Siga este enlace para ver otros tipos de publicaciones sobre el tema: All optical Bose-Einstein condensation.

Artículos de revistas sobre el tema "All optical Bose-Einstein condensation"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "All optical Bose-Einstein condensation".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Arnold, K. J. y M. D. Barrett. "All-optical Bose–Einstein condensation in a 1.06μm dipole trap". Optics Communications 284, n.º 13 (junio de 2011): 3288–91. http://dx.doi.org/10.1016/j.optcom.2011.03.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Deng, Shu-Jin, Peng-Peng Diao, Qian-Li Yu y Hai-Bin Wu. "All-Optical Production of Quantum Degeneracy and Molecular Bose-Einstein Condensation of 6 Li". Chinese Physics Letters 32, n.º 5 (mayo de 2015): 053401. http://dx.doi.org/10.1088/0256-307x/32/5/053401.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Sawicki, Krzysztof, Thomas J. Sturges, Maciej Ściesiek, Tomasz Kazimierczuk, Kamil Sobczak, Andrzej Golnik, Wojciech Pacuski y Jan Suffczyński. "Polariton lasing and energy-degenerate parametric scattering in non-resonantly driven coupled planar microcavities". Nanophotonics 10, n.º 9 (21 de mayo de 2021): 2421–29. http://dx.doi.org/10.1515/nanoph-2021-0079.

Texto completo
Resumen
Abstract Multi-level exciton-polariton systems offer an attractive platform for studies of non-linear optical phenomena. However, studies of such consequential non-linear phenomena as polariton condensation and lasing in planar microcavities have so far been limited to two-level systems, where the condensation takes place in the lowest attainable state. Here, we report non-equilibrium Bose–Einstein condensation of exciton-polaritons and low threshold, dual-wavelength polariton lasing in vertically coupled, double planar microcavities. Moreover, we find that the presence of the non-resonantly driven condensate triggers interbranch exciton-polariton transfer in the form of energy-degenerate parametric scattering. Such an effect has so far been observed only under excitation that is strictly resonant in terms of the energy and incidence angle. We describe theoretically our time-integrated and time-resolved photoluminescence investigations by an open-dissipative Gross–Pitaevskii equation-based model. Our platform’s inherent tunability is promising for construction of planar lattices, enabling three-dimensional polariton hopping and realization of photonic devices, such as all-optical polariton-based logic gates.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Gedela, Satyanarayana, Neeraj Pant, R. P. Pant y Jaya Upreti. "Relativistic anisotropic model of strange star SAX J1808.4-3658 admitting quadratic equation of state". International Journal of Modern Physics A 34, n.º 29 (20 de octubre de 2019): 1950179. http://dx.doi.org/10.1142/s0217751x19501793.

Texto completo
Resumen
In this paper, we study the behavior of static spherically symmetric relativistic model of the strange star SAX J1808.4-3658 by exploring a new exact solution for anisotropic matter distribution. We analyze the comprehensive structure of the space–time within the stellar configuration by using the Einstein field equations amalgamated with quadratic equation of state (EoS). Further, we compare solutions of quadratic EoS model with modified Bose–Einstein condensation EoS and linear EoS models which can be generated by a suitable choice of parameters in quadratic EoS model. Subsequently, we compare the properties of strange star SAX J1808.4-3658 for all the three EoS models with the help of graphical representations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Jian-Ping, Yin, Gao Wei-Jian, Wang Hai-Feng, Long Quan y Wang Yu-Zhu. "Generations of dark hollow beams and their applications in laser cooling of atoms and all optical-type Bose-Einstein condensation". Chinese Physics 11, n.º 11 (23 de octubre de 2002): 1157–70. http://dx.doi.org/10.1088/1009-1963/11/11/312.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

BAO, WEIZHU y YANZHI ZHANG. "DYNAMICS OF THE GROUND STATE AND CENTRAL VORTEX STATES IN BOSE–EINSTEIN CONDENSATION". Mathematical Models and Methods in Applied Sciences 15, n.º 12 (diciembre de 2005): 1863–96. http://dx.doi.org/10.1142/s021820250500100x.

