Literatura académica sobre el tema "Algèbre ternaire de Jordan"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Algèbre ternaire de Jordan".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Algèbre ternaire de Jordan"
Aupetit, Bernard y Line Baribeau. "Sur le Socle Dans Les Algèbres de Jordan-Banach". Canadian Journal of Mathematics 41, n.º 6 (1 de diciembre de 1989): 1090–100. http://dx.doi.org/10.4153/cjm-1989-047-x.
Texto completoBlind, Bruno. "Distributions homogènes sur une algèbre de Jordan". Bulletin de la Société mathématique de France 125, n.º 4 (1997): 493–528. http://dx.doi.org/10.24033/bsmf.2315.
Texto completoBlind, Bruno. "Distributions vectorielles homogènes sur une algèbre de Jordan". Journal of Functional Analysis 208, n.º 2 (marzo de 2004): 482–507. http://dx.doi.org/10.1016/s0022-1236(03)00219-2.
Texto completoPevzner, Michel. "Représentation de Weil associée à une représentation d'une algèbre de Jordan". Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 328, n.º 6 (marzo de 1999): 463–68. http://dx.doi.org/10.1016/s0764-4442(99)80191-8.
Texto completo"Représentation d'une algèbre de Jordan, polynômes invariants et harmoniques de Stiefel." Journal für die reine und angewandte Mathematik (Crelles Journal) 1992, n.º 423 (1 de enero de 1992): 47–72. http://dx.doi.org/10.1515/crll.1992.423.47.
Texto completoTesis sobre el tema "Algèbre ternaire de Jordan"
Hajjaji, Atef. "Étude des opérateurs de Rota-Baxter relatifs sur les algèbres ternaires de type Lie et Jordan". Electronic Thesis or Diss., Mulhouse, 2024. http://www.theses.fr/2024MULH7172.
Texto completoThe goal of this thesis is to explore relative Rota-Baxter operators in the context of ternary algebras of both Lie and Jordan types. We mainly consider Lie triple systems, 3-Lie algebras and ternary Jordan algebras. The study covers their structure, cohomology, deformations, and their connection with the Yang-Baxter equations. The work is divided into three main parts. The first part aims first to introduce and study a graded Lie algebra whose Maurer-Cartan elements are Lie triple systems. It turns out to be the controlling algebra of Lie triple systems deformations and fits with the adjoint cohomology theory of Lie triple systems introduced by Yamaguti. In addition, we introduce the notion of relative Rota-Baxter operators on Lie triple systems and construct a Lie 3-algebra as a special case of L∞-algebras, where the Maurer-Cartan elements correspond to relative Rota-Baxter operators. In the second part, we introduce the concept of twisted relative Rota-Baxter operators on 3-Lie algebras and construct an L∞-algebra, where the Maurer-Cartan elements are twisted relative Rota-Baxter operators. This allows us to define the Chevalley-Eilenberg cohomology of a twisted relative Rota-Baxter operator. In the last part, we deal with a representation theory of ternary Jordan algebras. In particular, we introduce and discuss the concept of coherent ternary Jordan algebras. We then define relative Rota-Baxter operators for ternary Jordan algebras and discuss solutions ofthe ternary Jordan Yang-Baxter equation involving relative Rota-Baxter operators. Moreover, we investigate ternary pre-Jordan algebras as the underlying algebraic structure of relative Rota-Baxter operators
Blind, Bruno. "Analyse de Fourier sur une algèbre de Jordan". Nancy 1, 1991. http://docnum.univ-lorraine.fr/public/SCD_T_1991_0011_BLIND.pdf.
Texto completoDib, Hacen. "Fonctions de Bessel sur une algèbre de Jordan". Université Louis Pasteur (Strasbourg) (1971-2008), 1988. http://www.theses.fr/1988STR13150.
