Literatura académica sobre el tema "Antibody Secreting Cell"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Antibody Secreting Cell".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Antibody Secreting Cell"
Lin, Ling, Andrea J. Gerth y Stanford L. Peng. "Active Inhibition of Plasma Cell Development in Resting B Cells by Microphthalmia-associated Transcription Factor". Journal of Experimental Medicine 200, n.º 1 (28 de junio de 2004): 115–22. http://dx.doi.org/10.1084/jem.20040612.
Texto completoYu, Tian, Jonathan Hull, Andrea Ruiz, Ashwini Bhat y Amar Basu. "Expediting antibody discovery using Bioelectronica’s HypercellTM platform". Journal of Immunology 204, n.º 1_Supplement (1 de mayo de 2020): 86.36. http://dx.doi.org/10.4049/jimmunol.204.supp.86.36.
Texto completoAndreani, Virginia, Senthilkumar Ramamoorthy, Abhinav Pandey, Ekaterina Lupar, Stephen L. Nutt, Tim Lämmermann y Rudolf Grosschedl. "Cochaperone Mzb1 is a key effector of Blimp1 in plasma cell differentiation and β1-integrin function". Proceedings of the National Academy of Sciences 115, n.º 41 (26 de septiembre de 2018): E9630—E9639. http://dx.doi.org/10.1073/pnas.1809739115.
Texto completoGolding, B., S. R. Pillemer, P. Roussou, E. A. Peters, G. C. Tsokos, J. E. Ballow y T. Hoffman. "Inverse relationship between proliferation and differentiation in a human TNP-specific B cell line. Cell cycle dependence of antibody secretion." Journal of Immunology 141, n.º 8 (15 de octubre de 1988): 2564–68. http://dx.doi.org/10.4049/jimmunol.141.8.2564.
Texto completoKeane, John T. y Avery D. Posey. "Abstract 4089: PanCAR-specific antibody-cytokine fusion proteins". Cancer Research 83, n.º 7_Supplement (4 de abril de 2023): 4089. http://dx.doi.org/10.1158/1538-7445.am2023-4089.
Texto completoHoogenboom, H. R., J. C. Raus y G. Volckaert. "Cloning and expression of a chimeric antibody directed against the human transferrin receptor." Journal of Immunology 144, n.º 8 (15 de abril de 1990): 3211–17. http://dx.doi.org/10.4049/jimmunol.144.8.3211.
Texto completoMcHeyzer-Williams, M. G. y G. J. Nossal. "Clonal analysis of autoantibody-producing cell precursors in the preimmune B cell repertoire." Journal of Immunology 141, n.º 12 (15 de diciembre de 1988): 4118–23. http://dx.doi.org/10.4049/jimmunol.141.12.4118.
Texto completoMarquez, C., M. L. Toribio, M. A. Marcos, A. de la Hera, A. Barcena, L. Pezzi y C. Martinez. "Expression of alkaline phosphatase in murine B lymphocytes. Correlation with B cell differentiation into Ig secretion." Journal of Immunology 142, n.º 9 (1 de mayo de 1989): 3187–92. http://dx.doi.org/10.4049/jimmunol.142.9.3187.
Texto completoSankari, Hanna, Minna Hietikko, Kalle Kurppa, Katri Kaukinen, Eriika Mansikka, Heini Huhtala, Kaija Laurila et al. "Intestinal TG3- and TG2-Specific Plasma Cell Responses in Dermatitis Herpetiformis Patients Undergoing a Gluten Challenge". Nutrients 12, n.º 2 (13 de febrero de 2020): 467. http://dx.doi.org/10.3390/nu12020467.
Texto completoKirchenbaum, Greg A., Giuseppe A. Sautto, Rodrigo B. Abreu, Paul V. Lehmann y Ted M. Ross. "Assessment of Antibody Functional Affinity using FluoroSpot". Journal of Immunology 204, n.º 1_Supplement (1 de mayo de 2020): 86.11. http://dx.doi.org/10.4049/jimmunol.204.supp.86.11.
