Tesis sobre el tema "Bayesian logistic regression models"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Bayesian logistic regression models".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Webster, Gregg. "Bayesian logistic regression models for credit scoring". Thesis, Rhodes University, 2011. http://hdl.handle.net/10962/d1005538.
Texto completoRichmond, James Howard. "Bayesian Logistic Regression Models for Software Fault Localization". Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1326658577.
Texto completoOzturk, Olcay. "Bayesian Semiparametric Models For Nonignorable Missing Datamechanisms In Logistic Regression". Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613241/index.pdf.
Texto completoKynn, Mary. "Eliciting Expert Knowledge for Bayesian Logistic Regression in Species Habitat Modelling". Queensland University of Technology, 2005. http://eprints.qut.edu.au/16041/.
Texto completoPaz, Rosineide Fernando da. "Alternative regression models to beta distribution under bayesian approach". Universidade Federal de São Carlos, 2017. https://repositorio.ufscar.br/handle/ufscar/9146.
Texto completoApproved for entry into archive by Ronildo Prado (producaointelectual.bco@ufscar.br) on 2017-10-10T18:16:14Z (GMT) No. of bitstreams: 1 TeseRFP.pdf: 2142415 bytes, checksum: 8dcd8615da0b442e9f1b52f35364715b (MD5)
Approved for entry into archive by Ronildo Prado (producaointelectual.bco@ufscar.br) on 2017-10-10T18:16:22Z (GMT) No. of bitstreams: 1 TeseRFP.pdf: 2142415 bytes, checksum: 8dcd8615da0b442e9f1b52f35364715b (MD5)
Made available in DSpace on 2017-10-10T18:23:04Z (GMT). No. of bitstreams: 1 TeseRFP.pdf: 2142415 bytes, checksum: 8dcd8615da0b442e9f1b52f35364715b (MD5) Previous issue date: 2017-08-25
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
The Beta distribution is a bounded domain distribution which has dominated the modeling the distribution of random variable that assume value between 0 and 1. Bounded domain distributions arising in various situations such as rates, proportions and index. Motivated by an analysis of electoral votes percentages (where a distribution with support on the positive real numbers was used, although a distribution with limited support could be more suitable) we focus on alternative distributions to Beta distribution with emphasis in regression models. In this work, initially we present the Simplex mixture model as a flexible model to modeling the distribution of bounded random variable then we extend the model to the context of regression models with the inclusion of covariates. The parameters estimation is discussed for both models considering Bayesian inference. We apply these models to simulated data sets in order to investigate the performance of the estimators. The results obtained were satisfactory for all the cases investigated. Finally, we introduce a parameterization of the L-Logistic distribution to be used in the context of regression models and we extend it to a mixture of mixed models.
A distribuição beta é uma distribuição com suporte limitado que tem dominado a modelagem de variáveis aleatórias que assumem valores entre 0 e 1. Distribuições com suporte limitado surgem em várias situações como em taxas, proporções e índices. Motivados por uma análise de porcentagens de votos eleitorais, em que foi assumida uma distribuição com suporte nos números reais positivos quando uma distribuição com suporte limitado seira mais apropriada, focamos em modelos alternativos a distribuição beta com enfase em modelos de regressão. Neste trabalho, apresentamos, inicialmente, um modelo de mistura de distribuições Simplex como um modelo flexível para modelar a distribuição de variáveis aleatórias que assumem valores em um intervalo limitado, em seguida estendemos o modelo para o contexto de modelos de regressão com a inclusão de covariáveis. A estimação dos parâmetros foi discutida para ambos os modelos, considerando o método bayesiano. Aplicamos os dois modelos a dados simulados para investigarmos a performance dos estimadores usados. Os resultados obtidos foram satisfatórios para todos os casos investigados. Finalmente, introduzimos a distribuição L-Logistica no contexto de modelos de regressão e posteriormente estendemos este modelo para o contexto de misturas de modelos de regressão mista.
Zimmer, Zachary. "Predicting NFL Games Using a Seasonal Dynamic Logistic Regression Model". VCU Scholars Compass, 2006. http://scholarscompass.vcu.edu/etd_retro/97.
Texto completoFu, Shuting. "Bayesian Logistic Regression Model with Integrated Multivariate Normal Approximation for Big Data". Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-theses/451.
Texto completoSchoergendorfer, Angela. "BAYESIAN SEMIPARAMETRIC GENERALIZATIONS OF LINEAR MODELS USING POLYA TREES". UKnowledge, 2011. http://uknowledge.uky.edu/gradschool_diss/214.
Texto completoTang, Zhongwen. "LOF of logistic GEE models and cost efficient Bayesian optimal designs for nonlinear combinations of parameters in nonlinear regression models". Diss., Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/1011.
Texto completoDikshit, Anubhav. "Omnichannel path to purchase : Viability of Bayesian Network as Market Attribution Models". Thesis, Linköpings universitet, Filosofiska fakulteten, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-165443.
Texto completoOrtega, Villa Ana Maria. "Semiparametric Varying Coefficient Models for Matched Case-Crossover Studies". Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/64181.
Texto completoPh. D.
Diniz, Márcio Augusto. "Modelos bayesianos semi-paramétricos para dados binários". Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-02112015-013658/.
Texto completoThis work proposes semi-parametric Bayesian models for binary data. The first model is a scale mixture that allows handling discrepancies related to kurtosis of Logistic model. It is a more interesting extension than has been proposed by Basu e Mukhopadyay (1998) because this model allows the interpretation of the prior distribution of parameters using odds ratios. The second model enjoys the scale mixture together with the scale transformation proposed by Yeo and Johnson (2000) modeling the kurtosis and the asymmetry such that a parameter of asymmetry is estimated. This transformation is more appropriate to deal with negative values than the transformation of Box e Cox (1964) used by Guerrero e Johnson (1982) and simpler than the model proposed by Stukel (1988). Finally, the third model is the most general among all and consists of a location-scale mixture that can describe kurtosis and skewness also bimodality. The model proposed by Newton et al (1996), although general, does not allow a tangible interpretation of the a priori distribution for reseachers of applied area. The evaluation of the models is performed through distance measurements of distribution of probabilities Cramer-von Mises Kolmogorov-Smirnov and Anderson-Darling and also the Conditional Predictive sorted.
Mendonça, Tiago Silva. "Modelos de regressão logística clássica, Bayesiana e redes neurais para Credit Scoring". Universidade Federal de São Carlos, 2008. https://repositorio.ufscar.br/handle/ufscar/4535.
Texto completoImportant advances have been achieved in the granting of credit, however, the problem of identifying good customers for the granting of credit does not provide a definitive solution. Several techniques were presented and are being developed, each presents its characteristics, advantages and disadvantages as to their discrimination power, robustness, ease of implementation and possibility of interpretation. This work presents three techniques for the classification of defaults in models of Credit Score, Classical Logistic Regression, Bayesian Logistic Regression with no prior information and Artificial Neural Networks with a few different architectures. The main objective of the study is to compare the performance of these techniques in the identification of customers default. For this, four metrics were used for comparison of models: predictive capacity, ROC Curve, Statistics of Kolmogorov Smirnov and capacity of hit models. Two data bases were used, an artificial bank and a real bank. The database was constructed artificially based on an article by Breiman that generates the explanatory variables from a multivariate normal distribution and the actual database used is a problem with Credit Score of a financial institution that operates in the retail Brazilian market more than twenty years.
Importantes avanços vêm sendo conquistados na área de concessão de crédito, não obstante, o problema de identificação de bons clientes para a concessão de crédito não apresenta uma solução definitiva. Diversas técnicas foram apresentadas e vêm sendo desenvolvidas, cada uma apresenta suas características, com vantagens e desvantagens no tocante ao seu poder de discriminação, robustez, facilidade de implementação e possibilidade de interpretação. Este trabalho apresenta três técnicas para a classificação de inadimplência em modelos de Credit Score, Regressão Logística Clássica, Regressão Logística Bayesiana com priori não informativa e Redes Neurais Artificiais com algumas diferentes arquiteturas. O objetivo principal do trabalho é comparar o desempenho destas técnicas na identificação de clientes inadimplentes. Para isto, Foram utilizadas quatro métricas para a comparação dos modelos: Capacidade Preditiva, Curva ROC, Estatística de Kolmogorov Smirnov e a Capacidade de Acerto dos modelos. Dois bancos de dados foram utilizados, um banco artificial e um banco real. O banco de dados artificial foi construído baseado em um artigo de Breiman que gera as variáveis explicativas a partir de uma distribuição normal multivariada e o banco de dados real utilizado trata-se de um problema de Credit Score de uma instituição financeira que atua no mercado varejista brasileiro há mais de vinte anos.
Karcher, Cristiane. "Redes Bayesianas aplicadas à análise do risco de crédito". Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/3/3142/tde-25052009-162507/.
Texto completoCredit Scoring Models are used to estimate the insolvency probability of a customer, in a period, based on their personal and financial information. In this text, the proposed model for Credit Scoring is Bayesian Networks (BN) and its results were compared to Logistic Regression. The BN evaluated were the Bayesian Networks Classifiers, with structures of type: Naive Bayes, Tree Augmented Naive Bayes (TAN) and General Bayesian Network (GBN). The RB structures were developed using a Structure Learning technique from a real database. The models performance were evaluated and compared through the hit rates observed in Confusion Matrix, Kolmogorov-Smirnov statistic and Gini coefficient. The development and validation samples were obtained using a Cross-Validation criteria with 10-fold. The analysis showed that the fitted BN models have the same performance as the Logistic Regression Models, evaluating the Kolmogorov-Smirnov statistic and Gini coefficient. The TAN Classifier was selected as the best BN model, because it performed better in prediction of bad customers and allowed an interaction effects analysis between variables.
Williams, Alison Kay. "The influence of probability of detection when modeling species occurrence using GIS and survey data". Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/11129.
Texto completoPh. D.
Selig, Katharina [Verfasser], Donna P. [Akademischer Betreuer] Ankerst, Pamela A. [Gutachter] Shaw y Donna P. [Gutachter] Ankerst. "Bayesian information criterion approximations for model selection in multivariate logistic regression with application to electronic medical records / Katharina Selig ; Gutachter: Pamela A. Shaw, Donna P. Ankerst ; Betreuer: Donna P. Ankerst". München : Universitätsbibliothek der TU München, 2020. http://d-nb.info/1211476367/34.
Texto completoAllan, Michelle L. "Measuring Skill Importance in Women's Soccer and Volleyball". Diss., CLICK HERE for online access, 2009. http://contentdm.lib.byu.edu/ETD/image/etd2809.pdf.
Texto completoRashid, Mamunur. "Inference on Logistic Regression Models". Bowling Green State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1214165101.
Texto completoBatchelor, John Stephen. "Trauma scoring models using logistic regression". Thesis, University College London (University of London), 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.418022.
Texto completoXiang, Fei. "Bayesian consistency for regression models". Thesis, University of Kent, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.587522.
Texto completoWilliams, Ulyana P. "On Some Ridge Regression Estimators for Logistic Regression Models". FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3667.
Texto completoWang, Jie. "Incorporating survey weights into logistic regression models". Digital WPI, 2013. https://digitalcommons.wpi.edu/etd-theses/267.
Texto completoMcGlothlin, Anna E. Stamey James D. Seaman John Weldon. "Logistic regression with misclassified response and covariate measurement error a Bayesian approach /". Waco, Tex. : Baylor University, 2007. http://hdl.handle.net/2104/5101.
Texto completoRoberts, Brook R. "Measuring NAVSPASUR sensor performance using logistic regression models". Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/23952.
Texto completoWeng, Yu. "Maximum Likelihood Estimation of Logistic Sinusoidal Regression Models". Thesis, University of North Texas, 2013. https://digital.library.unt.edu/ark:/67531/metadc407796/.
Texto completoKang, An. "Online Bayesian nonparametric mixture models via regression". Thesis, University of Kent, 2018. https://kar.kent.ac.uk/66306/.
Texto completoLin, Shan. "Simultaneous confidence bands for linear and logistic regression models". Thesis, University of Southampton, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.443030.
Texto completoJia, Yan. "Optimal experimental designs for two-variable logistic regression models". Diss., This resource online, 1996. http://scholar.lib.vt.edu/theses/available/etd-06062008-152028/.
Texto completoLund, Anton. "Two-Stage Logistic Regression Models for Improved Credit Scoring". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-160551.
Texto completoDenna uppsats har undersökt tvåstegs regulariserade logistiska regressioner för att estimera credit score hos konsumenter. Credit score är ett mått på kreditvärdighet och mäter sannolikheten att en person inte betalar tillbaka sin kredit. Data kommer från Klarna AB och innehåller fler observationer än mycket annan forskning om kreditvärdighet. Med tvåstegsregressioner menas i denna uppsats en regressionsmodell bestående av två steg där information från det första steget används i det andra steget för att förbättra den totala prestandan. De bäst presterande modellerna använder i det första steget en alternativ förklaringsvariabel, betalningsstatus vid en tidigare tidpunkt än den konventionella, för att segmentera eller som variabel i det andra steget. Detta gav en giniökning på approximativt 0,01. Användandet av enklare segmenteringsmetoder så som score-gränser eller avstånd till en beslutsgräns visade sig inte förbättra prestandan.
Wang, Junhua. "Large-Sample Logistic Regression with Latent Covariates in a Bayesian Networking Context". TopSCHOLAR®, 2009. http://digitalcommons.wku.edu/theses/103.
Texto completoMarjerison, William M. "Bayesian Logistic Regression with Spatial Correlation: An Application to Tennessee River Pollution". Digital WPI, 2006. https://digitalcommons.wpi.edu/etd-theses/1115.
Texto completoBrezger, Andreas. "Bayesian P-Splines in Structured Additive Regression Models". Diss., lmu, 2005. http://nbn-resolving.de/urn:nbn:de:bvb:19-39420.
Texto completoKonrath, Susanne. "Bayesian regularization in regression models for survival data". Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-159745.
Texto completoKoutsourelis, Antonios. "Bayesian extreme quantile regression for hidden Markov models". Thesis, Brunel University, 2012. http://bura.brunel.ac.uk/handle/2438/7071.
Texto completoTüchler, Regina. "Bayesian Variable Selection for Logistic Models Using Auxiliary Mixture Sampling". Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 2006. http://epub.wu.ac.at/984/1/document.pdf.
Texto completoSeries: Research Report Series / Department of Statistics and Mathematics
Crixell, JoAnna Christine Seaman John Weldon Stamey James D. "Logistic regression with covariate measurement error in an adaptive design a Bayesian approach /". Waco, Tex. : Baylor University, 2008. http://hdl.handle.net/2104/5229.
Texto completoTruong, Alfred Kar Yin. "Fast growing and interpretable oblique trees via logistic regression models". Thesis, University of Oxford, 2009. http://ora.ox.ac.uk/objects/uuid:e0de0156-da01-4781-85c5-8213f5004f10.
Texto completoShavdia, Dewang. "Septic shock : providing early warnings through multivariate logistic regression models". Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42338.
Texto completoThesis (M. Eng.)--Harvard-MIT Division of Health Sciences and Technology, 2007.
(cont.) The EWS models were then tested in a forward, casual manner on a random cohort of 500 ICU patients to mimic the patients' stay in the unit. The model with the highest performance achieved a sensitivity of 0.85 and a positive predictive value (PPV) of 0.70. Of the 35 episodes of hypotension despite fluid resuscitation present in the random patient dataset, the model provided early warnings for 29 episodes with a mean early warning time of 582 ± 355 minutes.
Early goal-directed therapy (EGDT) in severe sepsis and septic shock has shown to provide substantial benefits in patient outcomes. However, these preventive therapeutic interventions are contingent upon an early detection or suspicion of the underlying septic etiology. Detection of sepsis in the early stages can be difficult, as the initial pathogenesis can occur while the patient is still displaying normal vital signs. This study focuses on developing an early warning system (EWS) to provide clinicians with a forewarning of an impending hypotensive crisis-thus allowing for EGDT intervention. Research was completed in three main stages: (1) generating an annotated septic shock dataset, (2) constructing multivariate logistic regression EWS models using the annotated dataset, and (3) testing the EWS models in a forward, causal manner on a random cohort of patients to simulate performance in a real-life ICU setting. The annotated septic shock dataset was created using the Multi-parameter Intelligent Monitoring for Intensive Care II (MIMIC II) database. Automated pre-annotations were generated using search criteria designed to identify two patient types: (1) sepsis patients who do not progress to septic shock, and (2) sepsis patient who progress to septic shock. Currently, manual review by expert clinicians to verify the pre-annotations has not been completed. Six separate EWS models were constructed using the annotated septic shock dataset. The multivariate logistic regression EWS models were trained to differentiate between 107 high-risk sepsis patients of whom 39 experienced a hypotensive crisis and 68 who remained stable. The models were tested using 7-fold cross validation; the mean area under the receiver operating characteristic (ROC) curve for the best model was 0.940 ± 0.038.
by Dewang Shavdia.
M.Eng.
Berrett, Candace. "Bayesian Probit Regression Models for Spatially-Dependent Categorical Data". The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1285076512.
Texto completoPan, Tianshu. "Using the multivariate multilevel logistic regression model to detect DIF a comparison with HGLM and logistic regression DIF detection methods /". Diss., Connect to online resource - MSU authorized users, 2008.
Buscar texto completoTitle from PDF t.p. (viewed on Sept. 8, 2009) Includes bibliographical references (p. 85-89). Also issued in print.
Mo, Lijia. "Examining the reliability of logistic regression estimation software". Diss., Kansas State University, 2010. http://hdl.handle.net/2097/7059.
Texto completoDepartment of Agricultural Economics
Allen M. Featherstone
Bryan W. Schurle
The reliability of nine software packages using the maximum likelihood estimator for the logistic regression model were examined using generated benchmark datasets and models. Software packages tested included: SAS (Procs Logistic, Catmod, Genmod, Surveylogistic, Glimmix, and Qlim), Limdep (Logit, Blogit), Stata (Logit, GLM, Binreg), Matlab, Shazam, R, Minitab, Eviews, and SPSS for all available algorithms, none of which have been previously tested. This study expands on the existing literature in this area by examination of Minitab 15 and SPSS 17. The findings indicate that Matlab, R, Eviews, Minitab, Limdep (BFGS), and SPSS provided consistently reliable results for both parameter and standard error estimates across the benchmark datasets. While some packages performed admirably, shortcomings did exist. SAS maximum log-likelihood estimators do not always converge to the optimal solution and stop prematurely depending on starting values, by issuing a ``flat" error message. This drawback can be dealt with by rerunning the maximum log-likelihood estimator, using a closer starting point, to see if the convergence criteria are actually satisfied. Although Stata-Binreg provides reliable parameter estimates, there is no way to obtain standard error estimates in Stata-Binreg as of yet. Limdep performs relatively well, but did not converge due to a weakness of the algorithm. The results show that solely trusting the default settings of statistical software packages may lead to non-optimal, biased or erroneous results, which may impact the quality of empirical results obtained by applied economists. Reliability tests indicate severe weaknesses in SAS Procs Glimmix and Genmod. Some software packages fail reliability tests under certain conditions. The finding indicates the need to use multiple software packages to solve econometric models.
Burton, Sarah L. "Logistic regression models and their application in medical discrimination and diagnosis". Thesis, University of Sheffield, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364332.
Texto completoVolinsky, Christopher T. "Bayesian model averaging for censored survival models /". Thesis, Connect to this title online; UW restricted, 1997. http://hdl.handle.net/1773/8944.
Texto completoHills, Susan. "The parametrisation of statistical models". Thesis, University of Nottingham, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329850.
Texto completoBin, Muhd Noor Nik Nooruhafidzi. "Statistical modelling of ECDA data for the prioritisation of defects on buried pipelines". Thesis, Brunel University, 2017. http://bura.brunel.ac.uk/handle/2438/16392.
Texto completoFréchette, Luc A. "Development of urban traffic models using a Bayesian regression approach". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1996. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq22112.pdf.
Texto completoFrechette, Luc A. Carleton University Dissertation Engineering Civil and Environmental. "Development of urban traffic models using a Bayesian regression approach". Ottawa, 1996.
Buscar texto completoLamba, Binu. "Performance of ordinal logistic regression models under conditions of pooling adjacent categories". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq28600.pdf.
Texto completoKonis, Kjell Peter. "Linear programming algorithms for detecting separated data in binary logistic regression models". Thesis, University of Oxford, 2007. http://ora.ox.ac.uk/objects/uuid:8f9ee0d0-d78e-4101-9ab4-f9cbceed2a2a.
Texto completoWeng, Chin-Fang. "Fixed versus mixed parameterization in logistic regression models application to meta-analysis /". College Park, Md.: University of Maryland, 2008. http://hdl.handle.net/1903/8985.
Texto completoThesis research directed by: Dept. of Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.