Texto completoKoufany, Khalid. "Semi-groupe de Lie associé à une algèbre de Jordan euclidienne". Nancy 1, 1993. http://docnum.univ-lorraine.fr/public/SCD_T_1993_0172_KOUFANY.pdf.
Texto completoAhmad, Saad. "Algèbres symétriques à gauche et algèbre de couleurs". Montpellier 2, 1989. http://www.theses.fr/1989MON20039.
Texto completoKhadir, Omar. "Algorithmes et combinatoire dans l'algèbre de Jordan spéciale libre". Rouen, 1994. http://www.theses.fr/1994ROUES014.
Texto completoChenal, Julien. "Structures géométriques liées aux algèbres de Lie graduées". Thesis, Nancy 1, 2010. http://www.theses.fr/2010NAN10036/document.
Texto completoThe goal of this thesis is to define a geometric objet associated to graded Lie algebras. In the case of a $\mathbb{Z}/2\mathbb{Z}$ graded Lie algebra, this object is a symmetric space G/H and the infinitesimal object associated is a Lie triple system. If the Lie algebra is 3-graded, the geometry is called a generalized projective geometry and the infinitesimal object is a Jordan pair. In the general case, the geometric object will be called a generalized flag geometry. Its contruction needs the notions of elementary projective group and projective completion, definied by O. Loos and used by J. R. Faulkner. Then, by the notion of filtrations of a Lie algebras, a realization of the generalized flag geometry of a graded Lie algebra can be done as orbits under the elementary projective group of two natural filtrations, associated to the graduation. In the example $\mathfrak{g}=End_R(V)$, consisting of the endomorphisms of a module $V$ on a assocative algebra $R$, then the generalized flag geometry is realized like orbits of flags of $V$; so, it justifies the chosen name: "generalized flag geometry". To finish, using a generalized differential calculus, we can construct on this generalized flag geometry a structure of smooth manifold
Acosta, Gempeler Lorenzo. "Sur les algèbres de Moufang". Montpellier 2, 1992. http://www.theses.fr/1992MON20164.
Texto completoBrechenmacher, Frédéric. "Histoire du théorème de Jordan de la décomposition matricielle (1870-1930) : formes de représentations et méthodes de décompositions". Paris, EHESS, 2006. https://tel.archives-ouvertes.fr/tel-00142786.
Texto completoThe thesis takes as its point of departure the Jordan decomposition theorem and traces its evolution over the sixty-year period from its statement by Camille Jordan in 1870 to 1930 and the emergence of the theory of canonical matrices. A historical analysis of this particular theorem serves as a lens not only on internal developments of the evolving mathematics discipline of algebra but also on the external developments of mathematics as an internationalizing discipline in the decades around the turn of the twentieth century. The thesis draws from the study of networks of sources in order to analyze the theorem's transformation from a result in nineteenth-century group theory to one in the new twentieth century area of linear algebra, while, at the same time, the thesis explores issues of community formation and the role of tacit knowledge in the evolution of mathematical methods. The thesis will focus on a history the decomposition of matrices as a method of decomposition of a particular form of representation
Brechenmacher, Frederic. "Histoire du théorème de Jordan de la décomposition matricielle (1870-1930).Formes de représentation et méthodes de décomposition". Phd thesis, Ecole des Hautes Etudes en Sciences Sociales (EHESS), 2006. http://tel.archives-ouvertes.fr/tel-00142786.
Texto completoLibros sobre el tema "Algèbre ternaire de Jordan"
Cuculescu, I. Noncommutative probability. Dordrecht: Kluwer Academic Publishers, 1994.
Buscar texto completoCapítulos de libros sobre el tema "Algèbre ternaire de Jordan"
Kaidi, El-Amin y Antonio Sánchez Sánchez. "J-Diviseurs Topologiques de Zéro Dans Une Algèbre de Jordan N.C. Normée". En Non-Associative Algebra and Its Applications, 193–97. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0990-1_32.
Texto completo