Literatura académica sobre el tema "Arctic Haze"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Arctic Haze".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Arctic Haze"
Shaw, Glenn E. "The Arctic Haze Phenomenon". Bulletin of the American Meteorological Society 76, n.º 12 (diciembre de 1995): 2403–13. http://dx.doi.org/10.1175/1520-0477(1995)076<2403:tahp>2.0.co;2.
Texto completoHeintzenberg, Jost, Thomas Tuch, Birgit Wehner, Alfred Wiedensohler, Heike Wex, Albert Ansmann, Ina Mattis et al. "Arctic haze over Central Europe". Tellus B: Chemical and Physical Meteorology 55, n.º 3 (30 de diciembre de 2011): 796–807. http://dx.doi.org/10.3402/tellusb.v55i3.16366.
Texto completoHEINTZENBERG, JOST, THOMAS TUCH, BIRGIT WEHNER, ALFRED WIEDENSOHLER, HEIKE WEX, ALBERT ANSMANN, INA MATTIS et al. "Arctic haze over Central Europe". Tellus B 55, n.º 3 (julio de 2003): 796–807. http://dx.doi.org/10.1034/j.1600-0889.2003.00057.x.
Texto completoShaw, Glenn E. "Cloud condensation nuclei associated with arctic haze". Atmospheric Environment (1967) 20, n.º 7 (enero de 1986): 1453–56. http://dx.doi.org/10.1016/0004-6981(86)90017-x.
Texto completoShaw, G. E., K. Stamnes y Y. X. Hu. "Arctic haze: Perturbation to the radiation field". Meteorology and Atmospheric Physics 51, n.º 3-4 (1993): 227–35. http://dx.doi.org/10.1007/bf01030496.
Texto completoQuinn, P. K., G. Shaw, E. Andrews, E. G. Dutton, T. Ruoho-Airola y S. L. Gong. "Arctic haze: current trends and knowledge gaps". Tellus B: Chemical and Physical Meteorology 59, n.º 1 (enero de 2007): 99–114. http://dx.doi.org/10.1111/j.1600-0889.2006.00236.x.
Texto completoStachlewska, Iwona S., Christoph Ritter, Christine Böckmann y Ronny Engelmann. "Properties of arctic haze aerosol from lidar observations during iarea 2015 campaign on spitsbergen". EPJ Web of Conferences 176 (2018): 05024. http://dx.doi.org/10.1051/epjconf/201817605024.
Texto completoCarey, John. "Scientific Sleuths Solve: The Mystery of Arctic Haze". Weatherwise 41, n.º 2 (abril de 1988): 97–99. http://dx.doi.org/10.1080/00431672.1988.9925253.
Texto completoHoff, R. M. "Vertical Structure of Arctic Haze Observed by Lidar". Journal of Applied Meteorology 27, n.º 2 (febrero de 1988): 125–39. http://dx.doi.org/10.1175/1520-0450(1988)027<0125:vsoaho>2.0.co;2.
Texto completoYamanouchi, T., R. Treffeisen, A. Herber, M. Shiobara, S. Yamagata, K. Hara, K. Sato et al. "Arctic Study of Tropospheric Aerosol and Radiation (ASTAR) 2000: Arctic haze case study". Tellus B: Chemical and Physical Meteorology 57, n.º 2 (enero de 2005): 141–52. http://dx.doi.org/10.3402/tellusb.v57i2.16784.
Texto completoTesis sobre el tema "Arctic Haze"
Stachlewska, Iwona Sylwia. "Investigation of tropospheric arctic aerosol and mixed-phase clouds using airborne lidar technique". Phd thesis, Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2006/698/.
