen experimentally imply the absence of well defined quasi-particles in the Fermi liquid sense. We study how gauge fluctuations arising from our use of slave particle coordinates affect the physical hole spectral function. The primary influence of gauge fluctuations turns out to be through their confining tendency on the vertex rather than as a scattering field for the slave particles. The last chapter discusses the effect of gauge fluctuations on the spin susceptibility and shows that they play a vital role in restoring Neel correlations. This allows us to give a natural explanation for the spin related phenomenology of underdoped cuprates.
by Walter Rantner.
Ph.D.
Gologlu, Faruk. "Divisibility Properties On Boolean Functions Using The Numerical Normal Form". Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/2/12605549/index.pdf.
Texto completobius inversion properties of NNF of a Boolean function, using Gian-Carlo Rota&rsquo
s work as a guide. Finally, using a lot of the mentioned results, we prove a necessary condition on theWalsh spectrum of Boolean functions with given degree.
Neaime, Georges. "Interval structures, Hecke algebras, and Krammer’s representations for the complex braid groups B(e,e,n)". Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC214/document.
Texto completoWe define geodesic normal forms for the general series of complex reflection groups G(de,e,n). This requires the elaboration of a combinatorial technique in order to determine minimal word representatives and to compute the length of the elements of G(de,e,n) over some generating set. Using these geodesic normal forms, we construct intervals in G(e,e,n) that give rise to Garside groups. Some of these groups correspond to the complex braid group B(e,e,n). For the other Garside groups that appear, we study some of their properties and compute their second integral homology groups. Inspired by the geodesic normal forms, we also define new presentations and new bases for the Hecke algebras associated to the complex reflection groups G(e,e,n) and G(d,1,n) which lead to a new proof of the BMR (Broué-Malle-Rouquier) freeness conjecture for these two cases. Next, we define a BMW (Birman-Murakami-Wenzl) and Brauer algebras for type (e,e,n). This enables us to construct explicit Krammer's representations for some cases of the complex braid groups B(e,e,n). We conjecture that these representations are faithful. Finally, based on our heuristic computations, we propose a conjecture about the structure of the BMW algebra
Chen, Zhangchi. "Differential invariants of parabolic surfaces and of CR hypersurfaces; Directed harmonic currents near non-hyperbolic linearized singularities; Hartogs’ type extension of holomorphic line bundles; (Non-)invertible circulant matrices On differential invariants of parabolic surfaces A counterexample to Hartogs’ type extension of holomorphic line bundles Directed harmonic currents near non-hyperbolic linearized singularities Affine Homogeneous Surfaces with Hessian rank 2 and Algebras of Differential Invariants On nonsingularity of circulant matrices". Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPASM005.
Texto completoThe thesis consists of 6 papers. (1) We calculate the generators of SA₃(ℝ)-invariants for parabolic surfaces. (2) We calculate rigid relative invariants for rigid constant Levi-rank 1 and 2-non-degenerate hypersurfaces in ℂ³: V₀, I₀, Q₀ having 11, 52, 824 monomials in their numerators. (3) We organize all affinely homogeneous nondegenerate surfaces in ℂ³ in inequivalent branches. (4) For a directed harmonic current near a non-hyperbolic linearized singularity which does not give mass to any of the trivial separatrices and whose trivial extension across 0 is ddc-closed, we show that the Lelong number at 0 is: 4.1) strictly positive if the eigenvalue λ>0; 4.2) zero if λ is a negative rational number; 4.3) zero if λ<0 and if T is invariant under the action of some cofinite subgroup of the monodromy group. (5) We construct non-extendable, in the sense of Hartogs, holomorphic line bundles in any dimension n>=2. (6) We show that circulant matrices having k ones and k+1 zeros in the first row are always nonsingular when 2k+1 is either a power of a prime, or a product of two distinct primes. For any other integer 2k+1 we exhibit a singular circulant matrix
Lemaire, François. "Contribution à l'algorithmique en algèbre différentielle". Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2002. http://tel.archives-ouvertes.fr/tel-00001363.
Texto completodifférentielles non linéaires aux dérivées partielles. L'approche choisie est celle de l'algèbre différentielle. Étant donné un système d'équations différentielles, nous cherchons à obtenir des renseignements sur ses solutions. Pour ce faire, nous calculons une famille d'ensembles particuliers (appelés chaînes différentielles régulières) dont la réunion des solutions coïncide avec les solutions du système initial.
Les nouveaux résultats relèvent principalement du calcul formel. Le chapitre 2 clarifie le lien entre les chaînes régulières et les chaînes différentielles régulières. Deux nouveaux algorithmes (chapitres 4 et 5) viennent optimiser les algorithmes existants permettant de calculer ces chaînes différentielles régulières. Ces deux algorithmes intègrent des techniques purement algébriques qui permettent de mieux contrôler le grossissement des données et de supprimer des calculs inutiles. Des problèmes jusqu'à présent non résolus ont ainsi pu être traités. Un algorithme de calcul de forme normale d'un polynôme différentiel modulo une chaîne différentielle régulière est exposé dans le chapitre 2.
Les derniers résultats relèvent de l'analyse. Les solutions que nous considérons sont des séries formelles. Le chapitre 3 fournit des conditions suffisantes pour qu'une solution formelle soit analytique. Ce même chapitre présente un contre-exemple à une conjecture portant sur l'analycité des solutions formelles.
Coffman, Adam Nathaniel. "Enumeration and normal forms of singularities in Cauchy-Riemann structures /". 1997. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:9800589.
Texto completoGupta, Somit. "Hermite Forms of Polynomial Matrices". Thesis, 2011. http://hdl.handle.net/10012/6108.
Texto completoHärtel, Johannes. "Reduktionssysteme zur Berechnung einer Auflösung der orthogonalen freien Quantengruppen Ao(n)". Doctoral thesis, 2008. http://hdl.handle.net/11858/00-1735-0000-0006-B3A7-7.
Texto completo