Texto completo
Resumen
In this paper, we study dynamics of the ground state and central vortex states in Bose–Einstein condensation (BEC) analytically and numerically. We show how to define the energy of the Thomas–Fermi (TF) approximation, prove that the ground state is a global minimizer of the energy functional over the unit sphere and all excited states are saddle points in linear case, derive a second-order ordinary differential equation (ODE) which shows that time-evolution of the condensate width is a periodic function with/without a perturbation by using the variance identity, prove that the angular momentum expectation is conserved in two dimensions (2D) with a radial symmetric trap and 3D with a cylindrical symmetric trap for any initial data, and study numerically stability of central vortex states as well as interaction between a few central vortices with winding numbers ±1 by a fourth-order time-splitting sine-pseudospectral (TSSP) method. The merit of the numerical method is that it is explicit, unconditionally stable, time reversible and time transverse invariant. Moreover, it conserves the position density, performs spectral accuracy for spatial derivatives and fourth-order accuracy for time derivative, and possesses "optimal" spatial/temporal resolution in the semiclassical regime. Finally we find numerically the critical angular frequency for single vortex cycling from the ground state under a far-blue detuned Gaussian laser stirrer in strong repulsive interaction regime and compare our numerical results with those in the literatures.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Lin, Kai, Xiao-Mei Kuang, Wei-Liang Qian, Qiyuan Pan y A. B. Pavan. "Analysis of s-wave, p-wave and d-wave holographic superconductors in Hořava–Lifshitz gravity". Modern Physics Letters A 33, n.º 26 (24 de agosto de 2018): 1850147. http://dx.doi.org/10.1142/s021773231850147x.

Texto completo
Resumen
In this work, the s-wave, p-wave and d-wave holographic superconductors in the Hořava–Lifshitz gravity are investigated in the probe limit. For this approach, it is shown that the equations of motion for different wave states in Einstein gravity can be written as a unified form, and condensates take place in all three cases. This scheme is then generalized to Hořava–Lifshitz gravity, and a unified equation for multiple holographic states is obtained. Furthermore, the properties of the condensation and the optical conductivity are studied numerically. It is found that, in the case of Hořava–Lifshitz gravity, it is always possible to find some particular parameters in the corresponding Einstein case where the condensation curves are identical. For fixed scalar field mass m, a nonvanishing [Formula: see text] makes the condensation easier than in Einstein gravity for s-wave superconductor. However, the p-wave and d-wave superconductors have T[Formula: see text] greater than the s-wave.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Ball, Philip. "How cold atoms got hot: an interview with William Phillips". National Science Review 3, n.º 2 (9 de noviembre de 2015): 201–3. http://dx.doi.org/10.1093/nsr/nwv075.

Texto completo
Resumen
Abstract William Phillips of the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, shared the 1997 Nobel Prize in physics for his work in developing laser methods for cooling and trapping atoms. Interactions between the light field and the atoms create what is dubbed an ‘optical molasses’ that slows the atoms down, thereby reducing their temperature to within a fraction of a degree of absolute zero. These techniques allow atoms to be studied with great precision, for example measuring their resonant frequencies for light absorption very accurately, so that these frequencies may supply very stable timing standards for atomic clocks. Besides applications in metrology, such cooling methods can also be used to study new fundamental physics. The 1997 Nobel award was widely considered to be a response to the first observation in 1995 of pure Bose–Einstein condensation (BEC), in which a collection of bosonic atoms all occupy a single quantum state. This quantum-mechanical effect only becomes possible at very low temperatures, and the team that achieved it, working at JILA operated jointly by the University of Colorado and NIST, used the techniques devised by Phillips and others. Since then, cold-atom physics has branched in many directions, among them being attempts to make a quantum computer (which would use logic operations based on quantum rules) from ultracold trapped atoms and ions. ‘National Science Review’ spoke with Phillips about the development and future potential of the field.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Savona, Vincenzo y Davide Sarchi. "Bose-Einstein condensation of microcavity polaritons". physica status solidi (b) 242, n.º 11 (septiembre de 2005): 2290–301. http://dx.doi.org/10.1002/pssb.200560964.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Holzmann, M., P. Grüter y F. Laloë. "Bose-Einstein condensation in interacting gases". European Physical Journal B 10, n.º 4 (agosto de 1999): 739–60. http://dx.doi.org/10.1007/s100510050905.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

de Llano, M. "Generalized Bose–Einstein Condensation in Superconductivity". Journal of Superconductivity and Novel Magnetism 23, n.º 5 (16 de enero de 2010): 645–49. http://dx.doi.org/10.1007/s10948-010-0670-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

de LLANO, MANUEL. "GENERALIZED BOSE-EINSTEIN CONDENSATION IN SUPERCONDUCTIVITY". International Journal of Modern Physics B 24, n.º 25n26 (20 de octubre de 2010): 5163–71. http://dx.doi.org/10.1142/s0217979210057298.

