Artículos de revistas sobre el tema "Bactera/phage interactions"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Bactera/phage interactions".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Zhang, Mingyue, Yanan Zhou, Xinyuan Cui, and Lifeng Zhu. "The Potential of Co-Evolution and Interactions of Gut Bacteria–Phages in Bamboo-Eating Pandas: Insights from Dietary Preference-Based Metagenomic Analysis." Microorganisms 12, no. 4 (2024): 713. http://dx.doi.org/10.3390/microorganisms12040713.
Texto completoStone, Edel, Katrina Campbell, Irene Grant, and Olivia McAuliffe. "Understanding and Exploiting Phage–Host Interactions." Viruses 11, no. 6 (2019): 567. http://dx.doi.org/10.3390/v11060567.
Texto completoKoskella, Britt, and Tiffany B. Taylor. "Multifaceted Impacts of Bacteriophages in the Plant Microbiome." Annual Review of Phytopathology 56, no. 1 (2018): 361–80. http://dx.doi.org/10.1146/annurev-phyto-080417-045858.
Texto completoDicks, Leon M. T., and Wian Vermeulen. "Bacteriophage–Host Interactions and the Therapeutic Potential of Bacteriophages." Viruses 16, no. 3 (2024): 478. http://dx.doi.org/10.3390/v16030478.
Texto completoLoessner, Holger, Insea Schlattmeier, Marie Anders-Maurer, et al. "Kinetic Fingerprinting Links Bacteria-Phage Interactions with Emergent Dynamics: Rapid Depletion of Klebsiella pneumoniae Indicates Phage Synergy." Antibiotics 9, no. 7 (2020): 408. http://dx.doi.org/10.3390/antibiotics9070408.
Texto completoKarlsson, Fredrik, Carl A. K. Borrebaeck, Nina Nilsson, and Ann-Christin Malmborg-Hager. "The Mechanism of Bacterial Infection by Filamentous Phages Involves Molecular Interactions between TolA and Phage Protein 3 Domains." Journal of Bacteriology 185, no. 8 (2003): 2628–34. http://dx.doi.org/10.1128/jb.185.8.2628-2634.2003.
Texto completoMohammed, Manal, and Beata Orzechowska. "Characterisation of Phage Susceptibility Variation in Salmonellaenterica Serovar Typhimurium DT104 and DT104b." Microorganisms 9, no. 4 (2021): 865. http://dx.doi.org/10.3390/microorganisms9040865.
Texto completoSegundo-Arizmendi, Nallelyt, Dafne Arellano-Maciel, Abraham Rivera-Ramírez, Adán Manuel Piña-González, Gamaliel López-Leal, and Efren Hernández-Baltazar. "Bacteriophages: A Challenge for Antimicrobial Therapy." Microorganisms 13, no. 1 (2025): 100. https://doi.org/10.3390/microorganisms13010100.
Texto completoBeckett, Stephen J., and Hywel T. P. Williams. "Coevolutionary diversification creates nested-modular structure in phage–bacteria interaction networks." Interface Focus 3, no. 6 (2013): 20130033. http://dx.doi.org/10.1098/rsfs.2013.0033.
Texto completoJdeed, Ghadeer, Bogdana Kravchuk, and Nina V. Tikunova. "Factors Affecting Phage–Bacteria Coevolution Dynamics." Viruses 17, no. 2 (2025): 235. https://doi.org/10.3390/v17020235.
Texto completoEsteves, Nathaniel C., Danielle N. Bigham, and Birgit E. Scharf. "Phages on filaments: A genetic screen elucidates the complex interactions between Salmonella enterica flagellin and bacteriophage Chi." PLOS Pathogens 19, no. 8 (2023): e1011537. http://dx.doi.org/10.1371/journal.ppat.1011537.
Texto completoSchiettekatte, Olivier, Elsa Beurrier, Luisa De Sordi, and Anne Chevallereau. "“French Phage Network” Annual Conference—Seventh Meeting Report." Viruses 15, no. 2 (2023): 495. http://dx.doi.org/10.3390/v15020495.
Texto completoKoonjan, Shazeeda, Carlos Cardoso Palacios, and Anders S. Nilsson. "Population Dynamics of a Two Phages–One Host Infection System Using Escherichia coli Strain ECOR57 and Phages vB_EcoP_SU10 and vB_EcoD_SU57." Pharmaceuticals 15, no. 3 (2022): 268. http://dx.doi.org/10.3390/ph15030268.
Texto completoZhang, Zheng, Fen Yu, Yuanqiang Zou, et al. "Phage protein receptors have multiple interaction partners and high expressions." Bioinformatics 36, no. 10 (2020): 2975–79. http://dx.doi.org/10.1093/bioinformatics/btaa123.
Texto completoAttrill, Erin L., Rory Claydon, Urszula Łapińska, et al. "Individual bacteria in structured environments rely on phenotypic resistance to phage." PLOS Biology 19, no. 10 (2021): e3001406. http://dx.doi.org/10.1371/journal.pbio.3001406.
Texto completoTaslem Mourosi, Jarin, Ayobami Awe, Wenzheng Guo, et al. "Understanding Bacteriophage Tail Fiber Interaction with Host Surface Receptor: The Key “Blueprint” for Reprogramming Phage Host Range." International Journal of Molecular Sciences 23, no. 20 (2022): 12146. http://dx.doi.org/10.3390/ijms232012146.
Texto completoAishat, A. F., S. B. Manga, I. O. Obaroh, R. J. Bioku, and B. Abdulkadir. "An Overview on the Application of Bacteriophage Therapy in Combating Antibiotics Resistance: A Review." UMYU Journal of Microbiology Research (UJMR) 6, no. 1 (2021): 113–19. http://dx.doi.org/10.47430/ujmr.2161.015.
Texto completoRitter, Samantha, Elena T. Wright, and Philip Serwer. "Extracellular Interaction of Bacillus thuringiensis, ATP and Phage 0105phi7-2: A Potential New Anti-Bacterial Strategy." Viruses 15, no. 12 (2023): 2409. http://dx.doi.org/10.3390/v15122409.
Texto completoTopka-Bielecka, Gracja, Bożena Nejman-Faleńczyk, Sylwia Bloch, et al. "Phage–Bacteria Interactions in Potential Applications of Bacteriophage vB_EfaS-271 against Enterococcus faecalis." Viruses 13, no. 2 (2021): 318. http://dx.doi.org/10.3390/v13020318.
Texto completoSong, Jiaoyang, Zhengjie Liu, Qing Zhang, Yuqing Liu, and Yibao Chen. "Phage Engineering for Targeted Multidrug-Resistant Escherichia coli." International Journal of Molecular Sciences 24, no. 3 (2023): 2459. http://dx.doi.org/10.3390/ijms24032459.
Texto completoVan Belleghem, Jonas, Krystyna Dąbrowska, Mario Vaneechoutte, Jeremy Barr, and Paul Bollyky. "Interactions between Bacteriophage, Bacteria, and the Mammalian Immune System." Viruses 11, no. 1 (2018): 10. http://dx.doi.org/10.3390/v11010010.
Texto completoMi, Yanze, Yile He, Jinhui Mi, et al. "Genetic and Phenotypic Analysis of Phage-Resistant Mutant Fitness Triggered by Phage–Host Interactions." International Journal of Molecular Sciences 24, no. 21 (2023): 15594. http://dx.doi.org/10.3390/ijms242115594.
Texto completoGummalla, Vimathi S., Yujie Zhang, Yen-Te Liao, and Vivian C. H. Wu. "The Role of Temperate Phages in Bacterial Pathogenicity." Microorganisms 11, no. 3 (2023): 541. http://dx.doi.org/10.3390/microorganisms11030541.
Texto completoMarchi, Jacopo, Chau Nguyen Ngoc Minh, Laurent Debarbieux, and Joshua S. Weitz. "Multi-strain phage induced clearance of bacterial infections." PLOS Computational Biology 21, no. 2 (2025): e1012793. https://doi.org/10.1371/journal.pcbi.1012793.
Texto completoMakalatia, Khatuna, Elene Kakabadze, Nata Bakuradze, et al. "Investigation of Salmonella Phage–Bacteria Infection Profiles: Network Structure Reveals a Gradient of Target-Range from Generalist to Specialist Phage Clones in Nested Subsets." Viruses 13, no. 7 (2021): 1261. http://dx.doi.org/10.3390/v13071261.
Texto completoGuła, Grzegorz, Grazyna Majkowska-Skrobek, Anna Misterkiewicz, Weronika Salwińska, Tomasz Piasecki, and Zuzanna Drulis-Kawa. "Klebsiella Lytic Phages Induce Pseudomonas aeruginosa PAO1 Biofilm Formation." Viruses 17, no. 5 (2025): 615. https://doi.org/10.3390/v17050615.
Texto completoHibstu, Zigale. "Phage Therapy: A Different Approach to Fight Bacterial Infections." Journal of Clinical Case Reports & Studies 4, no. 4 (2023): 01–11. http://dx.doi.org/10.31579/2690-8808/168.
Texto completoCarroll-Portillo, Amanda, and Henry C. Lin. "Exploring Mucin as Adjunct to Phage Therapy." Microorganisms 9, no. 3 (2021): 509. http://dx.doi.org/10.3390/microorganisms9030509.
Texto completoVasse, Marie, and Sébastien Wielgoss. "Bacteriophages of Myxococcus xanthus, a Social Bacterium." Viruses 10, no. 7 (2018): 374. http://dx.doi.org/10.3390/v10070374.
Texto completoLi, Xiang-Yi, Tim Lachnit, Sebastian Fraune, Thomas C. G. Bosch, Arne Traulsen, and Michael Sieber. "Temperate phages as self-replicating weapons in bacterial competition." Journal of The Royal Society Interface 14, no. 137 (2017): 20170563. http://dx.doi.org/10.1098/rsif.2017.0563.
Texto completoBucher, Michael J., and Daniel M. Czyż. "Phage against the Machine: The SIE-ence of Superinfection Exclusion." Viruses 16, no. 9 (2024): 1348. http://dx.doi.org/10.3390/v16091348.
Texto completoNilsson, Emelie, Oliver W. Bayfield, Daniel Lundin, Alfred A. Antson, and Karin Holmfeldt. "Diversity and Host Interactions among Virulent and Temperate Baltic Sea Flavobacterium Phages." Viruses 12, no. 2 (2020): 158. http://dx.doi.org/10.3390/v12020158.
Texto completode Sousa, Jorge A. M., Amandine Buffet, Matthieu Haudiquet, Eduardo P. C. Rocha, and Olaya Rendueles. "Modular prophage interactions driven by capsule serotype select for capsule loss under phage predation." ISME Journal 14, no. 12 (2020): 2980–96. http://dx.doi.org/10.1038/s41396-020-0726-z.
Texto completoAbedon, Stephen T. "How Simple Maths Can Inform Our Basic Understanding of Phage Therapy." Clinical Infectious Diseases 77, Supplement_5 (2023): S401—S406. http://dx.doi.org/10.1093/cid/ciad480.
Texto completoCarroll-Portillo, Amanda, Kellin N. Rumsey, Cody A. Braun, et al. "Mucin and Agitation Shape Predation of Escherichia coli by Lytic Coliphage." Microorganisms 11, no. 2 (2023): 508. http://dx.doi.org/10.3390/microorganisms11020508.
Texto completoAbedon, Stephen T., Katarzyna M. Danis-Wlodarczyk, Daniel J. Wozniak, and Matthew B. Sullivan. "Improving Phage-Biofilm In Vitro Experimentation." Viruses 13, no. 6 (2021): 1175. http://dx.doi.org/10.3390/v13061175.
Texto completoKoskella, Britt, and Nicole Parr. "The evolution of bacterial resistance against bacteriophages in the horse chestnut phyllosphere is general across both space and time." Philosophical Transactions of the Royal Society B: Biological Sciences 370, no. 1675 (2015): 20140297. http://dx.doi.org/10.1098/rstb.2014.0297.
Texto completoBonilla-Rosso, Germán, Théodora Steiner, Fabienne Wichmann, Evan Bexkens, and Philipp Engel. "Honey bees harbor a diverse gut virome engaging in nested strain-level interactions with the microbiota." Proceedings of the National Academy of Sciences 117, no. 13 (2020): 7355–62. http://dx.doi.org/10.1073/pnas.2000228117.
Texto completoYerushalmy, Ortal, Ron Braunstein, Sivan Alkalay-Oren, et al. "Towards Standardization of Phage Susceptibility Testing: The Israeli Phage Therapy Center “Clinical Phage Microbiology”—A Pipeline Proposal." Clinical Infectious Diseases 77, Supplement_5 (2023): S337—S351. http://dx.doi.org/10.1093/cid/ciad514.
Texto completoKim, Kang Eun, Hyoung Min Joo, Yu Jin Kim, et al. "Ecological Interaction between Bacteriophages and Bacteria in Sub-Arctic Kongsfjorden Bay, Svalbard, Norway." Microorganisms 12, no. 2 (2024): 276. http://dx.doi.org/10.3390/microorganisms12020276.
Texto completoTesfaigzi, Johannes, and Roland Süssmuth. "Proportion of phage-insensitive and phage-sensitive cells within pure strains of lactic streptococci, and the influence of calcium." Journal of Dairy Research 56, no. 1 (1989): 151–54. http://dx.doi.org/10.1017/s0022029900026327.
Texto completoMaffei, Enea, Aisylu Shaidullina, Marco Burkolter, et al. "Systematic exploration of Escherichia coli phage–host interactions with the BASEL phage collection." PLOS Biology 19, no. 11 (2021): e3001424. http://dx.doi.org/10.1371/journal.pbio.3001424.
Texto completoKraus, Samuel, Megan L. Fletcher, Urszula Łapińska, et al. "Phage-induced efflux down-regulation boosts antibiotic efficacy." PLOS Pathogens 20, no. 6 (2024): e1012361. http://dx.doi.org/10.1371/journal.ppat.1012361.
Texto completoBulssico, Julián, Irina PapukashvilI, Leon Espinosa, Sylvain Gandon, and Mireille Ansaldi. "Phage-antibiotic synergy: Cell filamentation is a key driver of successful phage predation." PLOS Pathogens 19, no. 9 (2023): e1011602. http://dx.doi.org/10.1371/journal.ppat.1011602.
Texto completoZamora, Paula F., Thomas G. Reidy, Catherine R. Armbruster, et al. "Lytic bacteriophages induce the secretion of antiviral and proinflammatory cytokines from human respiratory epithelial cells." PLOS Biology 22, no. 4 (2024): e3002566. http://dx.doi.org/10.1371/journal.pbio.3002566.
Texto completoDonati, Valentina L., Inger Dalsgaard, Anniina Runtuvuori-Salmela, et al. "Interactions between Rainbow Trout Eyed Eggs and Flavobacterium spp. Using a Bath Challenge Model: Preliminary Evaluation of Bacteriophages as Pathogen Control Agents." Microorganisms 9, no. 5 (2021): 971. http://dx.doi.org/10.3390/microorganisms9050971.
Texto completoLucia-Sanz, Adriana, Shengyun Peng, Joey Leung, Animesh Gupta, Justin R. Meyer, and Joshua S. Weitz. "Inferring strain-level mutational drivers of phage-bacteria interaction phenotypes arising during coevolutionary dynamics." Virus Evolution, November 29, 2024. http://dx.doi.org/10.1093/ve/veae104.
Texto completoMolina, Felipe, Manuel Menor-Flores, Lucía Fernández, Miguel A. Vega-Rodríguez, and Pilar García. "Systematic analysis of putative phage-phage interactions on minimum-sized phage cocktails." Scientific Reports 12, no. 1 (2022). http://dx.doi.org/10.1038/s41598-022-06422-1.
Texto completoKauffman, Kathryn M., William K. Chang, Julia M. Brown, et al. "Resolving the structure of phage–bacteria interactions in the context of natural diversity." Nature Communications 13, no. 1 (2022). http://dx.doi.org/10.1038/s41467-021-27583-z.
Texto completoLi, Dandan, Na Li, Yu Chen, et al. "Phage-host interaction in Pseudomonas aeruginosa clinical isolates with functional and altered quorum sensing systems." Applied and Environmental Microbiology, March 4, 2025. https://doi.org/10.1128/aem.02402-24.
Texto completo