Texto completoTesis sobre el tema "Antibody Secreting Cell"
Rousseau, Fanny. "Systèmes microfluidiques pour la génération d'hybridomes et d'anticorps monoclonaux". Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPASQ013.
Texto completoAntibodies are molecules produced by the immune system and are characterized by their high binding affinity and specificity for a given antigen, thus making them powerful biological tools for therapeutic and diagnostic applications. The in vitro production of antibodies was made possible in 1975 by the development of the hybridoma technology. This technique is simple, easy to implement and inexpensive, but its use has been limited by low yields, which has led to the emergence of more modern methods that present their own set of challenges.The central aim of this thesis is to unlock the existing hybridoma technique, repositioning it as an efficient and appealing technology. In particular, the objective is to implement three microfluidic devices at each step of the monoclonal antibody production process in order to optimise yields and facilitate the procedure.The first part of this project is focused on the identification and isolation of antibody-secreting cells from the spleen of immunized mice. Following fusion with myeloma cells, this cell subset may facilitate the generation of hybridomas with the ability to secret antibodies that are specific to the target antigen. Our aim is thus to perform targeted fusions between myeloma and antibody-secreting cells, thereby preventing the generation of non-functional hybridomas. To achieve this objective, the cells of interest are identified by flow cytometry using a dedicated surface markers panel. These cells subset are then isolated using an integrated microfluidic magnetic cell-sorting chip.The second part of the thesis concerns the development of a microfluidic chip dedicated to chemical cell fusion, using polyethylene glycol (PEG). The objective of this device is to optimize the conditions for efficient fusion between spleen and myeloma cells, and to improve the yields of the conventional method in tube. An alternative version of this chip, adapted for cell fusion by electroporation, is also demonstrated.Finally, the last part of this project illustrates the potential of droplet-based microfluidics for the single-cell selection and high-throughput screening of hybridomas that secret antigen-specific antibodies. This demonstration, carried out in collaboration with the Strasbourg-based company MicroOmix, aims to simplify and accelerate the post-fusion steps of the hybridoma technology
Atkinson, Jeffrey Ross. "Peripheral Germinal Centers Regulate Virus-Specific B Cell Accumulation in the CNS". Kent State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=kent1524683244217474.
Texto completoVanCott, John Louis. "Protective immunity against transmissible gastroenteritis virus (TGEW) : enumeration of antibody-secreting cells and identification of mononuclear cell surface markers in systemic and mucosal lymphoid tissues of young pigs exposed to TGEV... /". The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487842372895095.
Texto completoHerbert, Joan. "The regulation of specific antibody secretion by human B cells through contact and non-contact dependent mechanisms". Thesis, University College London (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244614.
Texto completoLaw, Yuet Ching. "Specific compartmentalization of Immunoglobulin A antibody secreting cells in mouse salivary glands via the differential expression of chemokines and chemokine receptors /". Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2678.pdf.
Texto completoWennhold, Kerstin [Verfasser] y Thorsten [Akademischer Betreuer] Hoppe. "Tumorantigen-Specific CD40B Cells: Combining Enhanced Antigen-Presentation and Antibody-Secretion for Tumor Targeting / Kerstin Wennhold. Gutachter: Thorsten Hoppe". Köln : Universitäts- und Stadtbibliothek Köln, 2015. http://d-nb.info/1071369849/34.
Texto completoNieminen, Tea. "Circulating antibody-secreting cells and salivary antibodies induced by the capsular polysaccharide of Streptococcus pneumoniae : after parenteral immunisation and in acute otitis media". Helsinki : University of Helsinki, 1999. http://ethesis.helsinki.fi/julkaisut/laa/haart/vk/nieminen/.
Texto completoKiran, Kumar Mudnakudu Nagaraju [Verfasser], Thomas [Akademischer Betreuer] Friedrich, Margitta [Akademischer Betreuer] Worm y Roderich [Akademischer Betreuer] Süssmuth. "Targeting antibody secreting B cells as a novel therapeutic approach to treat allergic diseases / Mudnakudu Nagaraju Kiran Kumar. Gutachter: Margitta Worm ; Roderich Süssmuth. Betreuer: Thomas Friedrich". Berlin : Technische Universität Berlin, 2014. http://d-nb.info/1066162840/34.
