Siga este enlace para ver otros tipos de publicaciones sobre el tema: Atmospheric carbon dioxide.

Artículos de revistas sobre el tema "Atmospheric carbon dioxide"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Atmospheric carbon dioxide".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Smith, H. Jesse. "Controlling atmospheric carbon dioxide." Science 370, no. 6522 (December 10, 2020): 1286.13–1288. http://dx.doi.org/10.1126/science.370.6522.1286-m.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Lal, R. "Sequestering Atmospheric Carbon Dioxide." Critical Reviews in Plant Sciences 28, no. 3 (April 3, 2009): 90–96. http://dx.doi.org/10.1080/07352680902782711.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Lockwood, John G. "Changing atmospheric carbon dioxide." Progress in Physical Geography: Earth and Environment 11, no. 4 (December 1987): 581–89. http://dx.doi.org/10.1177/030913338701100406.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Beatty, Thomas G., Luis Welbanks, Everett Schlawin, Taylor J. Bell, Michael R. Line, Matthew Murphy, Isaac Edelman, et al. "Sulfur Dioxide and Other Molecular Species in the Atmosphere of the Sub-Neptune GJ 3470 b." Astrophysical Journal Letters 970, no. 1 (July 1, 2024): L10. http://dx.doi.org/10.3847/2041-8213/ad55e9.

Texto completo
Resumen
Abstract We report observations of the atmospheric transmission spectrum of the sub-Neptune exoplanet GJ 3470 b taken using the Near-Infrared Camera on JWST. Combined with two archival Hubble Space Telescope/Wide-Field Camera 3 transit observations and 15 archival Spitzer transit observations, we detect water, methane, sulfur dioxide, and carbon dioxide in the atmosphere of GJ 3470 b, each with a significance of >3σ. GJ 3470 b is the lowest-mass—and coldest—exoplanet known to show a substantial sulfur dioxide feature in its spectrum, at M p = 11.2 M ⊕ and T eq = 600 K. This indicates that d
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Radmilović-Radjenović, Marija, Martin Sabo, and Branislav Radjenović. "Transport Characteristics of the Electrification and Lightning of the Gas Mixture Representing the Atmospheres of the Solar System Planets." Atmosphere 12, no. 4 (March 29, 2021): 438. http://dx.doi.org/10.3390/atmos12040438.

Texto completo
Resumen
Electrification represents a fundamental process in planetary atmospheres, widespread in the Solar System. The atmospheres of the terrestrial planets (Venus, Earth, and Mars) range from thin to thick are rich in heavier gases and gaseous compounds, such as carbon dioxide, nitrogen, oxygen, argon, sodium, sulfur dioxide, and carbon monoxide. The Jovian planets (Jupiter, Saturn, Uranus, and Neptune) have thick atmospheres mainly composed of hydrogen and helium involving. The electrical discharge processes occur in the planetary atmospheres leading to potential hazards due to arcing on landers an
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Matyukha, Volodymyr, та Olena Sukhina. "МЕТОДОЛОГІЯ ВИЗНАЧЕННЯ РОЗМІРУ ЕКОЛОГІЧНОГО ПОДАТКУ ЗА ВИКИДИ В АТМОСФЕРНЕ ПОВІТРЯ ДВООКИСУ ВУГЛЕЦЮ". Economical 2, № 28 (2023): 4–14. http://dx.doi.org/10.31474/1680-0044-2023-2(28)-4-14.

Texto completo
Resumen
This article is devoted to current problems of environmental protection. Environmental taxes (payments) are the most effective tools that can be used to regulate relations between the state and polluters, as well as to stimulate polluting enterprises to ecologization their production. Objective. The purpose of the paper is to develop a methodological approach to determining the amount of the environmental tax for emissions of carbon dioxide into the atmosphere. Research methods. The purpose of the research is achieved with the help of general scientific methods (analysis of statistical data, s
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Tamás, András. "The effect of rising concentration of atmospheric carbone dioxide on crop production." Acta Agraria Debreceniensis, no. 67 (February 3, 2016): 81–84. http://dx.doi.org/10.34101/actaagrar/67/1758.

Texto completo
Resumen
In the atmosphere, the amount of carbon dioxide and other greenhouse gases are rising in gradually increasing pace since the Industrial Revolution. The rising concentration of atmospheric carbon dioxide (CO2) contributes to global warming, and the changes affect to both the precipitation and the evaporation quantity. Moreover, the concentration of carbon dioxide directly affects the productivity and physiology of plants. The effect of temperature changes on plants is still controversial, although studies have been widely conducted. The C4-type plants react better in this respect than the C3-ty
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Sarmiento, Jorge L., Corinne Le Quéré, and Stephen W. Pacala. "Limiting future atmospheric carbon dioxide." Global Biogeochemical Cycles 9, no. 1 (March 1995): 121–37. http://dx.doi.org/10.1029/94gb01779.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Smith, H. J. "Down with atmospheric carbon dioxide." Science 348, no. 6231 (April 9, 2015): 196–98. http://dx.doi.org/10.1126/science.348.6231.196-l.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Joos, F. "The Atmospheric Carbon Dioxide Perturbation." Europhysics News 27, no. 6 (1996): 213–18. http://dx.doi.org/10.1051/epn/19962706213.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Fischer, Gaston. "Atmospheric lifetime of carbon dioxide." Population and Environment 10, no. 3 (March 1989): 177–81. http://dx.doi.org/10.1007/bf01257903.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Goreau, Thomas J. "Control of atmospheric carbon dioxide." Global Environmental Change 2, no. 1 (March 1992): 5–11. http://dx.doi.org/10.1016/0959-3780(92)90031-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Alexandrov, G. A. "Explaining the seasonal cycle of the globally averaged CO<sub>2</sub> with a carbon-cycle model." Earth System Dynamics 5, no. 2 (October 21, 2014): 345–54. http://dx.doi.org/10.5194/esd-5-345-2014.

Texto completo
Resumen
Abstract. The seasonal changes in the globally averaged atmospheric carbon-dioxide concentrations reflect an important aspect of the global carbon cycle: the gas exchange between the atmosphere and terrestrial biosphere. The data on the globally averaged atmospheric carbon-dioxide concentrations, which are reported by Earth System Research Laboratory of the US National Oceanic &amp;amp; Atmospheric Administration (NOAA/ESRL), could be used to demonstrate the adequacy of the global carbon-cycle models. However, it was recently found that the observed amplitude of seasonal variations in the atmo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Johnstone, C. P., M. Güdel, H. Lammer, and K. G. Kislyakova. "Upper atmospheres of terrestrial planets: Carbon dioxide cooling and the Earth’s thermospheric evolution." Astronomy & Astrophysics 617 (September 2018): A107. http://dx.doi.org/10.1051/0004-6361/201832776.

Texto completo
Resumen
Context.The thermal and chemical structures of the upper atmospheres of planets crucially influence losses to space and must be understood to constrain the effects of losses on atmospheric evolution.Aims.We develop a 1D first-principles hydrodynamic atmosphere model that calculates atmospheric thermal and chemical structures for arbitrary planetary parameters, chemical compositions, and stellar inputs. We apply the model to study the reaction of the Earth’s upper atmosphere to large changes in the CO2abundance and to changes in the input solar XUV field due to the Sun’s activity evolution from
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

JASTROW, JULIE D., R. MICHAEL MILLER, ROSER MATAMALA, RICHARD J. NORBY, THOMAS W. BOUTTON, CHARLES W. RICE, and CLENTON E. OWENSBY. "Elevated atmospheric carbon dioxide increases soil carbon." Global Change Biology 11, no. 12 (December 2005): 2057–64. http://dx.doi.org/10.1111/j.1365-2486.2005.01077.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Glazunova, D. M., P. Yu Galitskaya, and S. Yu Selivanovskaya. "Atmospheric Carbon Sequestration Using Microalgae." Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki 166, no. 1 (March 15, 2024): 82–125. http://dx.doi.org/10.26907/2542-064x.2024.1.82-125.

Texto completo
Resumen
This article outlines biotechnological methods that can help reduce atmospheric and industrial carbon dioxide emissions through the use of microalgae. A general description of microalgae was provided, and the most promising species for microalgal biotechnology were identified. The metabolic process by which microalgae capture and degrade carbon dioxide was described. The microalgae-based biotechnological systems and devices available today were analyzed. The key factors that need to be considered for the effective and successful use of microalgae were highlighted. Different products obtained f
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Arens, Nan Crystal, A. Hope Jahren, and Ronald Amundson. "Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide?" Paleobiology 26, no. 1 (2000): 137–64. http://dx.doi.org/10.1666/0094-8373(2000)026<0137:ccpfrt>2.0.co;2.

Texto completo
Resumen
Atmospheric carbon dioxide is the raw material for the biosphere. Therefore, changes in the carbon isotopic composition of the atmosphere will influence the terrestrial δ13C signals we interpret. However, reconstructing the atmospheric δ13C value in the geologic past has proven challenging. Land plants sample the isotopic composition of CO2 during photosynthesis. We use a model of carbon isotopic fractionation during C3 photosynthesis, in combination with a meta–data set (519 measurements from 176 species), to show that the δ13C value of atmospheric CO2 can be reconstructed from the isotopic c
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Cerling, T. E., J. R. Ehleringer, and J. M. Harris. "Carbon dioxide starvation, the development of C4 ecosystems, and mammalian evolution." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 353, no. 1365 (January 29, 1998): 159–71. http://dx.doi.org/10.1098/rstb.1998.0198.

Texto completo
Resumen
The decline of atmospheric carbon dioxide over the last 65 million years (Ma) resulted in the ‘carbon dioxide–starvation’ of terrestrial ecosystems and led to the widespread distribution of C 4 plants, which are less sensitive to carbon dioxide levels than are C 3 plants. Global expansion of C 4 biomass is recorded in the diets of mammals from Asia, Africa, North America, and South America during the interval from about 8 to 5 Ma. This was accompanied by the most significant Cenozoic faunal turnover on each of these continents, indicating that ecological changes at this time were an important
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Elavarasi, P., Kasinam Doruk, K. Subash Chandra Bose, P. Ramamoorthy, Manojkumar, and Nakeertha Venu. "Modern Agro Techniques for Carbon Sequestration to Mitigate Climate Change." International Journal of Environment and Climate Change 14, no. 3 (March 28, 2024): 755–59. http://dx.doi.org/10.9734/ijecc/2024/v14i34083.

Texto completo
Resumen
The review discusses both abiotic and biotic technologies and describes the mechanics involved in sequestering carbon dioxide (CO2). In an attempt to reduce the net rate of rise in atmospheric CO2, carbon sequestration entails transporting or storing CO2 into various long-lived global reservoirs, such as biotic, geological, pedologic, and marine layers. Carbon sequestration is the process of removing carbon dioxide from the atmosphere by biological or geological mechanisms. The method of keeping carbon in a stable, solid state is known as sequestration. Technologies are being developed which i
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Jiang, Xun, and Yuk L. Yung. "Global Patterns of Carbon Dioxide Variability from Satellite Observations." Annual Review of Earth and Planetary Sciences 47, no. 1 (May 30, 2019): 225–45. http://dx.doi.org/10.1146/annurev-earth-053018-060447.

Texto completo
Resumen
Advanced satellite technology has been providing unique observations of global carbon dioxide (CO2) concentrations. These observations have revealed important CO2variability at different timescales and over regional and planetary scales. Satellite CO2retrievals have revealed that stratospheric sudden warming and the Madden-Julian Oscillation can modulate atmospheric CO2concentrations in the mid-troposphere. Atmospheric CO2also demonstrates variability at interannual timescales. In the tropical region, the El Niño–Southern Oscillation and the Tropospheric Biennial Oscillation can change atmosph
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

McElwain, J. C. "Do fossil plants signal palaeoatmospheric carbon dioxide concentration in the geological past?" Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 353, no. 1365 (January 29, 1998): 83–96. http://dx.doi.org/10.1098/rstb.1998.0193.

Texto completo
Resumen
Fossil, subfossil, and herbarium leaves have been shown to provide a morphological signal of the atmospheric carbon dioxide environment in which they developed by means of their stomatal density and index. An inverse relationship between stomatal density/index and atmospheric carbon dioxide concentration has been documented for all the studies to date concerning fossil and subfossil material. Furthermore, this relationship has been demonstrated experimentally by growing plants under elevated and reducedcarbon dioxide concentrations. To date, the mechanism that controls the stomatal density res
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Pagani, Mark, Michael A. Arthur, and Katherine H. Freeman. "Miocene evolution of atmospheric carbon dioxide." Paleoceanography 14, no. 3 (June 1999): 273–92. http://dx.doi.org/10.1029/1999pa900006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Siegenthaler, U., and J. L. Sarmiento. "Atmospheric carbon dioxide and the ocean." Nature 365, no. 6442 (September 1993): 119–25. http://dx.doi.org/10.1038/365119a0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Malhi, Yadvinder, and John Grace. "Tropical forests and atmospheric carbon dioxide." Trends in Ecology & Evolution 15, no. 8 (August 2000): 332–37. http://dx.doi.org/10.1016/s0169-5347(00)01906-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Meyers, S. D., and J. J. O'Brien. "Pacific Ocean influences atmospheric carbon dioxide." Eos, Transactions American Geophysical Union 76, no. 52 (1995): 533. http://dx.doi.org/10.1029/95eo00326.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Caldeira, K. "Seawater pH and Atmospheric Carbon Dioxide." Science 286, no. 5447 (December 10, 1999): 2043a—2043. http://dx.doi.org/10.1126/science.286.5447.2043a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Williams, Nigel. "Atmospheric carbon dioxide at record high." Current Biology 18, no. 11 (June 2008): R445. http://dx.doi.org/10.1016/j.cub.2008.05.015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Houghton, R. A. "Tropical deforestation and atmospheric carbon dioxide." Climatic Change 19, no. 1-2 (September 1991): 99–118. http://dx.doi.org/10.1007/bf00142217.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Henry, Burl. "Experimental Proof that Carbon Dioxide does NOT Cause Global Warming." Sustainability in Environment 5, no. 3 (August 31, 2020): p91. http://dx.doi.org/10.22158/se.v5n3p91.

Texto completo
Resumen
Multiple instances of reductions in atmospheric Carbon Dioxide (CO2) and Sulfur Dioxide (SO2) levels were examined, and it was found that the only climatic effect was from reduced levels of anthropogenic SO2 aerosol pollution in the atmosphere. There were no instances of the hypothesized cooling from reduced CO2 levels.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

El-Meligi, AA. "Investigating the effect of carbon dioxide on the acidity of the Ocean." MOJ Ecology & Environmental Sciences 6, no. 6 (November 18, 2021): 212–14. http://dx.doi.org/10.15406/mojes.2021.06.00235.

Texto completo
Resumen
There is a significant effect of carbon dioxide on the acidification of the ocean. This research focuses on the acidification of the ocean and its effect on the animal life in the ocean. Also, it focuses on the effect of carbon dioxide concentration in the atmosphere on the ocean acidification. The data are collected from the research institutions and laboratories, such as National Snow and Ice Data Center (NSIDC), Japan, National Oceanic and Atmospheric Administration (NOAA), USA, Mauna Loa Observatory in Hawaii, and other sources of research about acidification of ocean. The results show tha
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Eliseev, A. V., M. Zhang, R. D. Gizatullin, A. V. Altukhova, Yu P. Perevedentsev, and A. I. Skorokhod. "Impact of sulphur dioxide on the terrestrial carbon cycle." Известия Российской академии наук. Физика атмосферы и океана 55, no. 1 (April 16, 2019): 41–53. http://dx.doi.org/10.31857/s0002-351555141-53.

Texto completo
Resumen
In this paper, the earlier results, which were obtained with the climate model developed at the A.M. Obu khov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM) and related to the impact of the atmospheric sulphur dioxide on terrestrial carbon cycle, are elucidated. Because of the unavailability of the global data for near surface SO2 concentration, it was reconstructed by using statistical model which was fitted employing the output of the atmospheric chemistry-transport model RAMS-CMAQ. The obtained results are in general agreement with those reported earlier. In part
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Isnani, Shanty, and Yunita Ismail Masjud. "Atmospheric carbon dioxide uptake by mangrove trees." Mangrove Watch 1, no. 1 (February 28, 2024): 27–32. http://dx.doi.org/10.61511/mangrove.v1i1.2024.657.

Texto completo
Resumen
Background:. This study was written in the aim of knowing how to calculate the carbon uptake by mangrove using steps that had been done by previous study, also knowing which type of mangrove that absorbs most of the carbon. Methods: This paper is compiled by collecting related data from various library sources, such as online articles and other scientific journals. Most of the similar papers are quantitative methods where calculation is needed and previous data study. Results: The result of this research is that mangrove has the ability to absorb carbon dioxide based on the diameter of the tre
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Ehlert, Dana, and Kirsten Zickfeld. "Irreversible ocean thermal expansion under carbon dioxide removal." Earth System Dynamics 9, no. 1 (March 5, 2018): 197–210. http://dx.doi.org/10.5194/esd-9-197-2018.

Texto completo
Resumen
Abstract. In the Paris Agreement in 2015 countries agreed on holding global mean surface air warming to well below 2 °C above pre-industrial levels, but the emission reduction pledges under that agreement are not ambitious enough to meet this target. Therefore, the question arises of whether restoring global warming to this target after exceeding it by artificially removing CO2 from the atmosphere is possible. One important aspect is the reversibility of ocean heat uptake and associated sea level rise, which have very long (centennial to millennial) response timescales. In this study the respo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Ai, Xuyuan E., Anja S. Studer, Daniel M. Sigman, Alfredo Martínez-García, François Fripiat, Lena M. Thöle, Elisabeth Michel, et al. "Southern Ocean upwelling, Earth’s obliquity, and glacial-interglacial atmospheric CO2 change." Science 370, no. 6522 (December 10, 2020): 1348–52. http://dx.doi.org/10.1126/science.abd2115.

Texto completo
Resumen
Previous studies have suggested that during the late Pleistocene ice ages, surface-deep exchange was somehow weakened in the Southern Ocean’s Antarctic Zone, which reduced the leakage of deeply sequestered carbon dioxide and thus contributed to the lower atmospheric carbon dioxide levels of the ice ages. Here, high-resolution diatom-bound nitrogen isotope measurements from the Indian sector of the Antarctic Zone reveal three modes of change in Southern Westerly Wind–driven upwelling, each affecting atmospheric carbon dioxide. Two modes, related to global climate and the bipolar seesaw, have be
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Golubyatnikov, L. L., I. N. Kurganova, and V. O. Lopes de Gerenyu. "Estimation of Carbon Balance in Steppe Ecosystems of Russia." Известия Российской академии наук. Физика атмосферы и океана 59, no. 1 (January 1, 2023): 71–87. http://dx.doi.org/10.31857/s0002351523010042.

Texto completo
Resumen
Steppe ecosystems, occupying about 8% of the terrestrial area, are an essential element of the global carbon cycle in the atmosphere–vegetation–soil system. Based on the geoinformation-analytical method, the database of empirically measured values of the net primary production and the climate-driven regression model that makes it possible to estimate the intensity of carbon dioxide flux from soils into the atmosphere, the carbon (C–СО2) balance of natural steppe ecosystems in Russia was estimated. Natural steppes in Russia serve as a significant sink of carbon dioxide from the atmosphere. The
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Kramer, J. R., P. Brassard, G. Patry, and I. Takacs. "Sensivity of terrestrial carbon cycle on atmospheric carbon dioxide." Chemical Geology 84, no. 1-4 (July 1990): 166–68. http://dx.doi.org/10.1016/0009-2541(90)90201-h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Glidden, Ana, Sara Seager, Jingcheng Huang, Janusz J. Petkowski, and Sukrit Ranjan. "Can Carbon Fractionation Provide Evidence for Aerial Biospheres in the Atmospheres of Temperate Sub-Neptunes?" Astrophysical Journal 930, no. 1 (May 1, 2022): 62. http://dx.doi.org/10.3847/1538-4357/ac625f.

Texto completo
Resumen
Abstract The search for signs of life on other worlds has largely focused on terrestrial planets. Recent work, however, argues that life could exist in the atmospheres of temperate sub-Neptunes. Here we evaluate the usefulness of carbon dioxide isotopologues as evidence of aerial life. Carbon isotopes are of particular interest, as metabolic processes preferentially use the lighter 12C over 13C. In principle, the upcoming James Webb Space Telescope (JWST) will be able to spectrally resolve the 12C and 13C isotopologues of CO2, but not CO and CH4. We simulated observations of CO2 isotopologues
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Soon, W., SL Baliunas, AB Robinson, and ZW Robinson. "Environmental effects of increased atmospheric carbon dioxide." Climate Research 13 (1999): 149–64. http://dx.doi.org/10.3354/cr013149.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

MacCracken, Michael C., Michael E. Schlesinger, and Michael R. Riches. "Atmospheric Carbon Dioxide and Summer Soil Wetness." Science 234, no. 4777 (November 7, 1986): 659–60. http://dx.doi.org/10.1126/science.234.4777.659-d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

MacCracken, Michael C., Michael E. Schlesinger, and Michael R. Riches. "Atmospheric Carbon Dioxide and Summer Soil Wetness." Science 234, no. 4777 (November 7, 1986): 659–60. http://dx.doi.org/10.1126/science.234.4777.659.d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Archer, David, Michael Eby, Victor Brovkin, Andy Ridgwell, Long Cao, Uwe Mikolajewicz, Ken Caldeira, et al. "Atmospheric Lifetime of Fossil Fuel Carbon Dioxide." Annual Review of Earth and Planetary Sciences 37, no. 1 (May 2009): 117–34. http://dx.doi.org/10.1146/annurev.earth.031208.100206.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Grounds, T., H. G Midgley, and D. V Novell. "Carbonation of ettringite by atmospheric carbon dioxide." Thermochimica Acta 135 (October 1988): 347–52. http://dx.doi.org/10.1016/0040-6031(88)87407-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Moore, Berrien, and B. H. Braswell. "The lifetime of excess atmospheric carbon dioxide." Global Biogeochemical Cycles 8, no. 1 (March 1994): 23–38. http://dx.doi.org/10.1029/93gb03392.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Retallack, Gregory, and Giselle Conde. "Flooding Induced by Rising Atmospheric Carbon Dioxide." GSA Today 30, no. 10 (2020): 4–8. http://dx.doi.org/10.1130/gsatg427a.1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Kaminski, T. "Inverse Modeling of Atmospheric Carbon Dioxide Fluxes." Science 294, no. 5541 (October 12, 2001): 259a—259. http://dx.doi.org/10.1126/science.294.5541.259a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

MACCRACKEN, M. C., M. E. SCHLESINGER, and M. R. RICHES. "Atmospheric Carbon Dioxide and Summer Soil Wetness." Science 234, no. 4777 (November 7, 1986): 659–60. http://dx.doi.org/10.1126/science.234.4777.659-c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Berner, R. A. "Atmospheric Carbon Dioxide Levels Over Phanerozoic Time." Science 249, no. 4975 (September 21, 1990): 1382–86. http://dx.doi.org/10.1126/science.249.4975.1382.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Sigman, Daniel M., and Edward A. Boyle. "Glacial/interglacial variations in atmospheric carbon dioxide." Nature 407, no. 6806 (October 2000): 859–69. http://dx.doi.org/10.1038/35038000.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Soon, Willie, Sallie L. Baliunas, Arthur B. Robinson, and Zachary W. Robinson. "Environmental Effects of Increased Atmospheric Carbon Dioxide." Energy & Environment 10, no. 5 (September 1999): 439–68. http://dx.doi.org/10.1260/0958305991499694.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Hofmann, David J., James H. Butler, and Pieter P. Tans. "A new look at atmospheric carbon dioxide." Atmospheric Environment 43, no. 12 (April 2009): 2084–86. http://dx.doi.org/10.1016/j.atmosenv.2008.12.028.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!