Artículos de revistas sobre el tema "Amplified spontaneous emission (ASE)"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Amplified spontaneous emission (ASE)".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Felinskyi, Georgii, and Mykhailo Dyriv. "Noise Suppression Phenomenon in Fiber Raman Amplifier." Measurement Science Review 15, no. 3 (2015): 107–10. http://dx.doi.org/10.1515/msr-2015-0016.
Texto completoZhou, Li. "Effect of Spontaneous Radiation of Vertical-Cavity Semiconductor Optical Amplifier Bistability." Advanced Materials Research 945-949 (June 2014): 2209–12. http://dx.doi.org/10.4028/www.scientific.net/amr.945-949.2209.
Texto completoHuang, H., and G. J. Tallents. "The output of a laser amplifier with simultaneous amplified spontaneous emission and an injected seed." Laser and Particle Beams 27, no. 3 (2009): 393–98. http://dx.doi.org/10.1017/s0263034609000500.
Texto completoMamada, Masashi, Hajime Nakanotani, and Chihaya Adachi. "Amplified spontaneous emission from oligo(p-phenylenevinylene) derivatives." Materials Advances 2, no. 12 (2021): 3906–14. http://dx.doi.org/10.1039/d0ma00756k.
Texto completoLi, Zhou. "The Spontaneous Radiation of Verticalcavity Semiconductor Optical Amplifiers in Bistable Effect." Advanced Materials Research 712-715 (June 2013): 1807–10. http://dx.doi.org/10.4028/www.scientific.net/amr.712-715.1807.
Texto completoSadegh Kazempourfard, Mohammad, Hamid Nadgaran, and Seyed Mahdi Mousavi. "The effects of pump pulse fluence on the output energy and amplified spontaneous emission of a femtosecond regenerative amplifier." Laser Physics 32, no. 1 (2021): 015002. http://dx.doi.org/10.1088/1555-6611/ac3ee8.
Texto completoTang, Baolei, Huapeng Liu, Feng Li, Yue Wang, and Hongyu Zhang. "Single-benzene solid emitters with lasing properties based on aggregation-induced emissions." Chemical Communications 52, no. 39 (2016): 6577–80. http://dx.doi.org/10.1039/c6cc02616h.
Texto completoAnni, M., and S. Lattante. "Excitation Density Dependence of Optical Oxygen Sensing in Poly(9,9-dioctylfluorene) Waveguides Showing Amplified Spontaneous Emission." ISRN Materials Science 2014 (March 4, 2014): 1–5. http://dx.doi.org/10.1155/2014/856716.
Texto completoDu, P. Y., Z. W. Lu, and D. Y. Lin. "The truncated amplified spontaneous emission pulses in KrF excimer laser by using timeshare quenching." Laser and Particle Beams 32, no. 2 (2014): 271–75. http://dx.doi.org/10.1017/s0263034614000160.
Texto completoLeyden, Matthew R., Toshinori Matsushima, Chuanjiang Qin, Shibin Ruan, Hao Ye, and Chihaya Adachi. "Amplified spontaneous emission in phenylethylammonium methylammonium lead iodide quasi-2D perovskites." Physical Chemistry Chemical Physics 20, no. 22 (2018): 15030–36. http://dx.doi.org/10.1039/c8cp02133c.
Texto completoWang, Xiong, Pu Zhou, Xiaolin Wang, Hu Xiao, and Lei Si. "51.5 W monolithic single frequency 1.97 m Tm-doped fiber amplifier." High Power Laser Science and Engineering 1, no. 3-4 (2013): 123–25. http://dx.doi.org/10.1017/hpl.2013.20.
Texto completoLei, Jiayang, Shuang Qiu, Kuo Yang, and Xiaoyu Zhao. "Research Status of Amplified Spontaneous Emission Sources based on Doped Materials." Journal of Physics: Conference Series 2248, no. 1 (2022): 012006. http://dx.doi.org/10.1088/1742-6596/2248/1/012006.
Texto completoMuñoz-Mármol, Rafael, Víctor Bonal, Giuseppe M. Paternò, et al. "Dual Amplified Spontaneous Emission and Lasing from Nanographene Films." Nanomaterials 10, no. 8 (2020): 1525. http://dx.doi.org/10.3390/nano10081525.