Texto completoDas Airborne Mobile Aerosol Lidar (AMALi) wurde am Alfred-Wegener-Institut für Polar- und Meeresforschung in Potsdam für die Untersuchung arktischer Aerosole und Wolken der unteren Troposphäre entwickelt und gebaut. Das AMALi wurde erfolgreich in zwei AWI Flugzeugmesskampagnen, der ASTAR 2004 und der SvalEx 2005, die in Spitzbergen in der Arktis durchgeführt wurden, eingesetzt. Zwei neue Lidar Datenauswertungsmethoden wurden implementiert: die Two-Stream Inversion und die Iterative Airborne Inversion. Damit erwies sich die Berechnung der Profile der Teilchen Rückstreu- und Extinktionskoeffizienten mit einem entsprechenden Lidar Verhältnis, das charakteristisch für arktische Luft ist, als möglich. Der Vergleich dieser Auswertungen mit den Resultaten, die mit verschiedenen Fernerkundungs- und In-situ Instrumenten gewonnen worden waren (stationäres Koldewey Aerosol Raman Lidar KARL, Sonnenphotometer, Radiosondierung und Satellitenbilder) ermöglichten die Interpretation der Lidar-Resultate und eine Charakterisierung sowohl der reinen als auch der verschmutzten Luft. Außerdem konnten die Lidardaten mit operationellen ECMWF Daten und dem kleinskaligen Dispersionsmodel EULAG verglichen werden. Dadurch konnte der Einfluss der Spitzbergener Orographie auf die Aerosolladung der Planetaren Grenzschicht untersucht werden. Für Wolkenmessungen wurde eine neue Methode der alternativen Fernerkundung mit dem AMALi und flugzeuggetragenen In-situ Messgeräten verwendet, um optische und mikrophysikalische Eigenschaften der Wolken zu bestimmen. Diese Methode wurde erfolgreich implementiert und auf Mixed-Phase Wolken geringer optischen Dicke angewendet. Ein Beispiel hier stellt das Besamen der Wolken (sogenannte Feeder-Seeder Effekt) dar, bei dem Eiskristalle in eine niedrige unterkühlte Stratokumulus fallen. Dabei konnten Lidarsignale, Intensitätsprofile und die Volumendepolarisation gemessen werden. Zusätzlich konnten in den weniger dichten Bereichen der Wolken, in denen Vielfachstreuung vernachlässigbar ist, auch Profile des Teilchen Rückstreukoeffizienten berechnet werden, wobei Lidarverhältnisse genommen wurden, die aus In-situ Messungen für Wasser- und Eiswolken ermittelt wurden.
Savishinsky, Joel S. "The trail of the hare : environment and stress in a sub-arctic community /". Yverdon (Switzerland) : Gordon and Breach, 1994. http://catalogue.bnf.fr/ark:/12148/cb37463831g.
Texto completoOzola, Anete. "What impact can the economic potential of the Arctic region have on avoiding conflict?" Thesis, Malmö universitet, Malmö högskola, Institutionen för globala politiska studier (GPS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-42783.
Texto completoWiniger, Patrik. "Isotope-based source apportionment of black carbon aerosols in the Eurasian Arctic". Doctoral thesis, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-134577.
Texto completoAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript.
Vicente-Luis, Andy. "Caractérisation in situ des propriétés optiques et microphysiques des aérosols troposphériques dans l’archipel arctique canadien". Thesis, 2019. http://hdl.handle.net/1866/24156.
Texto completoGlobal warming in the Canadian Arctic is twice as fast as the global average, accelerating the melting of sea ice and radically disrupting the fauna, the flora, and the communities of the whole region. Arctic warming is caused not only by rising greenhouse gas emissions, but also by the short-lived climate forcing agents such as tropospheric aerosols. However, aerosol radiative forcing in the polar region is less precisely estimated than that of greenhouse gases, notably CO2, and remains highly uncertain. This large uncertainty arises mainly from the high spatiotemporal variability in aerosol chemical and physical properties, in addition to the complexity of the feedback loops observed in the Arctic. Furthermore, datasets on aerosol characteristics and their distribution across the region are very limited, particularly in the Canadian High Arctic. To address this issue, a series of measurements were conducted over a 3-year period (2016-2019) at the Polar Atmospheric Environment Research Laboratory (PEARL, 80N 86W) near Eureka weather station, in Nunavut, Canada. Aerosol size distribution was measured using several instruments including an Optical Particle Counter (OPC), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS). Aerosol optical properties were determined by two Photoacoustic Extinctiometers (PAXs) which operate at wavelengths of 405 nm and 870 nm, respectively. Observations made at the PEARL observatory show a strong seasonal variation in the optical and microphysical properties of polar aerosols. In the winter and spring, the Arctic atmosphere is impacted by an anthropogenic haze that results in a sharp increase in aerosol size, number concentration, and optical properties. Arctic haze episodes typically occur in mid-December, when mineral dust events have also been observed, and end in May when formation and growth of new particles begin. Early spring exhibits the highest accumulation-mode aerosol concentrations during the year. The darkest Arctic haze aerosols have been identified as soot or black carbon transported into the Arctic from Eurasia and Alaska. Some systematic relationships among aerosol optical properties and size distribution have also been calculated and reveal a major difference between aerosols interacting with light at 405 nm and 870 nm.
Barta, Robert Michael. "Demography of sympatric arctic and snowshoe hare populations an experimental assessment of interspecific competition /". 1988. http://catalog.hathitrust.org/api/volumes/oclc/19617857.html.
Texto completoTypescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 31-36).
Byrom, Andrea Elizabeth. "Population ecology of arctic ground squirrels in the boreal forest during the decline and low phases of a snowshoe hare cycle". Thesis, 1997. http://hdl.handle.net/2429/7269.
Texto completoLibros sobre el tema "Arctic Haze"
ill, Howarth Daniel, ed. Santa's little helper. New York, N.Y: Orchard Books, 2008.
Buscar texto completoSpinelli, Eileen. Polar bear, arctic hare: Poems of the frozen North. Honesdale, Pa: Wordsong, 2007.
Buscar texto completoill, Bernhard Durga, ed. How Snowshoe Hare rescued the sun: A tale from the Arctic. New York: Holiday House, 1993.
Buscar texto completoThe trail of the Hare: Environment and stress in a sub-Arctic community. 2a ed. Yverdon, Switzerland: Gordon and Breach, 1993.
Buscar texto completoTrettin, Hans Peter. Pre-Carboniferous geology of the northern part of the Arctic Islands: Hazen Fold Belt and adjacent parts of Central Ellesmere Fold Belt, Ellesmere Island. Ottawa, Canada: Geological Survey of Canada, 1994.
Buscar texto completoCapítulos de libros sobre el tema "Arctic Haze"
Shaw, Glenn E. y M. A. K. Khalil. "Arctic Haze". En The Handbook of Environmental Chemistry, 69–111. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-540-46113-5_3.
Texto completoKahl, Jonathan D., Joyce M. Harris, Gary A. Herbert y Marvin P. Olson. "Intercomparison of Long-Range Trajectory Models Applied to Arctic Haze". En Air Pollution Modeling and Its Application VII, 175–85. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4615-6409-6_14.
Texto completoKoivurova, Timo. "Race to Resources in the Arctic: Have We Progressed in Our Understanding of What Takes Place in the Arctic?" En The New Arctic, 189–201. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17602-4_14.
Texto completoPletser, Vladimir. "The Arctic After—What Have We Learned from This Simulation?" En On To Mars!, 65–71. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7030-3_3.
Texto completoTennberg, Monica, Terhi Vuojala-Magga y Minna Turunen. "The Ivalo River and its People: There Have Always Been Floods – What Is Different Now?" En Community Adaptation and Vulnerability in Arctic Regions, 221–37. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9174-1_9.
Texto completovan Amstel, Andre, Amy Lauren Lovecraft, Maureen Biermann, Roberta Marinelli y Douglas C. Nord. "The Assessment and Evaluation of Arctic Research – Where Have We Come From and Where Do We Need to Go in the Future?" En Nordic Perspectives on the Responsible Development of the Arctic: Pathways to Action, 413–33. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52324-4_19.
Texto completoShaw, G. "ARCTIC HAZE". En Encyclopedia of Atmospheric Sciences, 155–59. Elsevier, 2003. http://dx.doi.org/10.1016/b0-12-227090-8/00073-7.
Texto completoRussell, L. M. y G. E. Shaw. "ARCTIC AND ANTARCTIC | Arctic Haze". En Encyclopedia of Atmospheric Sciences, 116–21. Elsevier, 2015. http://dx.doi.org/10.1016/b978-0-12-382225-3.00073-6.
Texto completoShaw, Glenn E. "The arctic haze–arctic cloud connection". En Arctic Air Pollution, 143–50. Cambridge University Press, 1987. http://dx.doi.org/10.1017/cbo9780511565496.014.
Texto completoValero, Francisco P. J. y Thomas P. Ackerman. "Arctic haze and the radiation balance". En Arctic Air Pollution, 121–34. Cambridge University Press, 1987. http://dx.doi.org/10.1017/cbo9780511565496.012.
Texto completoActas de conferencias sobre el tema "Arctic Haze"
Hoff, R. M. "Lidar observations of arctic haze". En Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 1986. http://dx.doi.org/10.1364/cleo.1986.fg2.
Texto completoMasvie, Nils Andreas. "Do Arctic Hydrocarbons have a Place in Today's Market? Regulatory Issues". En OTC Arctic Technology Conference. Offshore Technology Conference, 2018. http://dx.doi.org/10.4043/29159-ms.
Texto completoCahay, Marc. "Full Year Drilling Season for MODU in Arctic Area". En ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-18136.
Texto completoMatishov, G. G., S. L. Dzhenyuk y S. Dahle. "Environmental Impact Assessment In The Ice-Filled Waters, Do We Have The Necessary Information?" En Arctic Shelf Oil & Gas Conference 2004. European Association of Geoscientists & Engineers, 2004. http://dx.doi.org/10.3997/2214-4609-pdb.185.section5_12.
Texto completoPoole, W. J., M. Militzer, F. Fazeli, M. Maalekian, C. Penniston y D. Taylor. "Microstructure Evolution in the HAZ of Girth Welds in Linepipe Steels for the Arctic". En 2010 8th International Pipeline Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ipc2010-31155.
Texto completoTerada, Yoshio, Hiroshi Morimoto, Naoki Doi y Masahiko Murata. "X80 UOE Pipe With Excellent HAZ Toughness". En ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/omae2008-57578.
Texto completoAmadioha, Alexander U., Adam C. Bannister, Simon Slater y Martin Connelly. "HAZ Toughness: Realistic Testing for Pipeline Integrity". En ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-49179.
Texto completoOkatsu, Mitsuhiro, Kenji Oi, Koichi Ihara y Toshiyuki Hoshino. "High Strength Linepipe With Excellent HAZ Toughness". En ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2004. http://dx.doi.org/10.1115/omae2004-51143.
Texto completoDeGeer, D. y M. Nessim. "Arctic Pipeline Design Considerations". En ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/omae2008-57802.
Texto completoPaulin, Mike, Jonathan Caines, Amy Davis, Duane DeGeer y Todd Cowin. "The Status of Arctic Offshore Pipeline Standards and Technology". En ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-19290.
Texto completoInformes sobre el tema "Arctic Haze"
Beauchamp, B., C. T. Sherry, U. Mayr, J. C. Harrison y A. Desrochers. Moscovian (Upper Carboniferous) to Sakmarian (Lower Permian) stratigraphy (Nansen and Hare Fiord formations; Unit C2), Hvitland Peninsula, northwestern Ellesmere Island, Arctic Canada. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1995. http://dx.doi.org/10.4095/202795.
Texto completoTrettin, H. P. Pre-carboniferous geology of the northern part of the Arctic islands, Hazen Fold Belt and adjacent parts of central Ellesmere Fold Belt, Ellesmere Island. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1994. http://dx.doi.org/10.4095/194326.
Texto completoLasko, Kristofer y Sean Griffin. Monitoring Ecological Restoration with Imagery Tools (MERIT) : Python-based decision support tools integrated into ArcGIS for satellite and UAS image processing, analysis, and classification. Engineer Research and Development Center (U.S.), abril de 2021. http://dx.doi.org/10.21079/11681/40262.
Texto completoVas, Dragos, Steven Peckham, Carl Schmitt, Martin Stuefer, Ross Burgener y Telayna Wong. Ice fog monitoring near Fairbanks, AK. Engineer Research and Development Center (U.S.), marzo de 2021. http://dx.doi.org/10.21079/11681/40019.
Texto completoDouglas, Thomas y Caiyun Zhang. Machine learning analyses of remote sensing measurements establish strong relationships between vegetation and snow depth in the boreal forest of Interior Alaska. Engineer Research and Development Center (U.S.), julio de 2021. http://dx.doi.org/10.21079/11681/41222.
Texto completoAalto, Juha y Ari Venäläinen, eds. Climate change and forest management affect forest fire risk in Fennoscandia. Finnish Meteorological Institute, junio de 2021. http://dx.doi.org/10.35614/isbn.9789523361355.
Texto completo