Texto completoStrannermyr, Malin. "Increased expression of proteins in CHO cells by identification of signal peptides for improved secretion of translated proteins". Thesis, Linköpings universitet, Teknisk biologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-150364.
Texto completoMaho, Maud. "Evaluation des effets des traitements par Rituximab versus corticothérapie seule sur la réponse auto-réactive des patients atteints de pemphigus. First-line Rituximab combined with short-term Prednisone versus Prednisone alone for the treatment of Pemphigus (RITUX 3) : a prospective, multicentre, parallel-group, open-label randomised trial Risk factors for short-term relapse in patients with pemphigus treated by Rituximab as first-line therapy Rituximab and corticosteroid effect on Desmoglein specific B cells and T follicular helper cells in patients with Pemphigus Modifications or the transcriptomic profile of autoreactive B cells from pemphigus patients after treatment with Rituximab or standard corticosteroid regimen Long-term increase of Kcnn4 potassium channel surface expression on B cells in pemphigus patients after Rituximab treatment Rituximab is an effective treatment in patients with Pemphigus Vulgaris and demonstrates a steroid-sparing effect Modifications of the BAFF/BAFF-Receptor axis in patients with pemphigus treated with rituximab versus standard corticosteroids regimen. CD11C+ B cells are mainly memory cells prone to differentiate into antibody-secreting cells". Thesis, Normandie, 2019. http://www.theses.fr/2019NORMR132.
Texto completoPemphigus is an autoimmune disease of the skin and mucous membranes caused by autoantibodies (Ab) specific to desmoglein (Dsg) 1 or 3. These pathogenic Ab inhibit cell adhesion of keratinocytes. The development of pemphigus is associated with the conjunction of many uncommon events involving the emergence and then the cooperation of auto-reactive B cells and T cells link to genetic and environmental factors. Until now, the first line of treatment consisted of high doses of corticosteroids. Rituximab (RTX), an anti-CD20 chimeric monoclonal antibody, is an innovative therapy that results in B cells depletion. The RITUX 3 clinical trial was designed to evaluate the efficacy and safety of RTX combined with a short-course glucocorticoid therapy as a first-line treatment of pemphigus versus the standard treatment with standard corticosteroids (CS). As a first step, our clinico-biological analysis of patients after 24 months has shown that the use of RTX combined with short-term prednisone as a first-line treatment in patients with moderate to severe pemphigus is both more effective and better tolerated than the reference treatment with prednisone alone. Respectively, 89% of patients versus 34% in each group and both pemphigus foliaceus and pemphigus vulgaris patients responded. This efficacy was confirmed in the longer term after reconstitution of the B lymphocyte repertoire with a risk of relapse of only 2% at 36 months. The presence of a severe form of pemphigus at diagnosis (PDAI ≥ 45) and an anti-Dsg Ab level at 3 months above threshold values (anti-DSG1 ≥ 20 or anti-DSG3 ≥ 120) are associated with 50% risk of early relapse. These two predictive factors make it possible to identify a subgroup of patients at high risk of relapse requiring a maintenance infusion of RTX at the 6th month. In a second step, we studied the impact of RTX and CS treatments in patients with pemphigus in order to better understand the autoimmune response. The phenotypic characterization of auto-reactive B cells and the analysis of the frequency of B cells able of secreting anti-Dsg immunoglobulin (Ig) G by an ELISPOT approach demonstrated that the efficacy of RTX treatment in pemphigus seems related to the elimination of IgG-switched Dsg memory B-cells. Dsg specific B cells remain detectable after RTX when B cells return, but these B cells have a naïve and non-switched (IgM) phenotype and no longer secrete IgG. On the other hand, the persistence of self-reactive Dsg B cells capable of secreting IgG anti-Dsg after treatment with CS is certainly at the origin of the frequency of relapses. The unicellular targeted gene expression analysis demonstrated that initially, Dsg-specific B cells have a pro-inflammatory profile with the overexpression of three genes encoding Interleukin (IL) -1β, IL-12p35 and IL-23p19 and for the IRF5 gene (Interferon regulatory factor 5) compared to non-self-reactive B cells. RTX and CS have different effects on the expression of these genes, but both reduce the gene expression of IL-1β, which seems to play an important role in the pathophysiology of pemphigus
Capítulos de libros sobre el tema "Antibody Secreting Cell"
Hsu, Myat Noe, Zirui Matthew Tay, Weikang Nicholas Lin y Shih-Chung Wei. "Screening of Antigen-Specific Antibody-Secreting Cells". En Handbook of Single Cell Technologies, 1–23. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-10-4857-9_27-1.
Texto completoHsu, Myat Noe, Zirui Matthew Tay, Weikang Nicholas Lin y Shih-Chung Wei. "Screening of Antigen-Specific Antibody-Secreting Cells". En Handbook of Single-Cell Technologies, 471–93. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-10-8953-4_27.
Texto completoKarulin, Alexey Y., Melinda Katona, Zoltán Megyesi, Greg A. Kirchenbaum y Paul V. Lehmann. "Artificial Intelligence-Based Counting Algorithm Enables Accurate and Detailed Analysis of the Broad Spectrum of Spot Morphologies Observed in Antigen-Specific B-Cell ELISPOT and FluoroSpot Assays". En Methods in Molecular Biology, 59–85. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-3690-9_5.
Texto completoBecza, Noémi, Zhigang Liu, Jack Chepke, Xing-Huang Gao, Paul V. Lehmann y Greg A. Kirchenbaum. "Assessing the Affinity Spectrum of the Antigen-Specific B Cell Repertoire via ImmunoSpot®". En Methods in Molecular Biology, 211–39. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-3690-9_13.
Texto completoGaa, Ramona, Qingyong Ji y Achim Doerner. "Antibody-Secreting Cell Isolation from Different Species for Microfluidic Antibody Hit Discovery". En Methods in Molecular Biology, 313–25. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3279-6_17.
Texto completoKitikoon, Pravina, Crystal L. Loving y Amy L. Vincent. "Antibody Secreting Cell Assay for Influenza A Virus in Swine". En Methods in Molecular Biology, 347–53. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0758-8_29.
Texto completoFlorence, CHUA, OH Steve Kah Weng, YAP Miranda y TEO Wah Koon. "eRDF Medium Enhances Antibody Production of IgG and IgM Secreting Hybridomas." En Animal Cell Technology: Basic & Applied Aspects, 391–96. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2044-9_53.
Texto completoShah, Hemangi B. y Kristi A. Koelsch. "B-Cell ELISPOT: For the Identification of Antigen-Specific Antibody-Secreting Cells". En Methods in Molecular Biology, 419–26. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2694-7_42.
Texto completoKrungkasem, C., H. Tachibana y S. Shirahata. "Identification of an Antibody-Secreting Human B Cell Line Undergoing “Light Chain Shifting”". En Animal Cell Technology: Basic & Applied Aspects, 639–43. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5746-9_104.
Texto completoYao, Lingling, Noémi Becza, Andrea Maul-Pavicic, Jack Chepke, Greg A. Kirchenbaum y Paul V. Lehmann. "Four-Color ImmunoSpot® Assays Requiring Only 1–3 mL of Blood Permit Precise Frequency Measurements of Antigen-Specific B Cells-Secreting Immunoglobulins of All Four Classes and Subclasses". En Methods in Molecular Biology, 251–72. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-3690-9_15.
Texto completoActas de conferencias sobre el tema "Antibody Secreting Cell"
Moffat, E. H., R. H. Furlong, A. L. Bloom y J. C. Giddings. "A MURINE MODEL FOR FACTOR VIII ANTIBODY ANTI-IDIOTYPE REAGENTS". En XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644030.
Texto completoRomanuik, Sean F., Samantha M. Grist, Moeed Haq, Bonnie L. Gray, Naveed Gulzar y Jamie K. Scott. "The Microfluidic Trapping of Antibody-Secreting Cells". En ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30845.
Texto completoRamonell, R. P., M. Brown, M. C. Woodruff, J. M. Levy, S. K. Wise, J. DelGaudio, M. Duan et al. "Single Cell Analysis of Human Nasal Mucosal IgE Antibody Secreting Cells Reveals Newly Minted Phenotype". En American Thoracic Society 2023 International Conference, May 19-24, 2023 - Washington, DC. American Thoracic Society, 2023. http://dx.doi.org/10.1164/ajrccm-conference.2023.207.1_meetingabstracts.a6209.
Texto completoWalker, Natalie, Aiden Mclinden, Aiden Mclinden, Yuta Ibuki, Keizo Misumi y Vibha N. Lama. "Broncho-vascular mesenchymal stromal cells guided spatiotemporal establishment of antibody secreting cell pro-survival niches in the lung". En ERS Lung Science Conference 2022 abstracts. European Respiratory Society, 2022. http://dx.doi.org/10.1183/23120541.lsc-2022.100.
Texto completoLee, Frances E. H., Jessica L. Halliley, Andrew P. Moscatiello, Ann R. Falsey, Edward E. Walsh y Ignacio Sanz. "Novel Method For Diagnosing Microbial Infections With A Blood Antibody Secreting Cell Assay: The “MicroBspot™"". En American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a6845.
Texto completoCheng, Chao, Ermin Xie, Xinyi Huang, Suo Chu, Xiaorui Chen, Bixia Lei, Zhenwei Zhong, Jiantao Wang, Huajing Wang Xian-Yang Li y Xiaowen He. "241 Dual targeting liver cancer by GPC3 CAR-T cells secreting a bispecific T cell engager antibody for an intracellular tumor antigen AFP". En SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.0241.
Texto completoMclinden, A. P., Y. Ibuki, N. M. Walker, I. Grigorova y V. N. Lama. "Novel Bronchovascular-Bundle-Associated Mesenchymal Stromal Cell Population Promote the Survival of Antibody Secreting Cells in Lung Allografts with a Restrictive Allograft Syndrome Phenotype". En American Thoracic Society 2022 International Conference, May 13-18, 2022 - San Francisco, CA. American Thoracic Society, 2022. http://dx.doi.org/10.1164/ajrccm-conference.2022.205.1_meetingabstracts.a3942.
Texto completoVan Lent, Julie, Iene Rutten, Karen Ven, Jolien Breukers, Eleonore Verstraete, Katrien Van, Julie Van et al. "MICROFLUIDIC TOOLS FOR STUDYING SINGLE CELL SECRETIONS: A CASE STUDY ON HYBRIDOMA ANTIBODY SECRETION". En The 28th International Conference on Miniaturized Systems for Chemistry and Life Sciences - Micro-Total Analysis Systems. San Diego: Chemical and Biological Microsystems Society, 2024. https://doi.org/10.70477/zhun7496.
Texto completoBaker, J. B., M. P. McGrogan, C. Simonsen, R. L. Gronke y B. W. Festoff. "STRUCTURE AND PROPERTIES OF PROTEASE NEXIN I". En XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644765.
Texto completoGrabowski, F. E. "RHEOLOGY AND PRIMARY HEMOSTASIS". En XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643986.
Texto completoInformes sobre el tema "Antibody Secreting Cell"
Baszler, Timothy, Igor Savitsky, Christopher Davies, Lauren Staska y Varda Shkap. Identification of bovine Neospora caninum cytotoxic T-lymphocyte epitopes for development of peptide-based vaccine. United States Department of Agriculture, marzo de 2006. http://dx.doi.org/10.32747/2006.7695592.bard.
Texto completoวีรกุล, ปราจีน, อัจฉริยา ไศละสูต, คณิศักดิ์ อรวีระกุล, วาสนา ภิญโญชนม์, สุดารัตน์ ดำรงค์วัฒนโภคิน y สันนิภา สุรทัตต์. การวิจัยและการพัฒนาวิธีวินิจฉัย ควบคุมและป้องกันโรคอหิวาต์สุกรในประเทศไทย : รายงานการวิจัย. จุฬาลงกรณ์มหาวิทยาลัย ; สำนักงานคณะกรรมการวิจัยแห่งชาติ, 2002. https://doi.org/10.58837/chula.res.2002.61.
Texto completo