Texto completoYu, Junhong, Sushant Shendre, Weon-kyu Koh, et al. "Electrically control amplified spontaneous emission in colloidal quantum dots." Science Advances 5, no. 10 (2019): eaav3140. http://dx.doi.org/10.1126/sciadv.aav3140.
Texto completoTriolo, Claudia, Maria Luisa De Giorgi, Antonella Lorusso, et al. "Light Emission Properties of Thermally Evaporated CH3NH3PbBr3 Perovskite from Nano- to Macro-Scale: Role of Free and Localized Excitons." Nanomaterials 12, no. 2 (2022): 211. http://dx.doi.org/10.3390/nano12020211.
Texto completoBAO, PHUNG QUOC, and LE HONG SON. "GAIN AND NOISE IN ERBIUM-DOPED FIBER AMPLIFIER (EDFA) - A RATE EQUATION APPROACH (REA)." Communications in Physics 14, no. 1 (2007): 1. http://dx.doi.org/10.15625/0868-3166/12.
Texto completoZhou, Xuehong, Linlin Liu, Xiaoyan Wu, et al. "An Au NP doped buffer layer in a slab waveguide for enhancement of organic amplified spontaneous emission." Journal of Materials Chemistry C 5, no. 6 (2017): 1356–62. http://dx.doi.org/10.1039/c6tc04893e.
Texto completoAhn, Namyoung, Clément Livache, Valerio Pinchetti, et al. "Electrically driven amplified spontaneous emission from colloidal quantum dots." Nature 617, no. 7959 (2023): 79–85. http://dx.doi.org/10.1038/s41586-023-05855-6.
Texto completoBAO, PHUNG QUOC, and LE HONG SON. "GAIN AND NOISE IN ERBIUM-DOPED FIBER AMPLIFIER (EDFA) - A RATE EQUATION APPROACH (REA)." Communications in Physics 14, no. 1 (2007): 1. http://dx.doi.org/10.15625/0868-3166/14/1/12.
Texto completoBAO, PHUNG QUOC, and LE HONG SON. "GAIN AND NOISE IN ERBIUM-DOPED FIBER AMPLIFIER (EDFA) - A RATE EQUATION APPROACH (REA)." Communications in Physics 14, no. 1 (2024): 1–6. http://dx.doi.org/10.15625/0868-3166/213.
Texto completoZeb, Muhammad, Muhammad Tahir, Fida Muhammad, et al. "Amplified Spontaneous Emission and Optical Gain in Organic Single Crystal Quinquethiophene." Crystals 9, no. 12 (2019): 609. http://dx.doi.org/10.3390/cryst9120609.
Texto completoMohamadi, Arastoo, and Hamid Poorantiyosh. "Amplified spontaneous emission (ASE) effect on gain and stored energy." Journal of Optics 49, no. 4 (2020): 469–75. http://dx.doi.org/10.1007/s12596-020-00638-y.
Texto completoQaid, Saif M. H., Fahhad H. Alharbi, Idriss Bedja, Mohammad Khaja Nazeeruddin, and Abdullah S. Aldwayyan. "Reducing Amplified Spontaneous Emission Threshold in CsPbBr3 Quantum Dot Films by Controlling TiO2 Compact Layer." Nanomaterials 10, no. 8 (2020): 1605. http://dx.doi.org/10.3390/nano10081605.
Texto completoZhang, Wei Yi, Ji Ping Ning, and Bo Chen. "Suppression of ASE by Using Pulsed-Pumped Technique in Fiber Amplifier." Advanced Materials Research 403-408 (November 2011): 2508–12. http://dx.doi.org/10.4028/www.scientific.net/amr.403-408.2508.
Texto completoHoshino, Shoma, Mitsunori Araki, Takashi Ishiwata, and Koichi Tsukiyama. "Infrared amplified spontaneous emission from the 0+g (3P0) and 0+g (1D2) ion-pair states of molecular bromine." Physical Chemistry Chemical Physics 18, no. 28 (2016): 19464–71. http://dx.doi.org/10.1039/c6cp02117d.
Texto completoQin, Liang, Longfeng Lv, Chunhai Li, et al. "Temperature dependent amplified spontaneous emission of vacuum annealed perovskite films." RSC Advances 7, no. 26 (2017): 15911–16. http://dx.doi.org/10.1039/c7ra01155e.
Texto completoYamazawa, Chieko, Yoshinori Hirano, Hiroaki Imoto, Naoto Tsutsumi, and Kensuke Naka. "Superior light-resistant dithieno[3,2-b:2′,3′-d]arsole-based polymers exhibiting ultrastable amplified spontaneous emission." Chemical Communications 57, no. 13 (2021): 1595–98. http://dx.doi.org/10.1039/d0cc07521c.
Texto completoMartín, Raúl, Pilar Prieto, José R. Carrillo, et al. "Design, synthesis and amplified spontaneous emission of 1,2,5-benzothiadiazole derivatives." Journal of Materials Chemistry C 7, no. 32 (2019): 9996–10007. http://dx.doi.org/10.1039/c9tc03148k.
Texto completoLin, Ja-Hon, Gung-Rong Chen, Sheng-Jie Li, Yu-Feng Song, and Wei-Rein Liu. "Gain-Guiding Anisotropic Polarized Amplified Spontaneous Emissions from C-Plane ZnO/ZnMgO Multiple Quantum Wells." Materials 15, no. 19 (2022): 6668. http://dx.doi.org/10.3390/ma15196668.
Texto completoHARUN, S. W., and H. AHMAD. "L-BAND EDFA WITH INJECTION OF C-BAND ASE." Journal of Nonlinear Optical Physics & Materials 13, no. 02 (2004): 315–19. http://dx.doi.org/10.1142/s0218863504001888.
Texto completoYip, R. W., and Y.-X. Wen. "High-resolution amplified spontaneous emission (ASE) gain spectroscopy to study excited state complexation." Canadian Journal of Chemistry 69, no. 12 (1991): 2142–49. http://dx.doi.org/10.1139/v91-309.
Texto completoJin, Guangrong, Tanghao Liu, Yuanzhao Li, et al. "Low-dimensional phase suppression and defect passivation of quasi-2D perovskites for efficient electroluminescence and low-threshold amplified spontaneous emission." Nanoscale 14, no. 3 (2022): 919–29. http://dx.doi.org/10.1039/d1nr06549a.
Texto completoKAUR, GURMEET, M. L. SINGH, and M. S. PATTERH. "THEORETICAL INVESTIGATIONS TO MINIMIZE BIT ERROR RATE BY OPTIMIZING SYSTEM PARAMETERS IN OPTICAL DWDM TRANSMISSION SYSTEMS AT DIFFERENT DATA RATES." Journal of Nonlinear Optical Physics & Materials 18, no. 03 (2009): 501–19. http://dx.doi.org/10.1142/s0218863509004750.
Texto completoGuo, Lei, Xiao Liu, Tongxin Zhang, Hai-Bin Luo, Hai Hua Fan, and Man Shing Wong. "Star-shaped triazine-cored ladder-type ter(p-phenylene)s for high-performance multiphoton absorption and amplified spontaneous blue emission." Journal of Materials Chemistry C 8, no. 5 (2020): 1768–72. http://dx.doi.org/10.1039/c9tc06025a.
Texto completoBai, Xiaolei, Meng Wang, Yuxing Yang, Zhiguo Lv, and Weiguo Jia. "Yb-ASE Suppression in Single-Frequency Hybrid Double Cladding Erbium–Ytterbium Co-Doped Fiber Amplifier with SMS Structure." Applied Sciences 11, no. 19 (2021): 9334. http://dx.doi.org/10.3390/app11199334.
Texto completoGuo, Xuanchen, Quan Chai, Xueying Zhao, et al. "Correlation between emission and relative intensity noise spectral profiles of an Er-doped fiber superfluorescent source." AIP Advances 12, no. 5 (2022): 055226. http://dx.doi.org/10.1063/5.0081940.
Texto completoGuan, Biao, Fengping Yan, Wenguo Han, et al. "High-Power, Narrow-Linewidth, Continuous-Wave, Thulium-Doped Fiber Laser Based on MOPA." Photonics 10, no. 4 (2023): 347. http://dx.doi.org/10.3390/photonics10040347.
Texto completoJin, Zhao Hui, Ying Guo, Hua Jing Gao, and Kazuo Kasatani. "Amplified Spontaneous Emission from the Oriented NK-2014-Doped Nematic Liquid Crystal Layer." Advanced Materials Research 554-556 (July 2012): 23–26. http://dx.doi.org/10.4028/www.scientific.net/amr.554-556.23.
Texto completoJanassek, Patrick, Andreas Herdt, Sébastien Blumenstein, and Wolfgang Elsäßer. "Ghost Spectroscopy with Classical Correlated Amplified Spontaneous Emission Photons Emitted by An Erbium-Doped Fiber Amplifier." Applied Sciences 8, no. 10 (2018): 1896. http://dx.doi.org/10.3390/app8101896.
Texto completoHu, Jin Hang, Ya Lin Guan, and Jin Cai Lin. "Effects of ASE on DPSK Modulation Formats with Different Duty-Ratio in Optical Transmission System." Applied Mechanics and Materials 385-386 (August 2013): 1595–98. http://dx.doi.org/10.4028/www.scientific.net/amm.385-386.1595.
Texto completoDevika, K. R., Merin Joby, Frincy Francis, C. P. Jinsi, Riju C. Issac, and Santhi Ani Joseph. "Amplified spontaneous emission from ZnO nanostructures as scatterers in rhodamine 6G." IOP Conference Series: Materials Science and Engineering 1233, no. 1 (2022): 012006. http://dx.doi.org/10.1088/1757-899x/1233/1/012006.
Texto completoGao, Qi, Gang Li, Xiangping Zhu та ін. "Backscattered Background Noise of the Lidar Ceilometer Influence Imposed by ASE in Single-Frequency Nanosecond Pulsed Laser at 1.5 μm". Photonics 10, № 10 (2023): 1120. http://dx.doi.org/10.3390/photonics10101120.
Texto completoYAMAMOTO, T., K. FUJII, A. TAGAYA, E. NIHEI, Y. KOIKE, and K. SASAKI. "HIGH-POWER OPTICAL SOURCE USING DYE-DOPED POLYMER OPTICAL FIBER." Journal of Nonlinear Optical Physics & Materials 05, no. 01 (1996): 73–88. http://dx.doi.org/10.1142/s0218863596000088.
Texto completoNie, Yu Mei. "High-Gain Laser Diode Array Side Pumped Nd: Glass Rod Amplifier." Advanced Materials Research 529 (June 2012): 115–19. http://dx.doi.org/10.4028/www.scientific.net/amr.529.115.
Texto completoZuo, Zongyan, Changjin Ou, Yongjie Ding, et al. "Spiro-substitution effect of terfluorenes on amplified spontaneous emission and lasing behaviors." Journal of Materials Chemistry C 6, no. 16 (2018): 4501–7. http://dx.doi.org/10.1039/c8tc00714d.
Texto completoLi, Xin, Zhe Zhang, Xinyang Xu, Junjie Liu, and Xiaolei Bai. "1.73 kW CW Amplification ASE Source Based on Yb3+ Ions-Doped All-Fiber System." Photonics 10, no. 1 (2023): 81. http://dx.doi.org/10.3390/photonics10010081.
Texto completoSultana, Nasrin, and Abubakar Siddik. "Characterization of Visible Range Gain in Praseodymium Doped Fiber Amplifier." International Journal of Research and Review 11, no. 1 (2024): 140–46. http://dx.doi.org/10.52403/ijrr.20240115.
Texto completoMilanese, Stefania, Maria Luisa De Giorgi, Luis Cerdán, et al. "Amplified Spontaneous Emission Threshold Dependence on Determination Method in Dye-Doped Polymer and Lead Halide Perovskite Waveguides." Molecules 27, no. 13 (2022): 4261. http://dx.doi.org/10.3390/molecules27134261.
Texto completoYip, R. W., and Y. X. Wen. "Origin of the dual-band laser emission from 7-diethylamino-4-methylcoumarin (C1) in solution: effect of hydrogen-bonding interaction by hydroxylic molecules." Canadian Journal of Chemistry 69, no. 9 (1991): 1413–17. http://dx.doi.org/10.1139/v91-209.
Texto completoDuc-Tan, Tran, and Trung Bui Ninh. "Improvements on the performance of subcarrier multiplexing/wavelength division multiplexing based radio over fiber system." International Journal of Electrical and Computer Engineering (IJECE) 11, no. 2 (2021): 1439–49. https://doi.org/10.11591/ijece.v11i2.pp1439-1449.
Texto completo