Siga este enlace para ver otros tipos de publicaciones sobre el tema: Atomic force microscopes.

Artículos de revistas sobre el tema "Atomic force microscopes"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Atomic force microscopes".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Novikov, Yu A., A. V. Rakov y P. A. Todua. "Calibration of atomic force microscopes". Bulletin of the Russian Academy of Sciences: Physics 73, n.º 4 (abril de 2009): 450–60. http://dx.doi.org/10.3103/s1062873809040030.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

El Rifai, Osamah M. y Kamal Youcef-Toumi. "Robust Adaptive Control of Atomic Force Microscopes". IFAC Proceedings Volumes 37, n.º 14 (septiembre de 2004): 669–74. http://dx.doi.org/10.1016/s1474-6670(17)31180-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Ma, Huilian, Jorge Jimenez y Raj Rajagopalan. "Brownian Fluctuation Spectroscopy Using Atomic Force Microscopes". Langmuir 16, n.º 5 (marzo de 2000): 2254–61. http://dx.doi.org/10.1021/la991059q.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Stukalov, Oleg, Chris A. Murray, Amy Jacina y John R. Dutcher. "Relative humidity control for atomic force microscopes". Review of Scientific Instruments 77, n.º 3 (marzo de 2006): 033704. http://dx.doi.org/10.1063/1.2182625.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Lim, Joosup y Bogdan I. Epureanu. "Sensitivity vector fields for atomic force microscopes". Nonlinear Dynamics 59, n.º 1-2 (26 de mayo de 2009): 113–28. http://dx.doi.org/10.1007/s11071-009-9525-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Nakano, Katsushi. "A novel low profile atomic force microscope compatible with optical microscopes". Review of Scientific Instruments 69, n.º 3 (marzo de 1998): 1406–9. http://dx.doi.org/10.1063/1.1148774.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Murashita, Tooru. "Conductive transparent fiber probes for shear-force atomic force microscopes". Ultramicroscopy 106, n.º 2 (enero de 2006): 146–51. http://dx.doi.org/10.1016/j.ultramic.2005.06.061.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Butterworth, Jeffrey A., Lucy Y. Pao y Daniel Y. Abramovitch. "Architectures for Tracking Control in Atomic Force Microscopes". IFAC Proceedings Volumes 41, n.º 2 (2008): 8236–50. http://dx.doi.org/10.3182/20080706-5-kr-1001.01394.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Park, Jae Hong, Jaesool Shim y Dong-Yeon Lee. "A Compact Vertical Scanner for Atomic Force Microscopes". Sensors 10, n.º 12 (30 de noviembre de 2010): 10673–82. http://dx.doi.org/10.3390/s101210673.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Newman, Alan. "Beyond the Surface: Looking at Atomic Force Microscopes". Analytical Chemistry 68, n.º 7 (abril de 1996): 267A—273A. http://dx.doi.org/10.1021/ac962502u.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Orji, Ndubuisi G., Theodore V. Vorburger, Joseph Fu, Ronald G. Dixson, Cattien V. Nguyen y Jayaraman Raja. "Line edge roughness metrology using atomic force microscopes". Measurement Science and Technology 16, n.º 11 (23 de septiembre de 2005): 2147–54. http://dx.doi.org/10.1088/0957-0233/16/11/004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Steininger, Juergen, Matthias Bibl, Han Woong Yoo y Georg Schitter. "High bandwidth deflection readout for atomic force microscopes". Review of Scientific Instruments 86, n.º 10 (octubre de 2015): 103701. http://dx.doi.org/10.1063/1.4932188.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Sadeghian, Hamed, Rodolf Herfst, Bert Dekker, Jasper Winters, Tom Bijnagte y Ramon Rijnbeek. "High-throughput atomic force microscopes operating in parallel". Review of Scientific Instruments 88, n.º 3 (marzo de 2017): 033703. http://dx.doi.org/10.1063/1.4978285.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Vorbringer-Dorozhovets, Nataliya, Rostyslav Mastylo y Eberhard Manske. "Investigation of position detectors for atomic force microscopes". Measurement Science and Technology 29, n.º 10 (23 de agosto de 2018): 105101. http://dx.doi.org/10.1088/1361-6501/aad397.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Arafat, Haider N., Ali H. Nayfeh y Eihab M. Abdel-Rahman. "Modal interactions in contact-mode atomic force microscopes". Nonlinear Dynamics 54, n.º 1-2 (26 de julio de 2008): 151–66. http://dx.doi.org/10.1007/s11071-008-9388-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Russell, Phillip E. y A. D. Batchelor. "Scanned Probe Microscopy (AFM, et al.): How to Choose and Use". Microscopy and Microanalysis 4, S2 (julio de 1998): 894–95. http://dx.doi.org/10.1017/s1431927600024594.

Texto completo
Resumen
Virtually everyone associated with a science or engineering discipline has some baseline knowledge of optical microscopy; and most attendees at this conference have a reasonable exposure to at least some form of electron microscopy. The many developments in instrumentation and application require the modern microscopist to continuously follow the literature to stay aware of the ongoing improvements and advances in these microscopies. While electron and optical microscopes have been around for many decades, the family of microscopes known as Scanned Probe Microscopy (SPM) are just entering their second decade; and are actually in there first decade of widespread use.The most commonly used forms of scanned probe microscopy are the force microscopes; commonly referred to as Atomic Force Microscopy (AFM). This includes a wide variety of microscopy modes that are generally made available as modifications of a basic AFM. Before describing the basic versions of AFM, the fundamentals of instrument design must be addressed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Moreno-Madrid, Francisco, Natalia Martín-González, Aida Llauró, Alvaro Ortega-Esteban, Mercedes Hernando-Pérez, Trevor Douglas, Iwan A. T. Schaap y Pedro J. de Pablo. "Atomic force microscopy of virus shells". Biochemical Society Transactions 45, n.º 2 (13 de abril de 2017): 499–511. http://dx.doi.org/10.1042/bst20160316.

Texto completo
Resumen
Microscopes are used to characterize small objects with the help of probes that interact with the specimen, such as photons and electrons in optical and electron microscopies, respectively. In atomic force microscopy (AFM), the probe is a nanometric tip located at the end of a microcantilever which palpates the specimen under study just as a blind person manages a walking stick. In this way, AFM allows obtaining nanometric resolution images of individual protein shells, such as viruses, in a liquid milieu. Beyond imaging, AFM also enables not only the manipulation of single protein cages, but also the characterization of every physicochemical property capable of inducing any measurable mechanical perturbation to the microcantilever that holds the tip. In the present revision, we start revising some recipes for adsorbing protein shells on surfaces. Then, we describe several AFM approaches to study individual protein cages, ranging from imaging to spectroscopic methodologies devoted to extracting physical information, such as mechanical and electrostatic properties. We also explain how a convenient combination of AFM and fluorescence methodologies entails monitoring genome release from individual viral shells during mechanical unpacking.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Elings, Virgil. "Scanning probe microscopy: A new technology takes off". Proceedings, annual meeting, Electron Microscopy Society of America 48, n.º 3 (12 de agosto de 1990): 959. http://dx.doi.org/10.1017/s0424820100162363.

Texto completo
Resumen
With the expanding use of the scanning tunneling microscope, the technology is developing into other scanning near field microscopes, microscopes whose resolution is determined by the size of the probe, not by some wavelength. The first available “son of STM” will be the atomic force microscope (AFM), a very low force profilometer which has atomic resolution and can profile non-conducting surfaces. The hope is that this microscope may find more applications in biology than the scanning tunneling microscope (STM), which requires a conducting or very thin sample.In the past five years, the STM has progressed from curiosity to everyday lab tool, imaging surfaces with scans from a few nanometers up to 100 microns. When compared to an SEM, the STM has the advantages of higher resolution, lower cost, operation in air or liquid, real three-dimensional output, and small size. The disadvantages are smaller scan size, slower scan speeds, fewer spectroscopic functions and, of course, not as many of the nice features of the more mature electron microscopes. The AFM has similar features to the STM except that the detector and profiling tips are more complicated and more difficult to operate—disadvantages that will decrease with time.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Quate, C. F. "Imaging with the Tunneling and Force Microscopes". Proceedings, annual meeting, Electron Microscopy Society of America 48, n.º 1 (12 de agosto de 1990): 292–93. http://dx.doi.org/10.1017/s0424820100180215.

Texto completo
Resumen
THE SCANNING TUNNELING MICROSCOPEThe STM is an instrument that is used for measuring surface structure. The new instrument was introduced when Rohrer, together with Binnig, discovered that a single atom at the end of a sharp tungsten needle could probe the electronic structure of smooth conducting surfaces. Their atomic probe was placed in close proximity to the surface and mechanically scanned over the image. The resolution is sufficient to define the spatial positions of the atomic sites with extraordinary precision. This instrument is ideal for characterizing small structures.The instrument operates over a wide range of temperatures - from liquid helium at 4K to room temperature and beyond. It works in a variety of atmospheres; vacuum, gases and liquids. Piezoelectric scanners are used to move the probe over the surface with the precision necessary to determine the atomic positions. The most favored scanner consists of a single piezotube with electrodes configured to provide motion in three dimensions.The scanning tip is the STM component, more than any other, that determines the resolving power. The tip is usually formed with electrochemical etching similar to that used in making tips for the field emission microscopes. However, more elaborate systems can be used. Fink has shown that it is feasible to fabricate, in a controlled way, a tip that consists of a single atom. He uses single crystal (111) tungsten and evaporates ions from the tip with a combination of heat and high field. This procedure reduces the apex of the tungsten rod to a single atom.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Zauscher, Stefan. "Putting a Sphere on an Atomic Force Microscope Cantilever Tip". Microscopy Today 5, n.º 10 (diciembre de 1997): 6. http://dx.doi.org/10.1017/s155192950006065x.

Texto completo
Resumen
Atomic Force Microscopes (AFM) can measure the force between a surface and the tip of a cantilever as a junction of separation with great precision. For example, van der Waals type forces and electrostatic repulsive forces can easily be measured in aqueous solutions using an AFM. The complex, pyramidal shape of the typical AFM cantilever is, however, not well suited for quantitative measurements. It is thus desirable to attach particles of known geometry (usually spheres) to the tip of a cantilever.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Carmichael, Stephen W. "Microscopes aren't just for Microscopists, Anymore!" Microscopy Today 2, n.º 5 (agosto de 1994): 28–29. http://dx.doi.org/10.1017/s1551929500066311.

Texto completo
Resumen
Historically, microscopes have been used to gather morphologic data. We have called people who use these instruments microscopists, and it is implied that microscopists are morphologists. As was pointed out in the April/May issue of this newsletter, useful information about a specimen is also gained from temporal analysis. Further, it has been appreciated that the new family of scanning probe microscopes can be used to gather additional types of information so that these instruments have the potential to be useful beyond the dreams of a conventional microscopist. As we will discuss in this article, the future is here for one such application.The atomic force microscope (AFM) takes advantage of the leverage afforded by the deflection of a laser beam bounced off a cantilevered stylus that is scanned over the surface of a specimen.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Bracker, CE y P. K. Hansma. "Scanning tunneling microscopy and atomic force microscopy: New tools for biology". Proceedings, annual meeting, Electron Microscopy Society of America 47 (6 de agosto de 1989): 778–79. http://dx.doi.org/10.1017/s0424820100155864.

Texto completo
Resumen
A new family of scanning probe microscopes has emerged that is opening new horizons for investigating the fine structure of matter. The earliest and best known of these instruments is the scanning tunneling microscope (STM). First published in 1982, the STM earned the 1986 Nobel Prize in Physics for two of its inventors, G. Binnig and H. Rohrer. They shared the prize with E. Ruska for his work that had led to the development of the transmission electron microscope half a century earlier. It seems appropriate that the award embodied this particular blend of the old and the new because it demonstrated to the world a long overdue respect for the enormous contributions electron microscopy has made to the understanding of matter, and at the same time it signalled the dawn of a new age in microscopy. What we are seeing is a revolution in microscopy and a redefinition of the concept of a microscope.Several kinds of scanning probe microscopes now exist, and the number is increasing. What they share in common is a small probe that is scanned over the surface of a specimen and measures a physical property on a very small scale, at or near the surface. Scanning probes can measure temperature, magnetic fields, tunneling currents, voltage, force, and ion currents, among others.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Fisher, Knute A. "Scanned Probe Microscopy in Biology". Microscopy Today 3, n.º 8 (octubre de 1995): 16–17. http://dx.doi.org/10.1017/s1551929500062921.

Texto completo
Resumen
Numerous scanned probe microscopes (SPM) have been developed over the past decade. Most are based on the precise positioning of sample and probe using piezoelectric transducers, and some have the capability of imaging flat surfaces with atomic resolution. The first atomic resolution SPM applied to biological samples was the scanning tunneling microscope (STM). The atomic force microscope (AFM) was subsequently developed and over the past few years has become the instrument of choice for biological applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Verbiest, G. J., D. J. van der Zalm, T. H. Oosterkamp y M. J. Rost. "A subsurface add-on for standard atomic force microscopes". Review of Scientific Instruments 86, n.º 3 (marzo de 2015): 033704. http://dx.doi.org/10.1063/1.4915895.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Schitter, G., P. Menold, H. F. Knapp, F. Allgöwer y A. Stemmer. "High performance feedback for fast scanning atomic force microscopes". Review of Scientific Instruments 72, n.º 8 (agosto de 2001): 3320–27. http://dx.doi.org/10.1063/1.1387253.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Butterworth, J. A., L. Y. Pao y D. Y. Abramovitch. "A comparison of control architectures for atomic force microscopes". Asian Journal of Control 11, n.º 2 (marzo de 2009): 175–81. http://dx.doi.org/10.1002/asjc.93.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Tseng, Ampere A. "Three-dimensional patterning of nanostructures using atomic force microscopes". Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 29, n.º 4 (julio de 2011): 040801. http://dx.doi.org/10.1116/1.3609921.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Requicha, A. A. G., D. J. Arbuckle, B. Mokaberi y J. Yun. "Algorithms and Software for Nanomanipulation with Atomic Force Microscopes". International Journal of Robotics Research 28, n.º 4 (abril de 2009): 512–22. http://dx.doi.org/10.1177/0278364908100926.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

M. El Rifai, Osamah y Kamal Youcef-Toumi. "On automating atomic force microscopes: An adaptive control approach". Control Engineering Practice 15, n.º 3 (marzo de 2007): 349–61. http://dx.doi.org/10.1016/j.conengprac.2005.10.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Fried, G., K. Balss y P. W. Bohn. "Imaging Electrochemical Controlled Chemical Gradients Using Pulsed Force Mode Atomic Force Microscopy". Microscopy and Microanalysis 6, S2 (agosto de 2000): 726–27. http://dx.doi.org/10.1017/s1431927600036126.

Texto completo
Resumen
The electrochemical formation of gradients in self assembled monolayers has been demonstrated recently [1]. The capacity to image these gradients provides useful information on the physical chemistry of electrochemical striping.Imaging chemical gradients requires the ability to sense the chemical moiety on the top of the self-assembled monolayer. This has been accomplished by derivatizing an atomic force microscope (AFM) tip with molecules selected to have specific interactions with the sample in a technique known as chemical force microscopy [2]. Typical tapping mode AFM is then used to image the sample; the tip is oscillated vertically above the sample and the tip-sample interaction modulates the amplitude of the tip.The sample adhesion, sample stiffness, and sample topography all influence the oscillation amplitude of the tip. Pulsed Force Mode (PFM) [3] is an extension for atomic force microscopes. The PFM electronics introduces a sinusoidal modulation to the z-piezo of the AFM with an amplitude between 10 to 500 nm at a user selectable frequency between 100 Hz and 2 kHz.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Tseng, Ampere A., Chung-Feng Jeffrey Kuo, Shyankay Jou, Shinya Nishimura y Jun-ichi Shirakashi. "Scratch direction and threshold force in nanoscale scratching using atomic force microscopes". Applied Surface Science 257, n.º 22 (septiembre de 2011): 9243–50. http://dx.doi.org/10.1016/j.apsusc.2011.04.065.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Chernoff, Donald A. "Atomic-force microscopy: Exotic invention or practical tool?" Proceedings, annual meeting, Electron Microscopy Society of America 51 (1 de agosto de 1993): 526–27. http://dx.doi.org/10.1017/s0424820100148460.

Texto completo
Resumen
The Scanning Tunneling and Atomic Force Microscopes are well-known due to their extraordinary capability of imaging atoms using a simple mechanism. However, atomic resolution is usually not needed to solve most problems in development and manufacturing. So, many scientists and engineers (mistakenly) regard these new microscopes as more “exotic” than practical.Both the AFM and the STM make 3-dimensional images of solid surfaces, but the AFM has much broader applications. The reason for this is that the AFM uses a universal sensing mechanism (repulsive and attractive mechanical forces), whereas the STM uses an electrical signal, which requires that the surface be at least somewhat conductive. Using the extraordinary height sensitivity and wide scan capability of the AFM, we easily answer simple (but important) questions about surfaces and surface features, including: -Is a contaminant present?-Is a feature a pit or a peak?-How tall is it?-What is the grain size of a coating?-How rough is the surface?
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Pereira, Ricardo de Souza. "Atomic force microscopy as a novel pharmacological tool11Abbreviations: AFM, atomic force microscope; SEMs, scanning electron microscopes; and SNP, single nucleotide polymorphism." Biochemical Pharmacology 62, n.º 8 (noviembre de 2001): 975–83. http://dx.doi.org/10.1016/s0006-2952(01)00746-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Dobiński, Grzegorz, Sławomir Pawłowski y Marek Smolny. "Amplitude Estimation Technique for Intermittent Contact Atomic Force Microscopy". International Journal of Measurement Technologies and Instrumentation Engineering 6, n.º 2 (julio de 2017): 29–42. http://dx.doi.org/10.4018/ijmtie.2017070103.

Texto completo
Resumen
This article describes how one of the biggest challenges in designing of high-speed intermittent contact atomic force microscope (AFM) is the construction of a fast amplitude detector. The measurement techniques commonly used in commercial microscopes, such as RMS to DC converters or lock-in amplifiers often do not provide sufficient bandwidth to perform high speed imaging. On the other hand, many techniques developed especially for high-speed AFM are characterized by poor signal-to-noise ratio. In this paper, a novel amplitude estimation method based on the generalized Goertzel algorithm is presented. The detection system, composed of 16-bit 100 mega-samples per second analog-to-digital converter and field-programmable gate array device, allows to measure the signal amplitude within the time comparable to one oscillation cycle of the AFM cantilever. The effectiveness and validity of the designed detector were investigated by computer simulation. High spatial resolution of the presented method implemented in the actual atomic force microscopy system is also demonstrated.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Dixon Northern, B. L., Y. L. Chen, J. N. Israelachvili y J. A. N. Zasadzinski. "Atomic force microscopy of mica surface after ion replacement". Proceedings, annual meeting, Electron Microscopy Society of America 49 (agosto de 1991): 628–29. http://dx.doi.org/10.1017/s0424820100087458.

Texto completo
Resumen
Atomic Force Microscope (AFM), is the newest, and potentially most powerful of the scanning probe microscopes. The (AFM) is capable of resolutions approaching atomic dimensions on ideal surfaces. One of the favorite such surfaces is that of mica. Muscovite mica has a platelike structure consisting of an octahedral alumina sheet sandwiched by two tetrahedral silicate sheets. As a result of this structure, mica cleaves readily along a plane leaving a molecularly smooth surface. Because of the isomorphous substitution of the tetravalent silicon by trivalent aluminium, mica has an excess negative surface charge.This negative surface charge of 2.1-1014 charges per cm2 is neutralized by an equal number of positive monovalent ions, mainly potassium ions. The ion-exchangable surface ions of mica, in aqueous solution, can be readily replaced by other monovalent or multivalent ions. This ion exchange alters the surface of the mica. We then follow these changes by imaging with the AFM in air.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Abramovitch, Daniel Y., Storrs Hoen y Richard Workman. "Semi-automatic tuning of PID gains for atomic force microscopes". Asian Journal of Control 11, n.º 2 (marzo de 2009): 188–95. http://dx.doi.org/10.1002/asjc.95.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Ishii, Mieko, Seiji Heike y Takeshi Harada. "3052 Electric Tests of Scanning Microprobes for Atomic Force Microscopes". Proceedings of the JSME annual meeting 2007.4 (2007): 175–76. http://dx.doi.org/10.1299/jsmemecjo.2007.4.0_175.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Carmichael, Stephen W. "Breaking Old Rules". Microscopy Today 6, n.º 8 (octubre de 1998): 3–4. http://dx.doi.org/10.1017/s155192950006911x.

Texto completo
Resumen
It has been dogma for more than a hundred years that the light microscope cannot resolve structures that are much closer together than the length of the wavelength of light. This limit is on the order of a few hundred nanometers. This rule was “broken” by using the electron beam as the illumination source. The shorter wavelength of the electron beam gave correspondingly better resolution, down in the nanometer range. The rule was “broken” again when non-optical scanning probe microscopes (such as the scanning tunneling and atomic force microscopes) were developed. This technology gave us resolution in the sub-nanometer range, imaging individual atoms and molecules. However, scanning probe microscopes scan the surface of the specimen, excluding what's underneath from our view.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Carmichael, Stephen W. "Using Antibodies to Make Images". Microscopy Today 8, n.º 3 (abril de 2000): 3–7. http://dx.doi.org/10.1017/s1551929500061010.

Texto completo
Resumen
The atomic force microscope (AFM), the workhorse of scanning probe microscopes, has become even more versatile. Anneliese Raab, Wenhai Han, Dirk Badt, Sandra Smith-Gill, Stuart Lindsay, Hansgeorg Schindler, and Peter Hinterdorfer have demonstrated that the AFM, in the dynamic force mode, can use antibodies as a probe. Dynamic force microscopy uses a magnetized tip that is oscillated in an alternating magnetic field as the tip scans the surface. This provides a very gentile interaction that can be recorded as a high resolution topographic image. Raab et al., showed that more information can be obtained from the specimen.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Henderson, Eric, Daniel Jondle, Thomas Marsh, Wen-Ling Shaiu, Luming Niu, James Vesenka, Elis Stanley y Philip Haydon. "Imaging biological samples with the atomic-force microscope". Proceedings, annual meeting, Electron Microscopy Society of America 51 (1 de agosto de 1993): 512–13. http://dx.doi.org/10.1017/s0424820100148393.

Texto completo
Resumen
The application of atomic force microscopy (AFM) to biological investigation is attractive for a number of reasons. Foremost among these is the ability of the AFM to image samples, even living cells, under near native conditions and at resolution equal to, or exceeding, that possible by the best light microscopes. Moreover, the ability of the AFM to manipulate samples it images provides a novel and far reaching application of this technology.We have been studying a number of biological samples by AFM. These include conventional and non-conventional nucleic acid structures, ribosomes, neural cells and synapses, cellular organelles (chloroplasts and nuclei), among others. Each of these projects has its own set of associated difficulties and each reveals information about the uses and limits of the AFM in biology. Fig. 1 shows AFM images of various biological samples. In the case of nucleic acids, which have been extensively studied in a number of labs by AFM the problems of signal/noise sample deposition have been overcome in air and organic solvents.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Zheng, Xiaoting, Yan Sun y Zheng Wei. "Energy Dissipated in Tapping Mode Atomic Force Microscopes due to Humidity". IOP Conference Series: Materials Science and Engineering 417 (19 de octubre de 2018): 012039. http://dx.doi.org/10.1088/1757-899x/417/1/012039.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Strahlendorff, Timo, Gaoliang Dai, Detlef Bergmann y Rainer Tutsch. "Tip wear and tip breakage in high-speed atomic force microscopes". Ultramicroscopy 201 (junio de 2019): 28–37. http://dx.doi.org/10.1016/j.ultramic.2019.03.013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Choi, Jinho, Byong Chon Park, Sang Jung Ahn, Dal-Hyun Kim, Joon Lyou, Ronald G. Dixson, Ndubuisi G. Orji, Joseph Fu y Theodore V. Vorburger. "Evaluation of carbon nanotube probes in critical dimension atomic force microscopes". Journal of Micro/Nanolithography, MEMS, and MOEMS 15, n.º 3 (26 de agosto de 2016): 034005. http://dx.doi.org/10.1117/1.jmm.15.3.034005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Garnaes, J., N. Kofod, A. Kühle, C. Nielsen, K. Dirscherl y L. Blunt. "Calibration of step heights and roughness measurements with atomic force microscopes". Precision Engineering 27, n.º 1 (enero de 2003): 91–98. http://dx.doi.org/10.1016/s0141-6359(02)00184-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Goldstein, R. V., V. A. Gorodtsov y K. B. Ustinov. "Modeling of mechanical effects related to operation of atomic force microscopes". Nanotechnologies in Russia 3, n.º 5-6 (junio de 2008): 378–90. http://dx.doi.org/10.1134/s1995078008050145.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Aikawa, M. "Studies on falciparum malaria with atomic-force and surface-potential microscopes". Annals of Tropical Medicine & Parasitology 91, n.º 7 (octubre de 1997): 689–92. http://dx.doi.org/10.1080/00034983.1997.11813191.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

AIKAWA*, BY M. "Studies on falciparum malaria with atomic force and surface potential microscopes". Annals of Tropical Medicine And Parasitology 91, n.º 7 (1 de octubre de 1997): 689–92. http://dx.doi.org/10.1080/00034989760419.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Hirsekorn, S., U. Rabe, A. Boub y W. Arnold. "On the contrast in eddy current microscopy using atomic force microscopes". Surface and Interface Analysis 27, n.º 5-6 (mayo de 1999): 474–81. http://dx.doi.org/10.1002/(sici)1096-9918(199905/06)27:5/6<474::aid-sia528>3.0.co;2-h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Liebendorfer, Adam. "Machine learning approach for analyzing complex data from atomic force microscopes". Scilight 2019, n.º 25 (21 de junio de 2019): 250002. http://dx.doi.org/10.1063/1.5114991.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Coraggio, Marco, Martin Homer, Oliver D. Payton y Mario di Bernardo. "Improved Control Strategies for Atomic Force Microscopes in Intermittent Contact Mode". IEEE Transactions on Control Systems Technology 26, n.º 5 (septiembre de 2018): 1673–84. http://dx.doi.org/10.1109/tcst.2017.2734046.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía