Índice
Literatura académica sobre el tema "Angewandte Spieltheorie"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Angewandte Spieltheorie".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Tesis sobre el tema "Angewandte Spieltheorie"
Zulehner, Christine. "Essays in empirical industrial economics". Doctoral thesis, [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=964726475.
Texto completoBrückner, Michael. "Prediction games : machine learning in the presence of an adversary". Phd thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2012/6037/.
Texto completoEine der Aufgabenstellungen des Maschinellen Lernens ist die Konstruktion von Vorhersagemodellen basierend auf gegebenen Trainingsdaten. Ein solches Modell beschreibt den Zusammenhang zwischen einem Eingabedatum, wie beispielsweise einer E-Mail, und einer Zielgröße; zum Beispiel, ob die E-Mail durch den Empfänger als erwünscht oder unerwünscht empfunden wird. Dabei ist entscheidend, dass ein gelerntes Vorhersagemodell auch die Zielgrößen zuvor unbeobachteter Testdaten korrekt vorhersagt. Die Mehrzahl existierender Lernverfahren wurde unter der Annahme entwickelt, dass Trainings- und Testdaten derselben Wahrscheinlichkeitsverteilung unterliegen. Insbesondere in Fällen in welchen zukünftige Daten von der Wahl des Vorhersagemodells abhängen, ist diese Annahme jedoch verletzt. Ein Beispiel hierfür ist das automatische Filtern von Spam-E-Mails durch E-Mail-Anbieter. Diese konstruieren Spam-Filter basierend auf zuvor empfangenen E-Mails. Die Spam-Sender verändern daraufhin den Inhalt und die Gestaltung der zukünftigen Spam-E-Mails mit dem Ziel, dass diese durch die Filter möglichst nicht erkannt werden. Bisherige Arbeiten zu diesem Thema beschränken sich auf das Lernen robuster Vorhersagemodelle welche unempfindlich gegenüber geringen Veränderungen des datengenerierenden Prozesses sind. Die Modelle werden dabei unter der Worst-Case-Annahme konstruiert, dass diese Veränderungen einen maximal negativen Effekt auf die Vorhersagequalität des Modells haben. Diese Modellierung beschreibt die tatsächliche Wechselwirkung zwischen der Modellbildung und der Generierung zukünftiger Daten nur ungenügend. Aus diesem Grund führen wir in dieser Arbeit das Konzept der Prädiktionsspiele ein. Die Modellbildung wird dabei als mathematisches Spiel zwischen einer lernenden und einer datengenerierenden Instanz beschrieben. Die spieltheoretische Modellierung ermöglicht es uns, die Interaktion der beiden Parteien exakt zu beschreiben. Dies umfasst die jeweils verfolgten Ziele, ihre Handlungsmöglichkeiten, ihr Wissen übereinander und die zeitliche Reihenfolge, in der sie agieren. Insbesondere die Reihenfolge der Spielzüge hat einen entscheidenden Einfluss auf die spieltheoretisch optimale Lösung. Wir betrachten zunächst den Fall gleichzeitig agierender Spieler, in welchem sowohl der Lerner als auch der Datengenerierer keine Kenntnis über die Aktion des jeweils anderen Spielers haben. Wir leiten hinreichende Bedingungen her, unter welchen dieses Spiel eine Lösung in Form eines eindeutigen Nash-Gleichgewichts besitzt. Im Anschluss diskutieren wir zwei verschiedene Verfahren zur effizienten Berechnung dieses Gleichgewichts. Als zweites betrachten wir den Fall eines Stackelberg-Duopols. In diesem Prädiktionsspiel wählt der Lerner zunächst das Vorhersagemodell, woraufhin der Datengenerierer in voller Kenntnis des Modells reagiert. Wir leiten ein relaxiertes Optimierungsproblem zur Bestimmung des Stackelberg-Gleichgewichts her und stellen ein mögliches Lösungsverfahren vor. Darüber hinaus diskutieren wir, inwieweit das Stackelberg-Modell bestehende robuste Lernverfahren verallgemeinert. Abschließend untersuchen wir einen Lerner, der auf die Aktion des Datengenerierers, d.h. der Wahl der Testdaten, reagiert. In diesem Fall sind die Testdaten dem Lerner zum Zeitpunkt der Modellbildung bekannt und können in den Lernprozess einfließen. Allerdings unterliegen die Trainings- und Testdaten nicht notwendigerweise der gleichen Verteilung. Wir leiten daher ein neues integriertes sowie ein zweistufiges Lernverfahren her, welche diese Verteilungsverschiebung bei der Modellbildung berücksichtigen. In mehreren Fallstudien zur Klassifikation von Spam-E-Mails untersuchen wir alle hergeleiteten, sowie existierende Verfahren empirisch. Wir zeigen, dass die hergeleiteten spieltheoretisch-motivierten Lernverfahren in Summe signifikant bessere Spam-Filter erzeugen als alle betrachteten Referenzverfahren.
Capítulos de libros sobre el tema "Angewandte Spieltheorie"
Herrmann, Dietmar. "Spieltheorie". En Angewandte Matrizenrechnung, 114–20. Wiesbaden: Vieweg+Teubner Verlag, 1985. http://dx.doi.org/10.1007/978-3-322-96322-2_9.
Texto completoScheufen, Marc. "Spieltheorie". En Angewandte Mikroökonomie und Wirtschaftspolitik, 127–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53950-7_4.
Texto completoScheufen, Marc. "Spieltheorie". En Angewandte Mikroökonomie und Wirtschaftspolitik, 139–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-59370-7_4.
Texto completoPfeiffer, Christoph. "Beispiele angewandter Spieltheorie". En Spieltheorie – Erfolgreich verhandeln im Einkauf, 35–77. Wiesbaden: Springer Fachmedien Wiesbaden, 2021. http://dx.doi.org/10.1007/978-3-658-32686-9_3.
Texto completo"Kapitel VII Kooperation kollektiver Akteure: Zum Informationsgehalt angewandter Spieltheorie". En Praktische Rationalität, 239–58. De Gruyter, 1994. http://dx.doi.org/10.1515/9783110871555.239.
Texto completo