Texto completo
Resumen
Unification of the BCS and the Bose-Einstein condensation (BEC) theories is surveyed in detail via a generalized BEC (GBEC) finite-temperature statistical formalism. Its major difference with BCS theory is that it can be diagonalized exactly. Under specified conditions it yields the precise BCS gap equation for all temperatures as well as the precise BCS zero-temperature condensation energy for all couplings, thereby suggesting that a BCS condensate is a BE condensate in a ternary mixture of kinematically independent unpaired electrons coexisting with equally proportioned weakly-bound two-electron and two-hole Cooper pairs. Without abandoning the electron-phonon mechanism in moderately weak coupling it suffices, in principle, to reproduce the unusually high values of Tc (in units of the Fermi temperature TF) of 0.01-0.05 empirically reported in the so-called "exotic" superconductors of the Uemura plot, including cuprates, in contrast to the low values of Tc/TF ≤ 10-3 roughly reproduced by BCS theory for conventional (mostly elemental) superconductors. Replacing the characteristic phonon-exchange Debye temperature by a characteristic magnon-exchange one more than twice in size can lead to a simple interaction model associated with spin-fluctuation-mediated pairing.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Grossmann, Siegfried y Martin Holthaus. "Bose-Einstein condensation in a cavity". Zeitschrift f�r Physik B Condensed Matter 97, n.º 2 (junio de 1995): 319–26. http://dx.doi.org/10.1007/bf01307482.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Snoke, D. W. "Coherence and Optical Emission from Bilayer Exciton Condensates". Advances in Condensed Matter Physics 2011 (2011): 1–7. http://dx.doi.org/10.1155/2011/938609.

Texto completo
Resumen
Experiments aimed at demonstrating Bose-Einstein condensation of excitons in two types of experiments with bilayer structures (coupled quantum wells) are reviewed, with an emphasis on the basic effects. Bose-Einstein condensation implies the existence of a macroscopic coherence, also known as off-diagonal long-range order, and proposed tests and past claims for coherence in these excitonic systems are discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Furrer, Albert y Christian Rüegg. "Bose–Einstein condensation in magnetic materials". Physica B: Condensed Matter 385-386 (noviembre de 2006): 295–300. http://dx.doi.org/10.1016/j.physb.2006.05.020.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Kobayashi, Michikazu y Makoto Tsubota. "Bose–Einstein condensation and superfluidity of dirty Bose gas". Physica B: Condensed Matter 329-333 (mayo de 2003): 212–13. http://dx.doi.org/10.1016/s0921-4526(02)01962-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

DONLEY, ELIZABETH A., BRIAN P. ANDERSON y CARL E. WIEMAN. "New Twists in Bose-Einstein Condensation". Optics and Photonics News 12, n.º 10 (1 de octubre de 2001): 34. http://dx.doi.org/10.1364/opn.12.10.000034.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Continentino, M. A. "On Bose–Einstein condensation in magnetic systems". Journal of Magnetism and Magnetic Materials 310, n.º 2 (marzo de 2007): 849–51. http://dx.doi.org/10.1016/j.jmmm.2006.10.719.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Mysyrowicz, A., D. W. Snoke y J. P. Wolfe. "Progress on Bose-Einstein Condensation of Excitons". physica status solidi (b) 159, n.º 1 (1 de mayo de 1990): 387–401. http://dx.doi.org/10.1002/pssb.2221590145.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Klaers, Jan, Julian Schmitt, Frank Vewinger y Martin Weitz. "Bose–Einstein condensation of photons in an optical microcavity". Nature 468, n.º 7323 (noviembre de 2010): 545–48. http://dx.doi.org/10.1038/nature09567.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Bulatov, A., B. E. Vugmeister y H. Rabitz. "Nonadiabatic control of Bose-Einstein condensation in optical traps". Physical Review A 60, n.º 6 (1 de diciembre de 1999): 4875–81. http://dx.doi.org/10.1103/physreva.60.4875.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Burger, S., F. S. Cataliotti, C. Fort, P. Maddaloni, F. Minardi y M. Inguscio. "Quasi-2D Bose-Einstein condensation in an optical lattice". Europhysics Letters (EPL) 57, n.º 1 (enero de 2002): 1–6. http://dx.doi.org/10.1209/epl/i2002-00532-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Lu, B. y W. A. van Wijngaarden. "Bose–Einstein condensation in a QUIC trap". Canadian Journal of Physics 82, n.º 2 (1 de febrero de 2004): 81–102. http://dx.doi.org/10.1139/p03-127.

Texto completo
Resumen
The apparatus and procedure required to generate a pure Bose-Einstein condensate (BEC) consisting of about half a million 87Rb atoms at a temperature of <60 nK with a phase density of >54 is described. The atoms are first laser cooled in a vapour cell magneto-optical trap (MOT) and subsequently transferred to an ultra-low pressure MOT. The atoms are loaded into a QUIC trap consisting of a pair of quadrupole coils and a Ioffe coil that generates a small finite magnetic field at the trap energy minimum to suppress Majorana transitions. Evaporation induced by an RF field lowers the temperature permitting the transition to BEC to be observed by monitoring the free expansion of the atoms after the trapping fields have been switched off.PACS Nos.: 03.75.Fi, 05.30.Jp, 32.80.Pj, 64.60.–i
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Sirker, J., A. Weiße y O. P. Sushkov. "Bose–Einstein condensation of magnons in TlCuCl". Physica B: Condensed Matter 359-361 (abril de 2005): 1318–20. http://dx.doi.org/10.1016/j.physb.2005.01.392.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Lee, D. K. K. y J. M. F. Gunn. "Bose-einstein condensation in a random potential". Physica B: Condensed Matter 165-166 (agosto de 1990): 509–10. http://dx.doi.org/10.1016/s0921-4526(90)81104-v.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

FIDALEO, FRANCESCO, DANIELE GUIDO y TOMMASO ISOLA. "BOSE–EINSTEIN CONDENSATION ON INHOMOGENEOUS AMENABLE GRAPHS". Infinite Dimensional Analysis, Quantum Probability and Related Topics 14, n.º 02 (junio de 2011): 149–97. http://dx.doi.org/10.1142/s0219025711004389.

Texto completo
Resumen
We investigate the Bose–Einstein condensation on nonhomogeneous amenable networks for the model describing arrays of Josephson junctions. The resulting topological model, whose Hamiltonian is the pure hopping one given by the opposite of the adjacency operator, also has a mathematical interest in itself. We show that for the nonhomogeneous networks like the comb graphs, particles condensate in momentum and configuration space as well. In this case different properties of the network, of geometric and probabilistic nature, such as the volume growth, the shape of the ground state, and the transience, all play a role in the condensation phenomena. The situation is quite different for homogeneous networks where just one of these parameters, e.g., the volume growth, is enough to determine the appearance of the condensation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Cennini, G., G. Ritt, C. Geckeler y M. Weitz. "Bose–Einstein condensation in a CO2-laser optical dipole trap". Applied Physics B 77, n.º 8 (diciembre de 2003): 773–79. http://dx.doi.org/10.1007/s00340-003-1333-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Bell, Thomas A., Jake A. P. Glidden, Leif Humbert, Michael W. J. Bromley, Simon A. Haine, Matthew J. Davis, Tyler W. Neely, Mark A. Baker y Halina Rubinsztein-Dunlop. "Bose–Einstein condensation in large time-averaged optical ring potentials". New Journal of Physics 18, n.º 3 (1 de marzo de 2016): 035003. http://dx.doi.org/10.1088/1367-2630/18/3/035003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Keeling, Jonathan y Stéphane Kéna-Cohen. "Bose–Einstein Condensation of Exciton-Polaritons in Organic Microcavities". Annual Review of Physical Chemistry 71, n.º 1 (20 de abril de 2020): 435–59. http://dx.doi.org/10.1146/annurev-physchem-010920-102509.

Texto completo
Resumen
Bose–Einstein condensation describes the macroscopic occupation of a single-particle mode: the condensate. This state can in principle be realized for any particles obeying Bose–Einstein statistics; this includes hybrid light-matter excitations known as polaritons. Some of the unique optoelectronic properties of organic molecules make them especially well suited for the realization of polariton condensates. Exciton-polaritons form in optical cavities when electronic excitations couple collectively to the optical mode supported by the cavity. These polaritons obey bosonic statistics at moderate densities, are stable at room temperature, and have been observed to form a condensed or lasing state. Understanding the optimal conditions for polariton condensation requires careful modeling of the complex photophysics of organic molecules. In this article, we introduce the basic physics of exciton-polaritons and condensation and review experiments demonstrating polariton condensation in molecular materials.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Ghassib, Humam B. y Yahya F. Waqqad. "Bose-einstein condensation in quasi-two-dimensional systems". Physica B: Condensed Matter 165-166 (agosto de 1990): 595–96. http://dx.doi.org/10.1016/s0921-4526(90)81147-g.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Al-Sugheir, Mohamed K., Mufeed A. Awawdeh, Humam B. Ghassib y Emad Alhami. "Bose–Einstein condensation in one-dimensional optical lattices: Bogoliubov’s approximation and beyond". Canadian Journal of Physics 94, n.º 7 (julio de 2016): 697–703. http://dx.doi.org/10.1139/cjp-2016-0019.

Texto completo
Resumen
Bose–Einstein condensation in a finite one-dimensional atomic Bose gas trapped in an optical lattice is studied within Bogoliubov’s approximation and then beyond this approximation, within the static fluctuation approximation. A Bose–Hubbard model is used to construct the Hamiltonian of the system. The effect of the potential strength on the condensate fraction is explored at different temperatures; so is the effect of temperature on this fraction at different potential strengths. The role of the number of lattice points (the size effect) at constant number density (the filling factor) is examined; so is the effect of the number density on the condensate fraction. The results obtained are compared to other published results wherever possible.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

DONG, GUANGJIONG. "SPATIAL TUNING OF BOSE-EINSTEIN CONDENSATIONS". International Journal of Modern Physics B 21, n.º 23n24 (30 de septiembre de 2007): 4265–70. http://dx.doi.org/10.1142/s0217979207045505.

Texto completo
Resumen
We briefly review our recent work on spatial tuning of Bose-Einstein condensation (BEC). We first study spatially periodic tuning of the s-wave scattering length for controlling the propagation of a BEC matter wave, and find matter wave limiting processing and bistability. Second, we show that a stable BEC with natural attractive interaction could be formed by tuning the s -wave scattering length with a Gaussian optical field, but the condensed atom number should be less than a critical value. Further, we apply Thomas-Fermi approximation to obtain a formula for this critical value.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Jaziri, S., H. Abassi, K. Sellami y R. Bennaceur. "Bose-Einstein Condensation of Polaritons in Organic Semiconducting Microcavities". physica status solidi (a) 190, n.º 2 (abril de 2002): 441–45. http://dx.doi.org/10.1002/1521-396x(200204)190:2<441::aid-pssa441>3.0.co;2-#.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Olaya-Castro, A. y L. Quiroga. "Bose-Einstein Condensation in an Axially Symmetric Mesoscopic System". physica status solidi (b) 220, n.º 1 (julio de 2000): 761–64. http://dx.doi.org/10.1002/1521-3951(200007)220:1<761::aid-pssb761>3.0.co;2-l.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Cheng, Ze. "Bose–Einstein condensation of dressed photons in a nonlinear optical microcavity". International Journal of Modern Physics B 33, n.º 23 (20 de septiembre de 2019): 1950265. http://dx.doi.org/10.1142/s0217979219502655.

Texto completo
Resumen
Bose–Einstein condensation (BEC) of dressed photons in a Kerr nonlinear optical microcavity is investigated. Our experimental scheme is based on an optical microcavity filled with a Kerr nonlinear nonpolar crystal. The pump photons interact with the Raman phonons in the crystal and hence are converted into new quasiparticles, which we refer to as dressed photons. A dressed photon is a photon dressed with a cloud of virtual transverse-optical phonons. The first main finding is that two-dimensional (2D) dressed photons have an increased inert mass. The second main finding is that the lower cutoff frequency of a nonlinear optical microcavity becomes larger. The third main finding is that the incident laser intensity is a moderate laser intensity ([Formula: see text]10[Formula: see text] W/cm2). The fourth main finding is that the critical optical power of a nonlinear optical microcavity is increased. The fifth main finding is that the radiation emitted by 2D dressed photons has an ultrahigh intensity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Du, Cong-Fei y Xiang-Mu Kong. "Bose–Einstein condensation of a relativistic Bose gas in a harmonic potential". Physica B: Condensed Matter 407, n.º 12 (junio de 2012): 1973–77. http://dx.doi.org/10.1016/j.physb.2012.01.097.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Wen, Xinglin y Qihua Xiong. "Bose-Einstein condensation of exciton polariton in perovskites semiconductors". Frontiers of Optoelectronics 13, n.º 3 (septiembre de 2020): 193–95. http://dx.doi.org/10.1007/s12200-020-1086-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Sob’yanin, D. N. "Theory of Bose-Einstein condensation of light in a microcavity". Bulletin of the Lebedev Physics Institute 40, n.º 4 (abril de 2013): 91–96. http://dx.doi.org/10.3103/s1068335613040039.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

FIDALEO, FRANCESCO. "HARMONIC ANALYSIS ON CAYLEY TREES II: THE BOSE–EINSTEIN CONDENSATION". Infinite Dimensional Analysis, Quantum Probability and Related Topics 15, n.º 04 (diciembre de 2012): 1250024. http://dx.doi.org/10.1142/s0219025712500245.

Texto completo
Resumen
We investigate the Bose–Einstein Condensation on non-homogeneous non-amenable networks for the model describing arrays of Josephson junctions. The graphs under investigation are obtained by adding density zero perturbations to the homogeneous Cayley Trees. The resulting topological model, whose Hamiltonian is the pure hopping one given by the opposite of the adjacency operator, has also a mathematical interest in itself. The present paper is then the application to the Bose–Einstein Condensation phenomena, of the harmonic analysis aspects, previously investigated in a separate work, for such non-amenable graphs. Concerning the appearance of the Bose–Einstein Condensation, the results are surprisingly in accordance with the previous ones, despite the lack of amenability. The appearance of the hidden spectrum for low energies always implies that the critical density is finite for all the models under consideration. We also show that, even when the critical density is finite, if the adjacency operator of the graph is recurrent, it is impossible to exhibit temperature states which are locally normal (i.e. states for which the local particle density is finite) describing the condensation at all. A similar situation seems to occur in the transient cases for which it is impossible to exhibit locally normal states ω describing the Bose–Einstein Condensation with mean particle density ρ(ω) strictly greater than the critical density ρc. Indeed, it is shown that the transient cases admit locally normal states exhibiting Bose–Einstein Condensation phenomena. In order to construct such locally normal temperature states by infinite volume limits of finite volume Gibbs states, a careful choice of the sequence of the chemical potentials should be done. For all such states, the condensate is essentially allocated on the base point supporting the perturbation. This leads to ρ(ω) = ρc as the perturbation is negligible with respect to the whole network. We prove that all such temperature states are Kubo–Martin–Schwinger states for the natural dynamics associated to the (formal) pure hopping Hamiltonian. The construction of such a dynamics, which is a delicate issue, is also provided in detail.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Aliano, A., G. Kaniadakis y E. Miraldi. "Bose–Einstein condensation in the framework of κ-statistics". Physica B: Condensed Matter 325 (enero de 2003): 35–40. http://dx.doi.org/10.1016/s0921-4526(02)01425-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Sakamoto, Shoichi, Shigeto Ichino y Hideki Matsumoto. "Numerical analysis of transition temperature in Bose–Einstein condensation". Physica B: Condensed Matter 329-333 (mayo de 2003): 47–48. http://dx.doi.org/10.1016/s0921-4526(02)01909-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Silvera, Isaac F., C. Gerz, Lori S. Goldner, W. D. Phillips, M. W. Reynolds, S. L. Rolston, R. J. C. Spreeuw y C. I. Westbrook. "The microwave trap and prospects for Bose-Einstein condensation". Physica B: Condensed Matter 194-196 (febrero de 1994): 907–8. http://dx.doi.org/10.1016/0921-4526(94)90783-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

HAN, FUXIANG, ZHIRU REN y YUN'E GAO. "A MODEL OF BOSE–EINSTEIN CONDENSATION WITH ITINERANT AND LOCALIZED STATES". Modern Physics Letters B 19, n.º 21 (20 de septiembre de 2005): 1011–34. http://dx.doi.org/10.1142/s0217984905008992.

Texto completo
Resumen
We propose a model that includes itinerant and localized states to study Bose–Einstein condensation of ultracold atoms in optical lattices (Bose–Anderson model). It is found that the original itinerant and localized states intermix to give rise to a new energy band structure with two quasiparticle energy bands. We have computed the critical temperature Tc of the Bose–Einstein condensation of the quasiparticles in the Bose–Anderson model using our newly developed numerical algorithm and found that Tc increases as na3 (the number density times the lattice constant cubed) increases according to the power law Tc≈18.93(na3)0.59 nK for na3<0.125 and according to the linear relation Tc≈8.75+10.53na3 nK for 1.25<na3<12.5 for the given model parameters. With the self-consistent equations for the condensation fractions obtained within the Bogoliubov mean-field approximation, the effects of the on-site repulsion U on the quasiparticle condensation are investigated. We have found that, for values up to several times the zeroth-order critical temperature, U enhances the zeroth-order condensation fraction at intermediate temperatures and effectively raises the critical temperature, while it slightly suppresses the zeroth-order condensation fraction at very low temperatures.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Wenas, Y. C. y M. D. Hoogerland. "A versatile all-optical Bose–Einstein condensates apparatus". Review of Scientific Instruments 79, n.º 5 (mayo de 2008): 053101. http://dx.doi.org/10.1063/1.2917405.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Hick, J., F. Sauli, A. Kreisel y P. Kopietz. "Bose-Einstein condensation at finite momentum and magnon condensation in thin film ferromagnets". European Physical Journal B 78, n.º 4 (diciembre de 2010): 429–37. http://dx.doi.org/10.1140/epjb/e2010-10596-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Tosyali, Eren. "Shock Waves in Bose–Einstein Condensation Under Gaussian White Noise". Fluctuation and Noise Letters 17, n.º 03 (septiembre de 2018): 1850027. http://dx.doi.org/10.1142/s021947751850027x.

Texto completo
Resumen
We investigate the Gross–Pitaevskii equation with the tilted bichromatical optical lattice potential for finding the dynamics of a Bose–Einstein condensate system under the Gaussian white noise. We construct the Poincare sections of system based on the relations between the system parameters and solution behaviors to understand how its shock wave like dynamic could be affected by the noise. Also the hierarchical cluster analysis method investigation of the system is presented.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Alexandrov, A. S. "Bose–Einstein Condensation in the Pseudogap Phase of Cuprate Superconductors". Journal of Superconductivity and Novel Magnetism 20, n.º 7-8 (1 de septiembre de 2007): 481–87. http://dx.doi.org/10.1007/s10948-007-0258-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Yu, XueCai, Xue Huang y YuTang Ye. "Critical temperature and condensed fraction of Bose-Einstein condensation in optical lattices". Science in China Series G: Physics, Mechanics and Astronomy 50, n.º 2 (abril de 2007): 177–84. http://dx.doi.org/10.1007/s11433-007-0017-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Cao, Ming-Tao, Liang Han, Yue-Rong Qi, Shou-Gang Zhang, Hong Gao y Fu-Li Li. "Calculation of the Spin-Dependent Optical Lattice in Rubidium Bose—Einstein Condensation". Chinese Physics Letters 29, n.º 3 (marzo de 2012): 034201. http://dx.doi.org/10.1088/0256-307x/29/3/034201.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Piazza, Francesco, Philipp Strack y Wilhelm Zwerger. "Bose–Einstein condensation versus Dicke–Hepp–Lieb transition in an optical cavity". Annals of Physics 339 (diciembre de 2013): 135–59. http://dx.doi.org/10.1016/j.aop.2013.08.015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía